
Deep Graph Infomax

Petar Veličković1,2, William Fedus2,3,5, William L. Hamilton2,4,
Pietro Liò1, Yoshua Bengio2,3 and R Devon Hjelm6,2,3

1University of Cambridge 2Mila 3Université de Montréal
4McGill University 5Google Brain 6Microsoft Research Montréal

Università degli Studi di Siena Seminar Series 17 December 2018

Introduction

I In this ICLR 2019 submission, we study the problem of
unsupervised graph representation learning.

I That is, learning “good” representations for nodes in an
unlabelled graph.

I Very important problem: many graphs in the wild are unlabelled!

I We rely on a synergy of mutual information maximisation

and graph convolutional networks—enabling simultaneously
leveraging local and global information propagation in a graph.

I Very promising results on the learnt embeddings—often
competitive with supervised learning!

Roadmap for today

I A tale of many (random) walks;

I The (DIM) fairy godmother;

I Happily ever (mutually) informative.

Random walk-based objectives

I Thus far, the field of unsupervised node embeddings has been
dominated by random walk-based methods.

I Some methods go even simpler—and use a link prediction
objective (“random walks of length 1”):

I see e.g. GAE (Kipf & Welling, NIPS BDL 2016) or EP (Duran &
Niepert, NIPS 2017).

I I will briefly present two such methods, and outline a few
reasons why we should also consider alternative objectives.

Overview of DeepWalk (Perozzi et al., KDD 2014)

I Start by random features ~�i for each node i .

I Sample a random walk Wi , starting from node i .

I For node x at step j , x = Wi [j], and a node y at step
k 2 [j � w , j + w], y = Wi [k], modify ~�x to maximise
logP(y |~�x) (obtained from a neural network classifier).

I Inspired by skip-gram models in natural language processing:
to obtain a good vector representation of a word, its vector
should allow us to easily predict the words that surround it.

Overview of DeepWalk, cont’d

I Expressing the full P(y |~�x) distribution directly, even for a
single layer neural network, where

P(y |~�x) = softmax(~wT
y

~�x) =
exp

⇣
~wT

y
~�x

⌘

P
z exp

⇣
~wT

z ~�x

⌘

is prohibitive for large graphs, as we need to normalise across
the entire space of nodes—making most updates vanish.

I To rectify, DeepWalk expresses it as a hierarchical softmax—a
tree of binary classifiers, each halving the node space.

DeepWalk in action

Later improved by LINE (Tang et al., WWW 2015) and node2vec
(Grover & Leskovec, KDD 2016), but main idea stays the same.

Some limitations

I These kinds of techniques are in principle very powerful—due
to their relation to methods such as PageRank—but have
known limitations:

I They tend to over-emphasise proximity information at the
expense of structural information (as discussed in struc2vec;
Ribeiro et al., 2017)

I Performance can be highly dependent on the choice of
hyperparameters (as discussed in both DeepWalk and
node2vec papers).

I Much harder to apply in inductive settings, especially on
entirely unseen graphs!

I To alleviate some of these issues, let’s use something fresh out
the toolbox. . .

Graph convolutional networks

Let’s assume that we have (intermediate) features,
H = {~h1, . . . ,~hN} (~hi 2 RF) in the nodes. . .

Graph convolutional networks

In a nutshell, obtain higher-level representations of a node i by
leveraging its neighbourhood, Ni !

~h`+1
i = g`(~h`

a,
~h`

b,~h`
c , . . .) (a, b, c, · · · 2 Ni)

where g` is the `-th graph convolutional layer.

GCNs meet random walks!

I If we, instead, use a stack of (inductive) graph convolutional
layers to derive our embeddings, ~zi . . .

I . . . and then express our random walk objective on these
embeddings. . .

I . . . we can fix both the stability and inductivity issues
simultaneously!

I First done in GraphSAGE (Hamilton et al., NIPS 2017), with the
following objective:

L(~zu) = � log �(~zT
u ~zv)� Q · Evn⇠Pn(v) log �(~zT

u ~zvn)

where Pn is a negative sampling distribution.

Should GCNs meet random walks?

I Random walk objectives essentially enforce a bias towards
proximal nodes having similar embeddings.

I But a graph convolutional network summarises local patches
(centered around each of the nodes) of the graph by design!

I As neighbours experience a lot of patch-level mixing, they will
already have similar embeddings as a result of using a GCN!

I It may be argued that random walks may fail to provide any
useful signal at all in this case.

=) In the age of the GCN, we should perhaps seek a move
towards non-local objectives.

Roadmap for today

I A tale of many (random) walks;

I The (DIM) fairy godmother;

I Happily ever (mutually) informative.

Towards non-local objectives

I As was the case in many other situations, we should think of
graphs as generalisations of images, and therefore it is natural
to seek inspiration from advances in the vision domain.

I Luckily, we live in very exciting times, with two highly relevant
techniques being released in the past two months!

I Contrastive Predictive Coding (CPC; Oord et al., 2018)
I Deep InfoMax (DIM; Hjelm et al., 2018)

I Both techniques rely on mutual information maximisation
between different parts of the input, in the latent space!

Contrastive Predictive Coding

genc genc genc genc genc genc genc genc

gargargargar

xt xt+1 xt+2 xt+3 xt+4xt�1xt�2xt�3

ct

zt+4zt+3zt+2zt+1zt

Predictions

Relies on an autoregressive model (LSTM/PixelCNN) to produce
context, ~ct , from latents, ~zt , and therefore unlikely to be trivially
applicable to graphs (requires a node ordering).

And now. . .

. . . a brief slide-deck intermission!
(Many thanks to Devon Hjelm)

DEEP INFOMAX (DIM)
Or: how to exploit structure for fun and profit

Devon Hjelm (MSR / MILA)

Work with: Alex Fedorov (MRN), Sam Lavoie (MILA), Karan Grewal (U Toronto),
Adam Trischler, and Yoshua Bengio

Paper title: Learning deep representations by information estimation and maximization
Found at: https://arxiv.org/abs/1808.06670
Github code: https://github.com/rdevon/DIM

https://arxiv.org/abs/1808.06670
https://github.com/rdevon/DIM

OVERVIEW

• Goal: Learn good representations

• Simple setting: representation of images

• What is a “good” representation?

• Deep INFOMAX

• Future / ongoing work

LEARNING REPRESENTATIONS OF
IMAGES

Input image M x M  
feature map

Feature 
vector

Y

M

M

?

Step 1: encode image into  
MxM feature map

Step 2: Summarize the image into a  
single (1D) feature vector

Step 3: Profit!

LEARNING REPRESENTATIONS OF
IMAGES

M x M  
feature map

Feature 
vector

Y

M

M

Happy?

Hungry?

Walky?

Who’s a Good boy?

Input image

Step 1: encode image into  
MxM feature map

Step 2: Summarize the image into a  
single (1D) feature vector

Step 3: Profit!

WHY DO WE NEED “GOOD”
REPRESENTATIONS?

̧

̦ ??

• Low dimensional “simple”
summary of the data 

• Deal with limited data
(semi-supervised, zero-shot
learning, etc)

• Multi-model learning
(visually grounded NLP)

• Discover underlying
structure / discovery

WHY DO WE NEED “GOOD”
REPRESENTATIONS?

Start
Goal

State 
space

• Low dimensional “simple”
summary of the data 

• Deal with limited data
(semi-supervised, zero-shot
learning, etc)

• Multi-model learning
(visually grounded NLP)

• Discover underlying
structure / discovery

• Planning in RL

Representation

DEEP IMPLICIT INFOMAX

“Real”

“Fake”

M x M Scores

M

M

M

M

M

M

Y

Y

1x1convolutional  
discriminator

Y

Feature 
vector

M x M features drawn from another image

Concat feature vector
at every location

1. Encode your image

2. Concatenate feature vector with
feature map at every location

3. 1x1 convolution

4. Call this “real”

5. Encode another image

6. Concatenate 1st feature vector with
feature map of new image

7. 1x1 convolution

8. Call this “fake”.

9. Loss function averaged over
locations

10. Train the whole thing like a GAN
discriminator (aka like a binary
classifier)

11. Profit!

DEEP IMPLICIT INFOMAX

Simple classification experiment
• Fully supervised = normal classifier

• Build a small classifier with 200 hidden units
on representation

• conv = last conv layer
• fc = next to last 1d layer
• Y = final representation
• SS = fine tuned with labels

Results
• DIM outperforms all models compared by

large margins on most tasks

• Performs comparably to BiGAN with
random crops

• Global version, DIM(G) tries to maximize
mutual information with full input

THANKS!

Acknowledgements: 
 Alex Fedorov (MRN), Sam Lavoie (MILA), Karan

Grewal (U Toronto), Adam Trischler, and Yoshua Bengio
Found at: https://arxiv.org/abs/1808.06670

Github code: https://github.com/rdevon/DIM

https://arxiv.org/abs/1808.06670
https://github.com/rdevon/DIM

. . . and we’re back!

I DIM has many properties that are suitable to being leveraged
in a graph setting.

I Namely, all we need is a global summary, and some positive
and negative patch representations—nobody really cares how
we got them!

I While DIM focused on image classification, and therefore
required the summary to encode useful information of the
input, for node classification we care about maximising mutual
information between different local parts of the input.

I In practice, both of these should happen simultaneously—a
local-global objective is a scalable proxy for all-pairs local-local.

Capturing structural roles

I This becomes all the more important in graphs, where
structural roles may be an excellent predictor (as argued in
both struc2vec and GraphWave (Donnat et al., KDD 2018).

I A local-global objective would allow every node to see
arbitrarily far in the graph, looking for structural similarities to
reinforce its local representation!

Roadmap for today

I A tale of many (random) walks;

I The (DIM) fairy godmother;

I Happily ever (mutually) informative.

Towards a graph method

I Finally, we will look at how to generalise the ideas from DIM
into the graph domain.

I To-do list:
I Obtaining patch representations;
I Obtaining global summaries;
I Obtaining negative patch representations;
I Discriminating positive and negative patch-summary pairs.

I Most of these will come with absolutely no hassle (reusing
standard ideas from graph neural networks)!

Representations and summaries

I We may obtain patch representations, ~hi , by using any graph
convolutional encoder, E , we’d like!

I In our work, we use the GCN (Kipf & Welling, ICLR 2017) for
transductive tasks and GraphSAGE (Hamilton et al., NIPS
2017) for inductive tasks.

E(X, A) = �
⇣

D̂
� 1

2 ÂD̂
� 1

2 X⇥
⌘

I Graph summaries, ~s, are obtained by a readout function, R.
I We have attempted several popular readouts (such as set2vec),

but simple averaging was found to work best.

R(H) =
1
N

NX

i=1

~hi

Scaling to large graphs

I As graphs grow in size (>100,000 nodes), storing them in GPU
memory in their entirety quickly becomes infeasible.

I This means we must resort to subsampling (computing patch
representations only for a chosen batch of nodes at once), as
done in GraphSAGE.

I We found that summarising only the nodes in the batch still
works well!

Encoding and summarisation on large graphs

~h1
~h2

~h3

~s

Obtaining negative samples

I DIM produces negative patch representations by simply using
another image from the training set as a “fake” input.

I For multi-graph datasets (such as PPI), we are able to re-use
this approach (+ dropout for more variability).

I However, most graph datasets are single-graph!

=) Must specify a (stochastic) corruption function, C, to obtain
negative graphs (eX, eA) from the positive one.

I Can then re-use the encoder, E , on the negative graph, to
obtain negative patch representations, ~ehi .

Choice of corruption function

I We seek a negative graph that will be in some ways
“comparable” to the original graph, while encoding mostly
“nonsensical” patches.

I Here, we utilise node shuffling (eX obtained by row-wise
shuffling of the feature matrix, X), while keeping the adjacency
matrix fixed (eA = A).

I This corruption has many desirable properties:
I All input node features are preserved;
I The adjacency matrix is isomorphic to the original one;
I High likelihood of useless neighbourhoods.
I Trivial to apply, and works really well! :)

Node shuffling example

~x1

~x2

~x3

~x4

~x5

~x6

~x5

~x2

~x4

~x6

~x1

~x3

⇠

Maximising mutual information

I We treat (~hi ,~s) as positive, and (
~ehj ,~s) as negative examples.

I Just like in DIM, we use a discriminator, D, which is a simple
bilinear binary classifier between these two:

D(~hi ,~s) = �
⇣
~hT

i W~s
⌘

and optimising its binary cross-entropy implies maximising the
mutual information based on the Jensen-Shannon divergence:

L =
1

N + M

0

@
NX

i=1

E(X,A)

h
logD

⇣
~hi ,~s

⌘i
+

MX

j=1

E(eX,eA)


log

✓
1 �D

✓
~ehj ,~s

◆◆�1

A

Deep Graph Infomax

We have arrived at Deep Graph Infomax (DGI)!

~xi

~exj

(X,A)

(eX, eA)

~hi

~ehj

(H,A)

(eH, eA)

E

C

E

~s

R
D

D

+

�

Quantitative evaluation: Datasets

I Verified the potential of the method in a variety of node
classification benchmarks: transductive, inductive, large
graphs, multi-graph.

Dataset Task Nodes Edges Features Classes

Cora Trans. 2,708 5,429 1,433 7
Citeseer Trans. 3,327 4,732 3,703 6
Pubmed Trans. 19,717 44,338 500 3
Reddit Ind. 231,443 11,606,919 602 41

PPI Ind. 56,944 818,716 50 121
(24 graphs) (multilbl.)

I In all cases, the encoder was trained on the training set, and
the embeddings are then used for simple linear classification
(logistic regression) to evaluate their potential.

Quantitative results: Transductive

Data Method Cora Citeseer Pubmed

X Raw features 47.9 ± 0.4% 49.3 ± 0.2% 69.1 ± 0.3%
A, Y LP 68.0% 45.3% 63.0%
A DeepWalk 67.2% 43.2% 65.3%
X, A DW + fts. 70.7 ± 0.6% 51.4 ± 0.5% 74.3 ± 0.9%

X, A Random-Init 69.3 ± 1.4% 61.9 ± 1.6% 69.6 ± 1.9%
X, A DGI (ours) 82.3 ± 0.6% 71.8 ± 0.7% 76.8 ± 0.6%

X, A, Y GCN 81.5% 70.3% 79.0%
X, A, Y Planetoid 75.7% 64.7% 77.2%

Quantitative results: Inductive

Data Method Reddit PPI

X Raw features 0.585 0.422
A DeepWalk 0.324 —
X, A DW + fts. 0.691 —

X, A GraphSAGE-GCN 0.908 0.465
X, A GraphSAGE-mean 0.897 0.486
X, A GraphSAGE-LSTM 0.907 0.482
X, A GraphSAGE-pool 0.892 0.502

X, A Random-Init 0.933 ± 0.001 0.626 ± 0.002
X, A DGI (ours) 0.940 ± 0.001 0.638 ± 0.002

X, A, Y FastGCN 0.937 —
X, A, Y Avg. pooling 0.958 ± 0.001 0.969 ± 0.002

Qualitative results: “evolving” t-SNE

I Silhouette score of 0.234.
I Favourable to 0.158 for EP (Duran & Niepert, NIPS 2017).

Qualitative results: DGI insights

I No particular structure found in negative graph (as expected!).
I Few “hot” nodes surrounded by many colder ones in t-SNE

space—implies a specialisation of individual dimensions of the
embeddings for different purposes!

Qualitative results: DGI insights, cont’d

0 100 200 300 400 500
0

100

200

300

400

500

Dimension

N
od

e

Visualizing top positive/negative samples

0.04

0.02

0.00

0.02

0.04

·10�2

We can see specialisation!
If we remove dimensions, ordered by how biased they are. . .

Qualitative results: DGI insights, concluded

0 100 200 300 400 500
65

70

75

80

85

Dimensions removed

Te
st

ac
cu

ra
cy

DGI classification: robustness to removing dimensions

DGI (p ")
DGI (p #)
GCN
Random-Init

0 100 200 300 400 500

0

500

1,000

1,500

2,000

2,500

Dimensions removed
Ex

am
pl

es
m

is
cl

as
si

fie
d

by
D

DGI discriminator: robustness to removing dimensions

+ (p #)
� (p #)
+ (p ")
� (p ")

Can remove over half the dimensions and stay competitive with
the supervised GCN!

Qualitative results: Corruption function study

10�6 10�5 10�4 10�3 10�2 10�1 100

70

75

80

Corruption rate, ⇢

Te
st

ac
cu

ra
cy

Classification accuracy for A corruption

eX = X

GCN
Random-Init

10�6 10�5 10�4 10�3 10�2 10�1 100

80

81

82

Corruption Rate, ⇢

Te
st

ac
cu

ra
cy

Classification accuracy for (X,A) corruption

eX 6= X

GCN

Direct corruption of A works too—but is harder (requires us not to
get too dense), and more expensive to compute at every step.

Thank you!

Questions?
petar.velickovic@cst.cam.ac.uk

http://www.cst.cam.ac.uk/⇠pv273/

https://arxiv.org/abs/1809.10341

	Introduction

