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Statistical downscaling using principal component

regression for climate change impact assessment at the

Cauvery river basin

Parthiban Loganathan and Amit Baburao Mahindrakar
ABSTRACT
Climate change impact studies are generally carried out with higher resolution general circulation

model (GCM) outputs, which are usually for a global scale, and it is difficult to use the same for a

regional scale. GCM simulations require downscaling to get a coarser scale output for local climate

impact studies. In this study, an improvised principal component regression (PCR) downscaling

technique is adapted to downscale 26 Coupled Model Intercomparison Project Phase 5 (CMIP5)

GCM historical outputs. A massive river basin named Cauvery with 35 observation stations is

categorized into three subbasins to study the regional climate impacts. In this case, the PCR model

performed remarkably well compared to other conventional machine learning models with half the

computational time than usual. The test statistics state that the validation of the proposed model

illustrates a variance in calibration results of the PCR model, which ranges between 2 and 5%, and a

variance in validation, which is less than 7% throughout the study area. Since it is desired to

prioritize GCMs to choose the merely suitable models for a strategic climate study, the models

were selected based on the PCR model performance. Furthermore, CCSM4, inmcm4, and EC-

EARTH model’s performance in recreating precipitation statistics over the study area are

exceptional.
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HIGHLIGHTS

• The evaluation and comparison of downscaling Coupled Model Intercomparison Project Phase 5

(CMIP5) general circulation models (GCMs) based on renowned machine learning (ML)

techniques.

• The suggestion of an alternate ML (principal component regression) approach for improvised

downscaling.

• Subbasin-wise climate assessment on a large-scale river basin.

• The intercomparison of ML models with respect to calibration and validation periods.

• The outcome suggests an improvised climate downscaling approach with an appropriate CMIP5

GCM.
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INTRODUCTION
Climate change is denoted as a change in the long-term stat-

istics of atmospheric variables over a specific region.

Urbanization and increased industrial activities led to

changes in the concentration of greenhouse gases in the

atmosphere. The Fifth Assessment Report (AR5) of the

Intergovernmental Panel on Climate Change (IPCC)

(IPCC ) stated that the role of greenhouse-gas emissions

and the severity of potential risks and impacts remain unma-

nageable, especially for the developing countries with their

limited ability. The climate change induced by CO2 has

affected the globe in enormous ways and is likely to

become more furious shortly. Therefore, it is essential to

assess the impacts of climate change over the globe to illus-

trate the evidence to decision-makers and stakeholders.

Climate change impact assessment studies require long-

term climate data at various spatio-temporal scales. Finer

spatial resolution-observed data for the historical time

scale are required for such studies and they are available

for certain regions over the past few decades. However,

future climate projections are required to predict and ana-

lyze future climate changes. General circulation models

(GCMs) are mathematical models projecting future climate

scenarios. But the spatial resolution of these model outputs

is coarser and can not be used directly for regional

climate impact studies (Oo et al. , ; Burciaga ;

Javadinejad et al. ). Additionally, the GCM model out-

puts contain significant errors and require correction to

ensure an appropriate outcome. Consequently, the down-

scaling of GCM model output is necessary to make use of

it for the regional climate impact assessment (Ahmed et al.

; Wilby et al. ; Yang et al. ).

There are two different methods to downscale the

GCMs, which are dynamic downscaling and statistical

downscaling. Dynamic downscaling requires high-end com-

putational power and consumes a lot of time (Busuioc et al.

; Brown et al. ; Li et al. ). Thus, it is not feasible

to perform dynamic downscaling in the required region,

whereas statistical downscaling requires less computational

power and can be performed in a short span (Aribarg et al.

; Asong et al. ; Tiwari et al. ). Numerous studies

stated that the performance of dynamic and statistical
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downscaling was comparable in regional-scale climate

studies over historical time-scales (Wilby et al. ;

Feddersen & Andersen ). A detailed study comparing

the dynamic and statistical downscaling stated that the

dynamic downscaling did not perform any better than the

statistical downscaling (Chávez-Arroyo et al. , ).

Statistical downscaling is developed based on the

assumption that the statistical relationship between the his-

torical observed and historical GCM output will remain

constant in future climate projections (Wilby & Dawson

). There are numerous atmospheric parameters to con-

sider for climate change impact studies. But the primary

weather variables, such as precipitation (Pr), mean tempera-

ture (Tas), maximum temperature (Tasmax), and minimum

temperature (Tasmin), play a major role in representing

the hydrological system in a given region. It is also evident

from previous studies that the different GCMs’ output per-

formance varies significantly in representing the regional

climate scenario (Hessami et al. ; Meaurio et al. ;

Shamir et al. ). Various downscaling models have

been developed to handle the bias and variance in project-

ing future climate for a regional scale (Sarr et al. ; Yue

et al. ; Preethi et al. ).

In this study, an improvised principal component

regression (PCR)-based downscaling approach is carried

out using a dataset of daily precipitation and temperature

(mean, minimum, and maximum) for the climate change

impact assessment over the Cauvery river basin. Also, 26

different Coupled Model Intercomparison Project Phase 5

(CMIP5) GCM outputs were used to project the future scen-

arios and rank their performance for the study area. The

designed model performance is evaluated using calibration

and validation. Besides, the outcomes are compared with

the existing methods to state the pick over other techniques

in representing the regional climate scenario.

The primary objectives of the present study are:

(i) To perform statistical downscaling using improvised PCR

and compare it with the existing methods for its leads.

(ii) To model climate scenarios using different CMIP5 GCMs

and prioritize models based on performance evaluation.
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A brief picture of the study area is delivered in the next

section. Particulars of the datasets used in this study are pre-

sented in the ‘Data description’ section. The model design

and performance evaluation are provided in the ‘Method-

ology’ section, and the penultimate section explains the

results and discussions. The last section explains the ‘Sum-

mary and conclusion’ of the study.
STUDY AREA

The Cauvery river basin is a part of peninsular India which

lies between 75�270–79�540E and 10�90–13�300N. It is esti-

mated to be 85,000 km2 with many streams, including

Kabini, Bhavani, and Noyyal. Cauvery covers three states

(Tamil Nadu, Karnataka, and Kerala) and a Union Territory

(Puducherry). It is guarded by the Western Ghats on the west

and by the Eastern Ghats on the east and south. A map

demonstrating the location and the border of the study area

is shown in Figure 1. The main regions of the Cauvery

basin are covered with agricultural land up to 67% of the

total area, and 20% of the basin is covered by the forest

area (CWC & NRSC ). The Cauvery river basin has

four seasons, namely winter (December–February), summer

(March–June), South-West monsoon (July–September), and

North-East monsoon (October–November). The basin
Figure 1 | Cauvery river basin extent and boundary.
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remains dry in the majority of the area except for the mon-

soon duration. The basin has both tropical and subtropical

climate zones where the temperature variation in the upper

reaches of the basin is less compared to the lower reaches.

April is the hottest and January turns out to be the coldest

month in the basin, where the average monthly temperature

ranges from 18 to 33 �C. Northern parts of the basin are com-

paratively colder than the southern parts of the basin.
DATA DESCRIPTION

GCM data

The CMIP5 GCM was used in this study considering the daily

ensemble realization run r1i1p1. Twenty-six models from

various institutions were selected, namely ACCESS1-0,

ACCESS1-3, bcc-csm1-1-m, BNU-ESM, CanCM4, CanESM2,

CCSM4, CMCC-CESM, CNRM-CM5, CSIRO-Mk3-6-0,

EC-EARTH, FGOALS-g2, GFDL-CM3, HadGEM2-AO,

HadGEM2-C, HadGEM2-ES, inmcm4, IPSL-CM5A-MR,

MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MPI-ESM-LR,

MPI-ESM-MR, MRI-CGCM3, MRI-ESM1, and NorESM1-M.

The description of the selected models is presented in

Table 1. The weather parameters considered in the present



Table 1 | Description of CMIP5 models used in this study

S. No. CMIP5 Model ID Institute and country of origin
Atmosphere horizontal resolution
(�latitude × �longitude)

Atmosphere eq. resolution

Latitude (km) Longitude (km)

1 ACCESS-1.0 CSIRO-BOM, Australia 1.9 × 1.2 210 130

2 ACCESS-1.3 CSIRO-BOM, Australia 1.9 × 1.2 210 130

3 BCC-CSM1-1-M BCC, CMA, China 1.1 × 1.1 120 120

4 BNU-ESM BNU, China 2.8 × 2.8 310 310

5 CanCM4 CCCMA, Canada 2.8 × 2.8 310 310

6 CanESM2 CCCMA, Canada 2.8 × 2.8 310 310

7 CCSM4 NCAR, USA 1.2 × 0.9 130 100

8 CMCC-CESM CMCC, Italy 3.7 × 3.7 410 410

9 CNRM-CM5 CNRM-CERFACS, France 1.4 × 1.4 155 155

10 CSIRO-Mk3-6-0 CSIRO-QCCCE, Australia 1.9 × 1.9 210 210

11 EC-EARTH EC-EARTH, Europe 1.1 × 1.1 120 120

12 FGOALS-g2 IAP/LASG, China 2.8 × 2.8 310 310

13 GFDL-CM3 NOAA, GFDL, USA 2.5 × 2.0 275 220

14 HadGEM2-AO NIMR-KMA, Korea 1.9 × 1.2 210 130

15 HadGEM2-CC MOHC, UK 1.9 × 1.2 210 130

16 HadGEM2-ES MOHC, UK 1.9 × 1.2 210 130

17 INMCM4 INM, Russia 2.0 × 1.5 220 165

18 IPSL-CM5A-MR IPSL, France 2.5 × 1.3 275 145

19 MIROC5 JAMSTEC, Japan 1.4 × 1.4 155 155

20 MIROC-ESM JAMSTEC, Japan 2.8 × 2.8 310 310

21 MIROC-ESM-CHEM JAMSTEC, Japan 2.8 × 2.8 310 310

22 MPI-ESM-LR MPI-N, Germany 1.9 × 1.9 210 210

23 MPI-ESM-MR MPI-N, Germany 1.9 × 1.9 210 210

24 MRI-CGCM3 MRI, Japan 1.1 × 1.1 120 120

25 MRI-ESM1 MRI, Japan 1.1 × 1.1 120 120

26 NorESM1-M NCC, Norway 2.5 × 1.9 275 210
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study are precipitation (Pr – mm/day), mean temperature

(Tas – �C/day), maximum temperature (Tasmax – �C/day),

and minimum temperature (Tasmin – �C/day).

Observed data

The daily observed station data are obtained from the India

Meteorological Department (IMD) for the 35 stations located

in the Cauvery river basin from 1951 to 2005. The description

of the stations is presented in Supplementary Table S1. The

river basin is divided into the upper, middle, and lower

Cauvery river basin based on its weather pattern and dis-

charge statistics. Furthermore, the historical GCM datasets
om http://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2021.223/864305/jwc2021223.pdf
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are re-gridded to the station scale and trimmed to the

observed data specifications. The observation stations and

their location are represented as a thematic map in Figure 2.
METHODOLOGY

The observed station-wise climate data (1951–2005) and histori-

cal simulation from various CMIP5GCMs are collected and re-

gridded using the Bicubic Spline Interpolation technique to

ensure that all datasets are in the same dimension and co-ordi-

nates. Furthermore, the re-gridded data are separated into

calibration (1951–1990) and validation (1991–2005) for the



Figure 2 | Cauvery river basin with observation stations.
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betterment of the model. The designed dataset is trained and

tested with existing well-established statistical machine learning

(ML)models suchasmultiple linear regression (Joshi et al. ),

partial least-squares regression (PLSR) (Matulessy et al. ),

artificial neural network (ANN) (Khan & Coulibaly ), sup-

port vector machine (SVM) (Tabari et al. ), and K-nearest

neighbor (KNN) (Caraway et al. ). Later, the ML models

considered are compared with the proposed improvised PCR

(Sahriman et al. ) to state the advantages over other tech-

niques. The comparison of considered models was performed

with the help of performance evaluation parameters. The rank-

ing of CMIP5GCMmodels based on regions and parameters is

identified using the suggested PCRmodel. A brief methodology

for downscaling the CMIP5 GCM is represented in Figure 3.
Principal component regression

The station-wise historical simulation from GCMs and

station-observed time-series datasets are used to extract the

principal components. Furthermore, future scenarios are

projected by the model using future GCM scenarios. The

PCR model can be denoted subsequently by the typical nota-

tion if the equation is represented in a matrix form as
Figure 3 | Flow chart for downscaling CMIP5 GCM.
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follows:

Y ¼ XBþ e (1)

where Y is the dependent variable, X is the independent

variable, B is the regression coefficient, and e represents

errors/residuals. The regression coefficient in ordinary

least squares is signified as the following:

B ¼ (X0X)�1X0Y (2)

Here, since the variables are standardized X0X ¼ R,

where R is the correlation matrix of independent variables.

The PCR is performed by converting independent variables

to their principal components:

X0X ¼ PDP0 ¼ Z0Z (3)

where D is the diagonal matrix of eigenvalues of X0X, P is

the eigenvector matrix of X0X, and Z is the principal com-

ponent matrix of data matrix X. The estimation formula
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can be mathematically represented as follows:

A ¼ (Z0Z)�1Z0Y ¼ D�1Z0Y (4)

The PCR applies ordinary least-squares regression to a

different set of independent variables determined by the

principal components.

Performance evaluation parameters

The performance of each GCM based on the ability to capture

the monotonic trend is evaluated using performance indices,

such as normalized root-mean-square error (NRMSE) and

the coefficient of determination (R2) (Woldemeskel et al.

; Roozbeh ). The equations for computing selected per-

formance evaluation parameters are as follows.

Normalized root-mean-square error

The NRMSE is derived by normalizing the square root of the

mean squared errors by its absolute range to a scale of [0,1].

The closer the value is to 0, the lesser the variance, and thus

the better the performance of the model.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

(obsi � simi)
2

n

vuuut
(5)

NRMSE ¼ RMSE
max (Obs)�min (Obs)

(6)
Coefficient of determination

The R2 of a model is a ratio of the regression sum of squares

(SSR) to the total sum of squares (SSTO). Where the

regression sum of squares is the arithmetic difference between

the error sum of squares (SSE) and the total sum of squares.

R2 ¼ 1� SSE
SSTO

¼ SSR
SSTO

¼
P

(Ŷ i � �Y)
2

Pn
i¼1

(Ŷ i � �Y)
2

(7)
RESULTS AND DISCUSSION

Various research suggests several ranking techniques that

were applied around the globe. However, very few studies
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2021.223/864305/jwc2021223.pdf
were performed over the Indian subcontinent (Das et al.

). The present study considers the Cauvery river basin

located in southern-peninsular India which is classified

into the upper, middle, and lower basins for a better under-

standing of subbasin-level changes in climatic conditions

over the past few decades. Subbasin-wise values of precipi-

tation and temperature are analyzed to assess how various

models represent the actual scenarios of the basin. A map

illustrating the subbasins of the Cauvery river basin is pre-

sented in Figure 4. The subbasin-wise climate data are

calculated using the station-wise-observed mean weather

data for each subbasin. The reliability of each model is vali-

dated through performance evaluation parameters (NRMSE

% and R2) of model results. The following section presents

the results obtained from this study and the discussion

related to it.

Comparison of model performance

The performance of selected models in replicating the actual

scenario based on the region and parameters is evaluated

using nominated performance evaluation parameters

(Ruan et al. ). The calibration and validation scores of

each model are evaluated, and the performance evaluation

scores of the calibration and validation dataset are rep-

resented in Table 2. The validation results show that all

the CMIP5 GCMs were better at replicating temperature

than precipitation in each subbasin considered (MacAdam

et al. ; Das et al. ). Also, the PCR model performed

remarkably well compared to other ML models (Noori et al.

; Chávez-Arroyo et al. ). The proposed technique

enables the ranking of GCM concerning a local scale such

as a specific river or subbasin. The variance between the

observed and simulated climate data for all the regions and

parameters considered in the study was below 7% in PCR,

and the other models’ results ranged between 12 and 30%.

Moreover, the time engaged for the PCR model to train and

test the data is almost half the time taken for other individual

models selected in this study.

The overall length of historical subbasin-wise climate

data for 55 years (1951–2005) is split into 75% calibration

and 25% validation. The evaluation is carried out with a cali-

bration period of 40 years (1951–1990) and a validation

period of 15 years (1991–2005) for a better understanding



Figure 4 | Classification of the Cauvery river basin.
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of the performance of each ML model. The comparative bar

plots clearly explain that the performance of every model

during the validation phase is slightly lower than the cali-

bration phase. It is also evident that the RMSE % values

of the PCR model are far lower than other ML models for

each subbasin and parameter. Furthermore, the R2 values

of the PCR model are above 0.9 for calibration and 0.7 for

validation at every combination. This illustrates that the var-

iance of the PCR model is very less, and the model

performance is higher compared to other renowned ML

models.

Prioritizing of CMIP5 GCMs based on PCR with respect

to regions/parameters

The priority of CMIP5 models was assessed by evaluating

the performance of the PCR model using individual GCM.

The priorities of these models were evaluated by providing

equal scores to the performance evaluation parameters.
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The test statistics obtained from the analysis are presented

in Table 3. The results state that CCSM4, inmcm4, EC-

Earth, MIROC-ESM-CHEM, and BNU-ESM are good at

projecting the historical precipitation events in all three

subbasins. Whereas GFDL-CM3, CNRM-CM5, IPSL-CM5A-

MR, and inmcm4 are performing exceptionally well in

projecting the temperature changes (average, maximum,

and minimum) over the Cauvery river basin.
SUMMARY AND CONCLUSION

Downscaling of climate data over a certain region requires

the selection of suitable GCM and appropriate models to

replicate the regional scenario. The model adopted for

downscaling is expected to be effective and computationally

economical. It is necessary to identify the suitable downscal-

ing model for the selected region and the applicable GCMs

for the selected parameters to represent the actual scenario.



Table 2 | Performance evaluation scores of calibration and validation datasets

Model R2 NRMSE (%)

Parameter Basin GLM PLSR ANN SVM KNN PCR GLM PLSR ANN SVM KNN PCR

Calibration

PR Upper 0.54 0.45 0.51 0.50 0.56 0.94 20.40 31.68 28.88 22.55 20.14 4.39
Middle 0.60 0.53 0.57 0.58 0.62 0.94 17.85 23.32 22.61 19.06 17.65 6.77
Lower 0.52 0.45 0.49 0.49 0.54 0.93 18.01 24.07 22.56 24.38 18.83 6.37

TAS Upper 0.76 0.58 0.76 0.75 0.87 0.97 11.69 17.19 11.69 11.64 10.51 4.12
Middle 0.76 0.59 0.76 0.75 0.87 0.98 11.67 16.56 11.67 11.97 10.36 4.13
Lower 0.63 0.47 0.63 0.61 0.75 0.96 17.07 23.06 17.07 16.36 17.06 6.75

TASMAX Upper 0.76 0.66 0.76 0.75 0.78 0.97 12.29 17.50 12.29 12.24 16.29 5.71
Middle 0.48 0.36 0.44 0.45 0.54 0.94 22.35 32.31 30.77 19.50 18.95 6.25
Lower 0.72 0.66 0.68 0.70 0.74 0.96 13.85 18.57 17.27 13.70 13.60 5.17

TASMIN Upper 0.77 0.63 0.77 0.76 0.88 0.98 12.65 15.49 12.65 12.75 10.50 4.14
Middle 0.79 0.64 0.79 0.79 0.89 0.98 12.14 14.93 12.14 12.61 9.84 4.08
Lower 0.81 0.67 0.81 0.80 0.89 0.98 11.88 15.00 11.88 12.42 9.82 3.88

Validation

PR Upper 0.46 0.38 0.43 0.43 0.48 0.80 17.34 26.93 24.55 19.17 17.12 3.73
Middle 0.48 0.42 0.46 0.46 0.50 0.75 14.28 18.66 18.09 15.25 14.12 5.42
Lower 0.39 0.34 0.37 0.37 0.41 0.70 13.51 18.05 16.92 18.29 14.12 4.78

TAS Upper 0.65 0.49 0.65 0.64 0.74 0.82 9.94 14.61 9.94 9.89 8.93 3.50
Middle 0.61 0.47 0.61 0.60 0.70 0.78 9.34 13.25 9.34 9.58 8.29 3.30
Lower 0.47 0.35 0.47 0.46 0.56 0.72 12.80 17.30 12.80 12.27 12.80 5.06

TASMAX Upper 0.65 0.56 0.65 0.64 0.66 0.82 10.45 14.88 10.45 10.40 13.85 4.85
Middle 0.38 0.29 0.35 0.36 0.43 0.75 17.88 25.85 24.62 15.60 15.16 5.00
Lower 0.54 0.50 0.51 0.53 0.56 0.72 10.39 13.93 12.95 10.28 10.20 3.88

TASMIN Upper 0.65 0.54 0.65 0.65 0.75 0.83 10.75 13.17 10.75 10.84 8.93 3.52
Middle 0.63 0.51 0.63 0.63 0.71 0.78 9.71 11.94 9.71 10.09 7.87 3.26
Lower 0.61 0.50 0.61 0.60 0.67 0.74 8.91 11.25 8.91 9.32 7.37 2.91

The bold values signify better performance of the PCR model compared to other ML models.

Table 3 | CMIP5 GCM priority based on the PCR model performance for selected weather parameters

Parameter: precipitation/average, minimum, and maximum temperature

Rank

Upper Middle Lower

Model NRMSE % R² Model NRMSE % R² Model NRMSE % R²

1 MRI-ESM1 4.85 0.83 CCSM4 5.42 0.78 CCSM4 5.06 0.74

2 CCSM4 3.9 0.82 inmcm4 5.00 0.78 CNRM-CM5 4.78 0.72

3 ACCESS1-3 3.73 0.82 MRI-ESM1 4.25 0.76 inmcm4 4.20 0.72

4 inmcm4 3.52 0.81 EC-EARTH 3.30 0.75 MIROC-ESM 3.88 0.72

5 EC-EARTH 3.50 0.80 BNU-ESM 3.26 0.75 EC-EARTH 2.91 0.70
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The performed downscaling technique is well suitable for

the Cauvery river basin, and the applicability of the same

at other basins depends on the performance metrics since

each river basin has unique properties. The following con-

clusions have been drawn from this study: (i) the PCR
://iwaponline.com/jwcc/article-pdf/doi/10.2166/wcc.2021.223/864305/jwc2021223.pdf
downscaling model performs exceptionally well compared

to other conventionally used ML models. (ii) The time

taken to develop a PCR downscaling model for a given sub-

basin is reduced by almost half the time taken to build a

conventional downscaling model. (iii) The variance in
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calibration results of the PCR model is ranged between 2

and 5%, whereas the validation results were <7% through-

out all subbasins and for each parameter under

consideration. (iv) The prioritizing of GCMs based on PCR

proposed that for precipitation, CCSM4, inmcm4, and EC-

Earth are best in representing the historical scenario. (v)

The temperature statistics are captured well in GFDL-

CM3, CNRM-CM5, and inmcm4. Also, inmcm4 stays

among the top rank for precipitation and temperature for

all subbasins.
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