Primitive 2-factorizations of the complete graph

Giuseppe Mazzuoccolo

Dipartimento di Matematica, Università di Modena e Reggio Emilia, via Campi 213/B, 41100 Modena, Italy

Received 30 November 2004; received in revised form 15 October 2005; accepted 2 February 2006
Available online 2 June 2007

Abstract

Let \(\mathcal{F} \) be a 2-factorization of the complete graph \(K_v \) admitting an automorphism group \(G \) acting primitively on the set of vertices. If \(\mathcal{F} \) consists of Hamiltonian cycles, then \(\mathcal{F} \) is the unique, up to isomorphisms, 2-factorization of \(K_p^n \) admitting an automorphism group which acts 2-transitively on the vertex-set, see [A. Bonisoli, M. Buratti, G. Mazzuoccolo, Doubly transitive 2-factorizations, J. Combin. Designs 15 (2007) 120–132.]. In the non-Hamiltonian case we construct an infinite family of examples whose automorphism group does not contain a subgroup acting 2-transitively on vertices.

© 2007 Elsevier B.V. All rights reserved.

MSC: 05C70; 05C15; 05C25

Keywords: Factorization; Coloring of graphs and hypergraphs; Graphs and groups

1. Introduction

For an integer \(v \geq 3 \), let \(K_v \) be the complete (simple undirected) graph on \(v \) vertices with vertex-set \(V(K_v) \) and edge set \(E(K_v) \). For \(3 \leq k \leq v \), a \(k \)-cycle \(C = (x_0, x_1, \ldots, x_{k-1}) \) is the subgraph of \(K_v \) whose edges are \([x_i, x_{i+1}]\), \(i = 0, \ldots, k-1 \), indices taken modulo \(k \). If \(k = v \), the cycle is called Hamiltonian.

A 2-factor \(F \) of \(K_v \) is a set of cycles whose vertices partition \(V(K_v) \). A 2-factorization of \(K_v \) is a set \(\mathcal{F} \) of edge disjoint 2-factors forming a cover of \(E(K_v) \). A 2-factorization in which all the 2-factors are isomorphic to a factor \(F \) is called an \(F \)-factorization. If each 2-factor of \(\mathcal{F} \) consists of a single Hamiltonian cycle, \(\mathcal{F} \) is called a Hamiltonian 2-factorization. The existence of a 2-factorization of \(K_v \) forces \(v \) to be odd.

The collection of cycles appearing in the factors of \(\mathcal{F} \) form a cycle decomposition of \(K_v \), which is called the underlying decomposition. We will denote it by \(D_{\mathcal{F}} \).

A permutation group \(G \) acting faithfully on \(V(K_v) \) and preserving the 2-factorization \(\mathcal{F} \) is called an automorphism group of \(\mathcal{F} \).

In some recent papers the possible structures and actions of \(G \) on vertices or factors have been investigated. In [3] the situation in which \(G \) acts regularly (i.e. sharply transitively) on vertices is studied in detail. In [2] a complete description of \(G \) and \(\mathcal{F} \) is given in case the action of \(G \) is doubly transitive on the vertex-set. In particular it is proved that if \(\mathcal{F} \) is Hamiltonian, then \(v \) is an odd prime \(p \), the group \(G \) is the affine general linear group \(AGL(1, p) \) and, if the vertices of

1 Research performed with the financial support of the Italian Ministry MIUR, project “Strutture Geometriche, Combinatoria e loro Applicazioni”.

E-mail address: mazzuoccolo@unimore.it.
Theorem 1. The full group of automorphisms of \(K_p \) are labelled by the elements of \(\mathbb{Z}_p \), then \(\mathcal{F} = \{ C_1, C_2, \ldots, C_{(p-1)/2} \} \), with \(C_i = (0, i, 2i, \ldots, (p-1)i) \) (subscripts mod \(p \)), \(i = 1, 2, \ldots, (p-1)/2 \). This factorization is the natural 2-factorization (also denoted by \(\mathcal{N}(\mathbb{Z}_p) \)) which arises from the cyclic group \(\mathbb{Z}_p \), see [3].

In this paper, we investigate primitive 2-factorizations, i.e., admitting an automorphism group \(G \) with primitive action on the vertex-set. Note that all 2-factorizations admitting an automorphism group doubly transitive on the vertex-set are also examples of primitive 2-factorizations.

If \(\mathcal{F} \) is Hamiltonian, we prove that \(v \) is an odd prime \(p \) and \(\mathcal{F} = \mathcal{N}(\mathbb{Z}_p) \). Moreover, the group \(G \) is necessarily a subgroup of \(\text{AGL}(1, p) \) containing \(\mathbb{Z}_p \). In the non-Hamiltonian case, we give examples of primitive 2-factorizations whose full automorphism group does not contain a subgroup acting doubly transitively on the vertices. In the last section we also prove that a primitive 2-factorization of \(K_9 \) is necessarily 2-transitive, whence a 2-factorization arising from the affine line parallelism of \(\text{AG}(2, 3) \) in a suitable manner, see [2], and a primitive 2-factorization of \(K_{15} \) does not exist.

2. The Hamiltonian case

In this section we prove that \(\mathcal{N}(\mathbb{Z}_p) \) is the unique primitive Hamiltonian 2-factorization of a complete graph.

Lemma 1. Let \(\mathcal{F} \) be a 2-factorization of \(K_p \) with a transitive automorphism group \(G \). Then \(\mathcal{F} = \mathcal{N}(\mathbb{Z}_p) \) and \(G \leqslant \text{AGL}(1, p) \).

Proof. By transitivity of \(G \) on \(V(K_p) \), the integer \(p \) is a divisor of the order of \(G \), then an element \(g \in G \) of order \(p \) exists. The cyclic group generated by \(g \) acts regularly on the vertex-set. By proposition 2.8 of [3], it is \(\mathcal{F} = \mathcal{N}(\mathbb{Z}_p) \). The full group of automorphism of \(\mathcal{F} \) is \(\text{AGL}(1, p) \) (see [2], Section 1) and then \(G \leqslant \text{AGL}(1, p) \).

Theorem 1. Let \(\mathcal{F} \) be a Hamiltonian 2-factorization of \(K_v \) with primitive automorphism group \(G \). Then \(v = p \), \(\mathcal{F} = \mathcal{N}(\mathbb{Z}_p) \) and \(\mathbb{Z}_p \leqslant G \leqslant \text{AGL}(1, p) \).

Proof. Suppose \(G \) is of even order. We prove that \(G \) contains exactly \(v \) involutions. First of all observe that each involution of \(G \) fixes all the 2-factors of \(\mathcal{F} \). In fact let \(g \in G \) be an involution exchanging two vertices \(x_0 \) and \(x_1 \). Labelling the vertices such that \(C = (x_0, x_1, \ldots, x_{v-1}) \) is the unique cycle of \(\mathcal{F} \) containing \([x_0, x_1] \), we obtain:

\[
g(x_i) = x_{v+1-i}, \quad g(x_{v+1-i}) = x_i \quad \text{for} \quad i = 1, \ldots, \frac{v-1}{2},
\]

where all indices are taken mod \(v \). Then \(g \) fixes the vertex \(x_{(v+1)/2} \) and each edge of the set \(E = \{ [x_i, x_{v+1-i}] / i = 1, \ldots, (v-1)/2 \} \). Suppose that at least two edges of \(E \) belong to the same 2-factor \(F \) of \(\mathcal{F} \). Then \(g \) should fix the unique cycle of \(F \) and two edges on it: a contradiction. We have proved that the elements in \(E \) are in different 2-factors. By the fact that the cardinality of \(E \) coincides with the number of 2-factors, we conclude that \(g \) fixes all the factors of \(\mathcal{F} \). Furthermore we can also observe that each involution in \(G \) fixes exactly one vertex of \(V(K_v) \). Let now \(x \in V(K_v) \), we have \(|G| = |G_x|v \), where \(G_x \) is the stabilizer of the vertex \(x \), then \(|G_x| \) is even and we have at least one involution in \(G_x \). Observe that \(G_x \) contains exactly one involution; in fact if we fix a 2-factor \(F \) and \(C \) is its cycle, the action of an involution of \(G_x \) is uniquely determined by its action on the vertices of \(C \) as above explained. We can conclude that the group \(G \) contains exactly \(v \) distinct involutions. In particular for each factor \(F \), the subgroup \(G_F \) contains \(v \) involutions: namely all the involutions of \(G \). It is well known that \(G_F \leqslant D_v \), the dihedral group on \(v \) vertices, and then \(G_F \cong D_v \) for each \(F \in \mathcal{F} \). Furthermore, for each factor \(F' \in \mathcal{F} - \{ F \} \), the dihedral groups \(G_F \) and \(G_{F'} \) contain exactly the same \(v \) involutions, therefore \(G_F \neq G_{F'} \). Label the vertices of \(K_v \) by the elements \(0, 1, \ldots, v-1 \) in such a way that a 2-factor \(F \in \mathcal{F} \) contains the cycle \((0, 1, \ldots, v-1)\) and an element of \(G_F \) of order \(v \) maps the vertex \(i \) onto \(i+1 \), for each \(i \). Denote by \(g \in G_F \) this element. Suppose \(v \) is not a prime and let \(h \) be a proper divisor of \(v \). Let \(F' \in \mathcal{F} \) be the 2-factor containing the edge \([0, h] \). As \(G_{F'} = G_F \) we have \(g^h \in G_{F'} \) and then \(F' \) contains the cycle \((0, h, 2h, \ldots, v-h)\) of length less than \(v \): a contradiction. We conclude that \(v \) is a prime. By Lemma 1 the assertion follows in this case. We have proved that for a primitive Hamiltonian 2-factorization of \(K_v \) only two possibilities hold: either \(v \) is a prime or \(|G| \) is odd. By the O’Nan Scott Theorem (see [6]) and by the fact that a simple non-abelian group

\(\mathcal{F} = \mathcal{N}(\mathbb{Z}_p) \) and \(\mathbb{Z}_p \leqslant G \leqslant \text{AGL}(1, p) \).
has even order (Feit–Thomson Theorem, see [7]), the socle of \(G \) is a regular elementary abelian \(p \)-group for some prime \(p, v = p^n \) and \(G \) is isomorphic to a subgroup of the affine group \(\text{AGL}(m, p) \). But it is already known that a Hamiltonian 2-factorization of \(K_{p^m} \) with a group acting sharply transitively on vertices cannot exist if \(m > 1 \) (see [2], Proposition 4), then \(m = 1 \) and the assertion follows. \(\square \)

This theorem gives a complete classification of all primitive Hamiltonian 2-factorization of \(K_v \), while the non-Hamiltonian case remains an open problem. In the following paragraph we give an infinite family of examples and some non-existence results in this case.

3. The non-Hamiltonian case

Throughout this paragraph \(\mathcal{F} \) will be a non-Hamiltonian 2-factorization of \(K_v \) with primitive automorphism group \(G \). By Lemma 1 we have that \(v \) is not a prime in this case. When \(v \) is a genuine prime power an example for \(\mathcal{F} \) is the 2-transitive 2-factorization given in [2]. It has to be noticed that in this case the full automorphism group is 2-transitive, however, it could contain a proper subgroup which is primitive but not 2-transitive on the vertex-set.

3.1. Mixed translations over a finite field

Let \(F \) be a finite field of order \(p \) with \(p \neq 2 \) and, for \(n \geq 3 \), consider the \(n \)-dimensional vector space \(V = F^n \).

Identify the elements of \(V \) with the points of the affine space \(\text{AG}(n, p) \). Denote by \(t_a \), the translation of the affine space determined by the vector \(a \in V \) and by \(T = \{ t_a : a \in V \} \) the translation group on \(\text{AG}(n, p) \).

Let \(W_0 \) be an hyperplane of \(\text{AG}(n, p) \) through \((0, \ldots , 0)\), and denote by \(\overline{W_0} \) the vector subspace of \(V \) associated to \(W_0 \). Let \(W_0, \ldots , W_{p-1} \) be the affine hyperplanes obtained by \(W_0 \) as \(W_i = W_0 + i a \), for \(a \notin \overline{W_0} \) and \(i = 0, \ldots , p-1 \).

We will use mixed translations in what follows to obtain new examples of primitive 2-factorizations. For pairwise linearly independent vectors \(w_0, w_1, \ldots , w_{p-1} \) in \(\overline{W_0} \), these are transformations \(m_{w_0, w_1, \ldots , w_{p-1}} \) defined by

\[
m_{w_0, w_1, \ldots , w_{p-1}}(x) = \begin{cases} x + w_0 & \text{if } x \in W_0, \\ x + w_1 & \text{if } x \in W_1, \\ \vdots \\ x + w_{p-1} & \text{if } x \in W_{p-1}. \end{cases}
\]

Note that \(m_{w_0, w_1, \ldots , w_{p-1}} \) has a fixed-point-free action.

Identify the vertex-set of \(K_{p^n} \) with the point-set of the affine space \(\text{AG}(n, p) \). For each translation \(t_a \) of \(T \) we obtain a 2-factor whose cycles are obtained in the following way: take \(p^{n-1} \) points, \(x_1, \ldots , x_{p^{n-1}} \), lying on different lines in the parallelism class generated by the vector \(a \). For each of these points, construct the cycle:

\[(x_j, x_j + a, \ldots , x_j + (p-1)a),\]

where \(j = 1, \ldots , p^{n-1} \). A 2-factor is constructed in the same manner for each choice of the translation \(t_{ia}, i = 1, \ldots , p-1 \). Obviously \(t_{ia} \) and \(t_{-ia} \) give rise to the same 2-factor and then we obtain \((p-1)/2\) distinct 2-factors associated to the same class of parallel lines.

Analogously, \((p-1)/2\) distinct 2-factors are generated from each mixed translation \(m_{w_0, w_1, \ldots , w_{p-1}} \). For each hyperplane \(W_i \) \((i = 0, \ldots , p-1)\) we construct \(p^{n-2} \) \(p \)-cycles as follows: take \(p^{n-2} \) points, \(x_1, \ldots , x_{p^{n-2}} \), of \(W_i \) which belong to distinct lines in the parallelism class generated by \(w_i \) on \(W_i \), and construct the cycles:

\[(x_j, x_j + w_i, \ldots , x_j + (p-1)w_i),\]

where \(j = 1, \ldots , p^{n-2} \). As before \((p-1)/2\) distinct 2-factors are constructed from \(m_{w_0, k w_0, \ldots , k w_{p-1}}, k = 1, \ldots , p-1 \).
3.2. An example of a non-Hamiltonian primitive 2-factorization

Let \(d \) be a primitive divisor of \(p^n - 1 \), that is a divisor of \(p^n - 1 \) such that \(d \) does not divide \(p^m - 1 \) for \(m < n \). The existence of such a prime divisor is given by Zsigmondy’s Lemma, see for instance [9].

Let \(B \) be the subgroup of order \(d \) of the multiplicative group \(GF(p^n)^* \). Define \(G \) to be the group of all mappings \(g : V \to V \) of the form \(g(x) = b \cdot x + a \) for some element \(b \in B \) and some vector \(a \in V \). It is easy to prove that \(G \) acts primitively on \(V \) (see also [11]).

If we take \(p^n \) admitting a primitive divisor \(d \), with \(d \leq \lfloor (p^n - 1)/(p - 1) \rfloor \), then a \(G \)-invariant 2-factorization of \(K_{p^n} \), which is different from that arising from the standard line parallelism of \(AG(n, p) \) is constructed in the following proposition. There are infinitely many prime powers \(p^n \) which satisfy this requested condition on \(d \): for example, if we take \(3^n \) with \(n \geq 3 \) odd and such that \((3^n - 1)/2 \) is not a prime, then each prime \(d \) obtained by Zsigmondy’s Lemma satisfies the hypothesis.

Proposition 1. Let \(p^n, n \geq 3 \), be a prime power such that \(p^n - 1 \) admits a primitive divisor \(d \) with \(d \leq \lfloor (p^n - 1)/(p - 1) \rfloor \). There exists a primitive 2-factorization of \(K_{p^n} \), which is not 2-transitive.

Proof. Let \(G \) be the primitive group described above. This group has a primitive action on the points of \(AG(n, p) \). The action of \(G \) on the parallelism classes yields \((p^n - 1)/d(p - 1) \) orbits of the same length. As \(d \leq \lfloor (p^n - 1)/(p - 1) \rfloor \) we have at least \(p \) distinct orbits. Let \(W_0 \) be a hyperplane of \(AG(n, p) \) through \((0, \ldots, 0)\) and let \(w_0, \ldots, w_{p-1} \in \overline{W_0} \) be \(p \) vectors which determine \(p \) parallelism classes in distinct orbits under the action of \(G \) on \(AG(n, p) \). Consider the mixed translation \(m_i = m_{W_0,i,w_0,\ldots,w_{p-1}}, i = 1, \ldots, (p - 1)/2 \), and let \(F_i \) be the 2-factor arising from \(m_i \). The group \(T_{W_0} = \{ t_a / a \in \overline{W_0} \} \) is the stabilizer of each \(F_i \) in \(G \) and \(|\text{orb}_G(F_i)| = p^d/(p^n-1) = pd \). The set \(\bigcup_i \text{orb}_G(F_i) \) contains \((p - 1)/2pd\) 2-factors which are associated to \(pd \) distinct classes of parallelism. For each of the remaining \((p^n - 1)/p - 1 - pd\) parallelism classes, take a vector \(a \) which determines the class, and construct the \((p - 1)/2pd\) 2-factors arising from the translations \(t_{ia}, i = 1, \ldots, (p - 1)/2 \) as described before. We obtain \((p^n - 1)/2 - (p - 1)/2pd\) further 2-factors which, together with the \((p - 1)/2pd\) 2-factors obtained from the mixed translations give rise to a 2-factorization \(\mathcal{F} \) of \(K_{p^n} \) admitting \(G \) as an automorphism group acting primitively on the vertex-set. The full automorphism group of \(\mathcal{F} \) does not contain a subgroup which is 2-transitive on the vertices: indeed in this case each 2-factor should arise from a translation of \(T \) in the way described in Section 3.1, as proved in [2]. □

If the number of vertices \(v \) is not a prime power, no examples of primitive 2-factorizations of \(K_v \) are available.

3.3. Non-existence results

Now we give some necessary conditions for the existence of a primitive 2-factorization and then we will use these conditions to prove that \(K_9 \) has no primitive 2-factorizations different from the 2-transitive one and that \(K_{15} \) does not admit a primitive 2-factorization.

Lemma 2. \(G \) does not fix a non-Hamiltonian factor of \(\mathcal{F} \).

Proof. The cycles of a non-Hamiltonian factor fixed by \(G \) form a system of imprimitivity for \(G \). □

Lemma 3. If \(v \) is not a prime, \(G \) does not fix a Hamiltonian factor of \(\mathcal{F} \).

Proof. Suppose \(G \) fixes a Hamiltonian factor \(F \), then \(G \leq D_v \). By the transitivity of \(G \) on the vertex-set and by the fact that \(v \) is odd, we also have \(Z_v \leq G \). The transversals of a proper subgroup of \(Z_v \) form a system of imprimitivity for \(G \). □

Lemma 4. If \(G \) fixes a 2-factor, then \(v \) is a prime \(p \), \(\mathcal{F} = \mathcal{N}(\mathbb{Z}_p) \) and either \(G \cong \mathbb{Z}_p \) or \(G \cong D_p \).

Proof. This follows from Lemmas 1–3. □
Proposition 2. A primitive 2-factorization of K_9 is isomorphic to the only 2-factorization \mathcal{F} with $\text{Aut}(\mathcal{F}) \cong \text{AGL}(2, 3)$, and G is a subgroup of $\text{AGL}(2, 3)$ acting primitively on the vertex-set.

Proof. All 2-factorizations of K_9 and the order of the corresponding automorphism groups are enumerated in [8, Table 2, p. 437]. By the transitivity of G on the vertex-set, 9 must be a divisor of $|G|$ and only 4 possibilities remain. In the three cases where $\text{Aut}(\mathcal{F})$ is different from $\text{AGL}(2, 3)$ there is a factor fixed by $\text{Aut}(\mathcal{F})$, therefore by Lemma 4 these cases are ruled out. The assertion follows. □

Proposition 3. A primitive 2-factorization \mathcal{F} of K_{15} does not exist.

Proof. There are 6 groups admitting a primitive representation of degree 15: S_6, A_6, A_7, $\text{PSL}(4, 2)$, S_{15} and A_{15}. The last three groups are at least 2-transitive on the vertex-set and then these cases are ruled out by the main theorem in [2]. The group A_6 is simple, its proper subgroups have index greater than 5, then the orbit-lengths under its action are equal to 1 or greater than 5. The first possibility is excluded by Lemma 4, then A_6 is transitive on the factors of \mathcal{F}, but the number of factors is not a divisor of the order of A_6: a contradiction. This implies that also S_6 is ruled out because it contains A_6. The only remaining possibility is A_7. Using the computer package GAP [10], we have checked that the pointwise stabilizer of 2 vertices is isomorphic to A_4 and fixes a further vertex. We can conclude that the 3-cycle, say T, with these 3 vertices belongs to \mathcal{DF}. Now, we have generated the only possible decomposition of K_{15} preserved by A_7 as the orbit of T under the action of the group A_7. The decomposition obtained is a Steiner triple system on 15 vertices and it is isomorphic to $PG(3, 2)$, see [11]. There are only two non-isomorphic parallelisms of $PG(3, 2)$, each having a group of order 168, and both intransitive (see for instance [5]). □

References