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Abstract

Based on the local U(1) gauge slave-boson approach to the t-J Hamiltonian,

we examine a possibility of hole pairing at finite temperature and hole doping

rate. It is found that as a result of symmetry breaking d-wave holon pairing

with finite gap can occur. In addition a holon-spinon supersymmetry condi-

tion at T = 0K is obtained based on spinon and holon excitations at a critical

doping region between antiferromagnetic and superconducting phases.
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Slave-boson approach to the t-J Hamiltonian is often employed for the study of strongly

correlated electron systems, including high TC cuprates. In the mean field level [1], the

superconducting order parameter < c†i↑c
†
j↓ > is taken to be < bibj >< f †

i↑f
†
j↓ >. This suggests

that the superconducting state occurs only when both spinon and holon pairs are condensed

simultanesouly. Recently, SU(2) slave-boson theory was employed in the t-J Hamiltonian to

probe the possibility of single holon and holon pair condensations [2]. In the present study

we closely follow earlier studies of the U(1) slave-boson approach advanced by Ubbens and

Lee [3] and explore a possibility of d-wave hole pairing for hole-doped cuprates. We also

explore a spinon-holon supersymmetry condition in the context of quasi particle excitation

spectrum.

The t-J Hamiltonian in the local U(1) gauge slave-boson form [1], [3] is written

H = −t
∑

<i,j>

(f †
iσfjσb

†
jbi + c.c.)

+J
∑

<i,j>

(Si · Sj −
1

4
ninj) − µ0

∑

i,σ

f †
iσfiσ

+i
∑

i

λi(f
†
iσfiσ + b†ibi − 1), (1)

where fiσ(f †
iσ) is the spinon annihilation(creation) operator; bi(b

†
i ), the holon annihila-

tion(creation) operator; and ni, the electron(spinon) number operator at site i. λi is the

Lagrangian multiplier to enforce local single occupancy constraint. Si is the electron spin

operator at site i, Si = 1
2
f †

iασαβfjβ with σαβ, the Pauli spin matrix element.

The Heisenberg term can be decoupled into Hatree-Fock-Bogoliubov channels in asso-

ciation with the direct, exchange and pairing interactions, by introducing corresponding

Hubbard-Stratonovich fields, ρ
f
i , χf

ji and ∆f
ji. The resulting effective Hamiltonian with the

inclusion of the hopping term is [3],

H =
3J

8

∑

<i,j>

[

|χji|
2 + |∆f

ji|
2 − χ∗

ji

(

f †
jσfiσ +

8t

3J
b†jbi

)

− c.c. + ni

−∆f∗
ji (fj↑fi↓ − fj↓fi↑) − c.c.

]

+
J

2

∑

<i,j>

(

|ρf
i |

2 −
3

∑

k=1

(ρf
i )

k(f †
j σ

kfj)
)

−µ0

∑

i

f †
iσfiσ − i

∑

i

λi(f
†
iσfiσ + b†ibi − 1)

+
8t2

3J

∑

<i,j>

b†jbib
†
ibj −

J

4

∑

<i,j>

ninj. (2)
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In the above expression the last two terms were neglected in the previous work (Eq.(4)

in [3]). They are needed in order to properly describe the physics of hole pairing for the

hole-doped cuprates of present interest. It is of note that the added term,
∑

<i,j> b†jbib
†
ibj is

associated only with the exchange interaction channel.

The introduction of ni = 1 − b†ibi(with neglect of double occupancy) and the Hartree-

Fock-Bogoliubov channels into the last term in Eq.(2) leads to

e
J
4

∑

<i,j>
ninj = e

J
4

∑

<i,j>
b
†
i
b
†
j
bibj−J

∑

i
b
†
i
bi+

NJ
2

∝
∫

∏

i

dρb
i

∏

<i,j>

dχb∗
jidχb

jid∆b∗
jid∆b

jie
−

∑

<i,j>
Bji , (3)

where

Bji =
J

12

[

(ρb
i)

2−2ρb
i(b

†
jbj)+|χb

ji|
2−χb∗

ji (b
†
jbi)−c.c+|∆b

ji|
2−∆b∗

ji (bjbi)−c.c
]

+
7J

6

∑

i

b†ibi−
NJ

2
.

Here b†ib
†
jbibj is decomposed into Hartree, Fock and Bogoliubov channels by equally weight-

ing them. ρb, χb and ∆b are the Hubbard-Stratonovich fields corresponding to the direct,

exchange and pairing channels respectively. N is the total number of sites or the total

number of electrons at half-filling.

We obtain the mean field Hamiltonian from Eqs.(2) and (3) by using the saddle point

approximation,

HMF =
∑

<i,j>

[3J

8

(

|∆f
ji|

2 + |χf
ji|

2
)

+
J

12

(

|∆b
ji|

2 + |χb
ji|

2 + (ρb
i)

2
)

+ t
(

χf
jiχ

b∗
ji + χf∗

ji χb
ji

)]

−
3J

8

∑

<i,j>

[

∆∗
ji(fj↑fi↓ − fj↓fi↑) + c.c.

]

−
3J

8

∑

<i,j>

[(

χf
ji +

8t

3J
χb

ji

)∗
(f †

jσfiσ) + c.c.
]

+
J

2

∑

<i,j>

(

|ρf
i |

2 −
3

∑

k=1

(ρf
i )

k(f †
j σ

kfj)
)

−
∑

i,σ

µf
i (f

†
iσfiσ)

−t
∑

<i,j>

[(

χf
ji +

J

12t
χb

ji

)∗
(b†jbi) + c.c.

]

−
J

12

∑

<i,j>

[

∆b∗
ji (bibj) + c.c.

]

−
∑

i

µb
i(b

†
ibi)

+
8t2

3J

∑

<i,j>

(b†jbi − χb
ji)(b

†
ibj − χb∗

ji ). (4)

Here the saddle-point(mean) values of interest are given by χf
ji =< f †

jσfiσ >, χb
ji =< b†jbi >,

∆f
ji =< fj↑fi↓−fj↓fi↑ >, ∆b

ji =< bjbi >, ρb
i =< b†ibi >= δi and ρ

f
i =< Si >. ρ

f
i will be taken

to be 0 as in Ref. [3]. The effective chemical potentials are defined by µf
i = µ0 + iλi − 3J/4

for spinons and µb
i = iλi + J

3
ρb

i − 7J/6 for holons.
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Following Ubbens and Lee [3] we now set for the order parameters in Eq.(4),

χf
ji = χfe±iθf

and χb
ji = χfe±iθb

, (5)

where the sign +(−) is along(against) the arrow(see Fig. 6),

∆f
ji = ∆fe±iτf

and ∆b
ji = ∆be±iτb

, (6)

where the sign +(−) is for the ij link parallel to x̂ (ŷ). We allow uniform(site-independent)

chemical potentials, µf
i = µf and µb

i = µb. Applying Bogoliubov-Valatin transformation

after the momentum space transformation of the mean field Hamiltonian HMF above, we

obtain the following diagonalized Hamiltonian,

HMF =
3NJ

4

(

(∆f)2 + (χf)2
)

+

′
∑

k,s=±1

Ef
ks(α

†
ksαks − βksβ

†
ks) − Nµf

+
NJ

6

(

(∆b)2 + (χb)2 + (ρb)2
)

+

′
∑

k,s=±1

{Eb
ks(h

†
kshks +

1

2
) −

ǫb
ks

2
} +

Nµb

2

+4Ntχfχb cos(θf − θb). (7)

Here the quasi particle energies are given by

Ef
ks =

√

(ǫf
ks − µf)2 +

(3J

4
ξk(τ f)∆f

)2
, (8)

for the spinon and

Eb
ks =

√

(ǫb
ks − µb)2 −

(J

6
ξk(τ b)∆b

)2
, (9)

for the holon, where

Eb′

ks =
1

2

(

Eb
ks − (ǫb

ks − µb)
)

, (10)

ǫf
ks =

3

4
sJ

√

γ2
k

(

χf cos θf +
8t

3J
χb cos θb

)2
+ ϕ2

k

(

χf sin θf +
8t

3J
χb sin θb

)2
, (11)

ǫb
ks = 2st

√

γ2
k

(

χf cos θf +
J

12t
χb cos θb

)2
+ ϕ2

k

(

χf sin θf +
J

12t
χb sin θb

)2
, (12)

ξk(τ) =
√

γ2
k cos2 τ + ϕ2

k sin2 τ , with τ = τ f or τ b (13)

γk = (cos kx + cos ky), (14a)

ϕk = (cos kx − cos ky). (14b)
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αks(α
†
ks) and βks(β

†
ks) are the annihilation(creation) operators of spinon quasiparticle and

hks(h
†
ks), the annihilation(creation) operators of holon quasiparticle.

∑′

k denotes a sum over

half of the Brillouin zone. In deriving the expression (7), fluctuations of holon hopping

order, (b†jbi− < b†jbi >) which appears in the last term of Eq.(4) are neglected.

Using the diagonalized Hamiltonian(7), we readily obtain the free energy,

F =
3NJ

4

(

(∆f )2 + (χf )2
)

− 2kBT

′
∑

k,s=±1

ln[cosh(βEf
ks/2)] − Nµf − 2NkBT ln2

+
NJ

6

(

(∆b)2 + (χb)2 + δ2
)

+ kBT

′
∑

k,s=±1

ln[1 − e−βEb
ks] +

′
∑

k,s=±1

Eb
ks − ǫb

ks

2
+

Nµb

2

+4Ntχfχb cos(θf − θb). (15)

It is of note that the neglect of δ, ∆b and χb and rescaling of all energies by 3J
4

leads to the

same result(Eq.(11) in [3]) obtained by Ubbens and Lee. By properly choosing the phases

of the order parameters in Eqs.(5) and (6) and minimizing the free energy, the amplitudes

of the order parameters(χ’s and ∆’s) can be determined as a function of temperature and

doping rate [1], [3]. The chemical potential at finite temperature is determined from the use

of Eq.(15), that is, ∂F
∂µb = −Nδ for holon and ∂F

∂µf = −N(1 − δ) for spinon. Here we pay

attention only to the equations concerned with holon pairing and holon chemical potential,

µb

∂F

∂∆b
=

J

3
∆b

[

N −

′
∑

k,s=±1

( 1

eβEb
ks − 1

+
1

2

)Jξk(τ
b)2

12Eb
ks

]

= 0, (16)

−
∂F

∂µb
=

′
∑

k,s=±1

[ 1

eβEb
ks − 1

ǫb
ks − µb

Eb
ks

+
ǫb
ks − µb − Eb

ks

2Eb
ks

]

= Nδ. (17)

It is gratifying to find that the first expression Eq.(16) ∂F
∂∆b = 0 is readily satisfied for the

holon pairing order, ∆b = 0, indicating the symmetry with respect to the free energy of

holon(holon sector) in Eq.(15) and the second one Eq.(17) leads to to the correct statistical

relation for free holon,
∑′

k,s=±1
1

e
β(ǫb

ks
−µb)

−1
= Nδ. In order to explore a possibility that this

symmetry is spontaneously broken, we now examine the condition for

∂2F

∂∆b2

∣

∣

∣

∣

∣

∆b=0

=
J

3

[

N −

′
∑

k,s=±1

( 1

eβ(ǫb
ks

−µb) − 1
+

1

2

)

fs(k; τ b)
]

< 0 (18)

where fs(k; τ b) = Jξk(τb)2

12(ǫb
ks

−µb)
. As temperature increases, the second term in Eq.(18) becomes

smaller with increasing value of ǫb
ks−µb, thus allowing a possibility of ∂2F

∂∆b2 ≥ 0. On the other

5



hand, as temperature decreases, ǫb
ks−µb decreases, which results in a possibility of ∂2F

∂∆b2 < 0.

We note that 0 ≤ ξk(τ
b) ≤ 2 from Eqs.(13) through (14b). For the d-wave(τ b = π/2),

ξk(τ
b) is maximized at van-Hove singularities, k = (0,±π) and (±π, 0) (but vanishes at

k = (0, 0), (±π/2,±π/2) and (±π,±π)), thus allowing a possibility of instability against

d-wave holon pairing with a finite gap, ∆b 6= 0 owing to ∂2F
∂∆b2 < 0. Thus for both the spinon

and holon hopping order parameters χji of the 2π-flux phase(θf = θb = π/2) and for the

d-wave(τ b = π/2) holon pairing order parameter ∆b
ji, fs(k; τ b) is maximized. Consequently

the gapless state (∆b = 0) can become unstable against the d-wave holon pairing with a

finite gap, ∆b 6= 0 . Thus as a result of symmetry breaking, the gap opening of d-wave

holon-pairing is possible to induce bose condensation.

To numerically confirm claims made above, we calculated ∂2F
∂∆b2 for d-wave pairing for

both spinon pair and holon pair by setting χf = χb and τ b = π/2. It is of note that

arbitrary variation of χf and χb does not affect qualitative discussions to be made below.

Here the hopping order parameter is assumed to remain independent of doping. Kotliar and

Liu [1] finds a nearly constant value of χf ≈ 1
3
. As the doping rate decreases, the critical

temperature at which instability against d-wave holon pairing begins to develop is predicted

to decrease. Such a lowering trend of the critical temperature is consistent with observations

in the underdoped region [4] [5]. In Fig.6 the area above each curve for each chosen value

of the hopping order parameter represents the region for ∂2F
∂∆b2 > 0 and the area below the

curves, ∂2F
∂∆b2 < 0.

We now pay attention to holon and spinon quasi-particle excitations based on the mean

field Hamiltonian in Eq.(7),

H =

′
∑

k,s=±1

Eks(α
†
ksαks + β†

ksβks + h†
kshks). (19)

for Eks = Ef
ks = Eb

ks. The condition of Ef
ks = Eb

ks is satisfied from Eqs.(8) and (9) when

∆f = ∆b = 0, (20)

χf = χb = 0, (21)

µf = µb. (22)

It is, also, worthy of note that with the neglect of constant terms that appear in Eq.(7)

the SUSY(supersymmetry) Hamiltonian in Eq.(19) is naturally obtained from the above

6



supersymmetry conditions of Eqs.(20) through (22). Accordingly we are now able to define

the supercharge operators,

Q =

′
∑

k,s=±1

√

Eks

2

(

α†
kshks + h†

ksαks

)

, (23)

which, in turn, satisfies the simple SUSY algebra

{Q, Q} =

′
∑

k,s=±1

Eks(α
†
ksαks + h†

kshks). (24)

Particularly at T = 0 the SUSY condition of expressions (20) through (22) may be better

met in the doping region of δA.F. < δ < δS.C. with δA.F., the upper limit of doping for the

antiferromagnetic phase and δS.C., the lower limit of doping for the superconducting phase

(see Fig.6) [4] [6]. This is the region where quantum fluctuation occur to allow ∆f = ∆b = 0

and holon(charge) and spinon(spin) separation is likely to occur.

In summary, by considering the complete t-J Hamiltonian with the inclusion of the energy

lowering term, −J
4
ninj , it is shown that at finite temperature bose condensation owing to

d-wave holon pairing with a finite gap can occur. A holon-spinon supersymmetry condition

is obtained based on the quasiparticle excitations for both holons and spinons.
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FIGURE CAPTIONS

Fig. 1. Flux phases of hopping and pairing order parameters. (a) +θ(−θ) along(against)

the arrow on the chain. (b) +τ(−τ) in the chain of x̂(ŷ) direction.

Fig. 2. Critical temperature of d-wave holon pairing as a function of doping rate for various

values of χf = χb and θf = θb = π/2. ∂2F
∂∆b2 > 0 above each curve and ∂2F

∂∆b2 < 0 below

the curve.

Fig. 3. Schematic phase diagram of La2−δSrδCuO4(Ref.[4][6]).
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