Predicting Computer System Failures Using Support Vector Machines

Errin W. Fulpa \hspace{1cm} Glenn A. Finkb \hspace{1cm} Jereme N. Haackb

aWake Forest University \hspace{1cm} bPacific Northwest National Laboratory

Department of Computer Science \hspace{1cm} Richland WA, USA

Winston-Salem NC, USA

USENIX Workshop on the Analysis of System Logs

December 7, 2008

High-Performance Computing Trends

- Expected that computing will continue to double each year
 - \textit{Petaflop systems listed on top500.org}
 - However CPU clock rates will see limited increases
- Computing improvements achieved with more processors
 - IBM Blue Gene at LLNL has 212,992 processors
 - System failures will become more problematic
System Events

- There are several critical system events
 - Hardware failure, software failure, and user error
 - Frequency will increase as systems become larger (cluster)
 - Resulting in lower overall system utilization
- *Cannot easily improve failure rates, can we manage failure?*
 - Smarter scheduling of applications and services
 - Minimize the impact of failure
- Accurate event predictions are key for event management
 - *Are predictions possible? How accurate?*
 - Need system status information to make predictions

System Status Information

- *Almost* every computer maintains a system log file
 - Provide information about system events
 - syslog is actually general-purpose logging facility [Lon01]
- An event represents a change in *system state*
 - Include hardware failures, software failures, and security

<table>
<thead>
<tr>
<th>Host</th>
<th>Facility</th>
<th>Level</th>
<th>Tag</th>
<th>Time</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>198.129.8.6</td>
<td>kern</td>
<td>alert</td>
<td>1</td>
<td>1171062692</td>
<td>kernel raid5: Disk failure on sde1, disabling device</td>
</tr>
</tbody>
</table>

- Entries contain information such as: time, message, and tag
 - Time identifies when the message was recorded
 - Message describes the event, typically natural language
 - Tag represents criticality, low values are more important
Log Files

<table>
<thead>
<tr>
<th>Host</th>
<th>Facility</th>
<th>Level</th>
<th>Tag</th>
<th>Time</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>198.129.8.6</td>
<td>local7</td>
<td>notice</td>
<td>189</td>
<td>1171061732</td>
<td>sysstat</td>
</tr>
<tr>
<td>198.129.8.6</td>
<td>kern</td>
<td>info</td>
<td>6</td>
<td>1171061732</td>
<td>kernel md: using maximum available idle CPU bandwidth</td>
</tr>
<tr>
<td>198.129.8.6</td>
<td>cron</td>
<td>info</td>
<td>78</td>
<td>1171061733</td>
<td>crond 2500 (root) CMD (/usr/lib/sa/sal 1 l)</td>
</tr>
<tr>
<td>198.129.8.6</td>
<td>auth</td>
<td>info</td>
<td>38</td>
<td>1171062445</td>
<td>rsh(pam_unix) 2215 session opened for user by (uid=0)</td>
</tr>
<tr>
<td>198.129.8.6</td>
<td>auth</td>
<td>info</td>
<td>38</td>
<td>1171062445</td>
<td>in.rshd 2216 root@hpcs2.cs.edu as root: cmd=/root/temps</td>
</tr>
<tr>
<td>198.129.8.6</td>
<td>daemon</td>
<td>info</td>
<td>30</td>
<td>1171062590</td>
<td>smartd 88 Device: /dev/twe0 SMART Prefailure Attribute</td>
</tr>
<tr>
<td>198.129.8.18</td>
<td>syslog</td>
<td>info</td>
<td>46</td>
<td>1171062590</td>
<td>syslogd restart.</td>
</tr>
<tr>
<td>198.129.7.282</td>
<td>daemon</td>
<td>info</td>
<td>30</td>
<td>1171062590</td>
<td>ntpd 2555 synchronized to 198.129.149.218, str</td>
</tr>
<tr>
<td>198.129.7.222</td>
<td>daemon</td>
<td>info</td>
<td>30</td>
<td>1171062590</td>
<td>ntpd 2555 synchronized to 198.129.149.218, str</td>
</tr>
<tr>
<td>198.129.7.238</td>
<td>daemon</td>
<td>info</td>
<td>30</td>
<td>1171062590</td>
<td>ntpd 2555 synchronized to 198.129.149.218, str</td>
</tr>
<tr>
<td>198.129.8.6</td>
<td>auth</td>
<td>notice</td>
<td>37</td>
<td>1171062590</td>
<td>sshd(pam_unix) 12430 auth failure; logname=el-fork-o</td>
</tr>
<tr>
<td>198.129.8.6</td>
<td>kern</td>
<td>info</td>
<td>6</td>
<td>1171062590</td>
<td>kernel md: using 512k, over a total of 12287936 blocks.</td>
</tr>
<tr>
<td>198.129.8.6</td>
<td>cron</td>
<td>info</td>
<td>78</td>
<td>1171062601</td>
<td>crond 2500 (root) CMD (/usr/lib/sa/fork-it 1 l)</td>
</tr>
<tr>
<td>198.129.8.6</td>
<td>kern</td>
<td>alert</td>
<td>1</td>
<td>1171062692</td>
<td>kernel raid6: Disk failure on sde1, disabling device</td>
</tr>
</tbody>
</table>

- Log file is a list of messages, can be analyzed for
 - Auditing, determine the cause of an event (*past*)
 - Predicting important events (*future*)

Example System Event to Predict

- An interesting event is *disk failure*
 - By 2018 [large systems] could have 300 concurrent reconstructions at any time [SG07]
 - Predicting disk failure is important
 - *Easy to identify event in the log...*
- Predict failure as *early as possible*
 - \(n \) messages \(M = \{ m_1, m_1, ..., m_n \} \)
 - Assume \(m_n \) is the event
 - Min depth \(d \) and max lead \(l \)
- *Are all messages the same?*
SMART

- Self-Monitoring Analysis & Reporting Technology (SMART)
 - SMART disks monitor their health and performance
 - Attributes describe current state, each attribute has unique ID
- Many different types of messages (Attribute and Value)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Raw_Read_Error_Rate changed to (x)</td>
</tr>
<tr>
<td>190</td>
<td>Airflow_Temperature changed to (x)</td>
</tr>
<tr>
<td>2</td>
<td>Throughput_Performance</td>
</tr>
<tr>
<td>8</td>
<td>Seek_Time_Performance</td>
</tr>
<tr>
<td>201</td>
<td>Soft_Read_Error_Rate changed to (x)</td>
</tr>
</tbody>
</table>

- Pinheiro et al. investigated Google hard drive failure [PWB07]
 - Some SMART parameters do correlate with drive failure
 - Conclude SMART messages alone may not be sufficient

Disk Failure Prediction

- What features (information) should be considered?
 - A message contains criticality, message, and time
 - *Is there a series of messages that tend to be a precursor?*
- Consider a sequence of messages arriving (ordered by time)
 - *Is it possible to classify into failure and non-failure classes?*
 - Other approaches have considered Bayesian Nets and HMM
Support Vector Machines

- Support Vector Machine (SVM) is a classification algorithm
 - Consider a set of samples from two different classes
 - Each vector consists of features describing the sample
 - SVM finds a hyperplane separating the classes in hyperspace
 - The vectors closest to the plane are the support vectors
- Great for aggregate statistics, what about series?
 - Interested in using sequences of messages as features

Spectrum Kernel

- A spectrum kernel considers \(k \) length sequences as features
 - The frequency of the sequence is the feature value
- Assume two symbols \(\{A, B\} \) and sequence length \(k = 2 \)
 - There are \(2^k \) possible sequences (features) \((AA, AB, BA, BB) \)
 - Value of a feature is the number of occurrences
 \[
 M = \{A, A, B, A, A, B, B, A\}
 \]
 - \(AA: 2 \)
 - \(AB: 2 \)
 - \(BA: 2 \)
 - \(BB: 1 \)
 - There are \(b^k \) possible sequences, were \(b \) is number of symbols
- How does this work for syslog messages?
tag Sequences

- Each message has a tag that indicates criticality
 - Sequence of messages represented by sequence of tag values

- Need to reduce number of symbols, assume three levels
 - high (tag < 10), medium (10 < tag < 140), low (tag > 140)

- Given a series of messages \(M \), process using a sliding window
 - Count the number of occurrences of \(k \)-length sequences

Example tag Processing

- Let \(M = \{148, 148, 158, 40, 158, 188, 188, 88, 158, 188\} \)

- Assume \(b = 3 \) and \(k = 5 \), then \(3^5 = 243 \) possible features

<table>
<thead>
<tr>
<th>tag</th>
<th>Encoding (e)</th>
<th>Sequence</th>
<th>(f) (base 10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>148</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>148</td>
<td>2</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>158</td>
<td>2</td>
<td>222</td>
<td>222</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2221</td>
<td>2221</td>
</tr>
<tr>
<td>158</td>
<td>2</td>
<td>22212</td>
<td>239</td>
</tr>
<tr>
<td>188</td>
<td>2</td>
<td>22122</td>
<td>233</td>
</tr>
<tr>
<td>188</td>
<td>2</td>
<td>21222</td>
<td>215</td>
</tr>
<tr>
<td>88</td>
<td>1</td>
<td>12221</td>
<td>160</td>
</tr>
<tr>
<td>158</td>
<td>2</td>
<td>22212</td>
<td>239</td>
</tr>
<tr>
<td>188</td>
<td>2</td>
<td>22122</td>
<td>215</td>
</tr>
</tbody>
</table>

- Feature number is \(f_{t+1} = \text{mod} (b \cdot f_t, b^k) + e \)

- Vector for \(M \) would be (160:1, 215:2, 233:1, 239:2)
System Data used for Experiments

- About 24 months of syslog files from 1024 node Linux cluster
 - Averaged 3.24 messages an hour (78 a day) per machine
 - Observed 120 disk failure events

Prediction Experiments

- Sets of $M = 1200$ messages (15 days) collected per machine
 - From first message, processed $d =\{400, 600, 800, 1000, 1100\}$
- One SVM considered aggregate features occurring within d
 - Number of occurrences for each tag value
- Another SVM also considered tag sequences occurring within d
 - Sequences consisted of 5 messages, there were 19 tag ranges
Prediction Results

- Accuracy, precision, recall, and ROC recorded per experiment
 - Where $acc = \frac{TP + TN}{P + N}$, $prec = \frac{TP}{TP + FP}$, and $recall = \frac{TP}{P}$

- More messages improved prediction results
- Combined were better, 73% accuracy with 200 message lead

- ROC curve can be used to compare classifiers/predictions [Faw06]
 - Closer to the *north-west*, the better the performance
 - Some issues with false negatives
- Combined features performed better, typically 4% to 5% increase
Feature Weights

- Use of a linear kernel for the SVM allows for feature analysis
 - Larger weight (positive or negative) indicates a feature useful

- Of 2,476,289 features, only 2,251 were useful
 - Of the useful features 22 were aggregate, remaining were sequences

Runtime Performance

- For the combined feature experiments
 - Training time averaged 7 minutes 38 seconds
 - Testing time averaged 0.21 seconds
Conclusions and Future Work

- Using syslog data to predict disk failures
 - Spectrum-kernel SVM predicted with 73% 100 msg lead
 - Message sequences did improve performance
- Several areas for improvement
 - determine k and b, add new features, ...
 - *How does message rate impact performance?*
 - Need more and different data
- Consider other *interesting* events
 - Other failures, since disk failure \neq node failure
 - *Can this be useful for security?*
 - Multi-system analysis
- Possible to create a *reduced message system?* [YM05]

References

Other Prediction Stats

<table>
<thead>
<tr>
<th>Metric</th>
<th>M = 400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agg</td>
<td>64</td>
<td>65</td>
<td>65</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Comb</td>
<td>67</td>
<td>69</td>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>Precision</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agg</td>
<td>64</td>
<td>66</td>
<td>67</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Comb</td>
<td>67</td>
<td>69</td>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>Recall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agg</td>
<td>62</td>
<td>63</td>
<td>63</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Comb</td>
<td>63</td>
<td>66</td>
<td>68</td>
<td>69</td>
</tr>
<tr>
<td>F-score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agg</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Comb</td>
<td>66</td>
<td>68</td>
<td>71</td>
<td>71</td>
</tr>
</tbody>
</table>