New results on the eccentric digraphs of the digraphs

Haiying Wang1*† Liang Sun2

1 The School of Information Engineering
China University of Geosciences (Beijing)
Beijing 100083, P.R.China

2 Department of Mathematics, Beijing Institute of Technology
Beijing 100081, P. R. China

Abstract Let G be a digraph. For two vertices u and v in G, the distance $d(u, v)$ from u to v in G is the length of the shortest directed path from u to v. The eccentricity $e(v)$ of v is the maximum distance of v to any other vertex of G. A vertex u is an eccentric vertex of v if the distance from v to u is equal to the eccentricity of v. The eccentric digraph $ED(G)$ of G is the digraph that has the same vertex set as G and the arc set defined by: there is an arc from u to v if and only if v is an eccentric vertex of u. In this paper, we determine the eccentric digraphs of digraphs for various families of digraphs and we get some new results on the eccentric digraphs of the digraphs.

Keywords Eccentricity; Eccentric vertex; Distance; Directed graph

1. Introduction

Let G be a digraph with vertex set $V(G)$ and arc set $A(G)$. For two vertices u and v in G, if there is a directed path from u to v, then we say that v is reachable from u and the distance $d(u, v)$ from u to v is the length of the shortest directed path from u to v. If there is no directed path from u to v in G, then we define $d(u, v) = \infty$. The eccentricity $e(v)$ of v in G, is the distance from v to a vertex farthest from v. A vertex u in G is an eccentric vertex of vertex v if the distance from v to u is equal to $e(v)$. The eccentric digraph of
G, denoted $ED(G)$, is the digraph on the same vertex set as G, in which there is an arc from v to u if and only if u is an eccentric vertex of v.

Given a positive integer $k \geq 1$, the kth iterated eccentric digraph of G is defined as $ED^k(G) = ED(ED^{k-1}(G))$ where $ED^1(G) = ED(G)$ and $ED^0(G) = G$. Since the number of the digraphs on n vertices is finite, there is a positive integer p and a non-negative integer k such that $ED^k(G) = ED^{p+k}(G)$. The smallest p and t, which make the equality hold, are called the period and the tail of G respectively. The period and tail of G are denoted by $p(G)$ and $t(G)$ respectively. We say that a graph is periodic if $t(G) = 0$.

Besides, we define the following digraphs in this paper.

The directed path $P_n = v_1v_2\ldots v_n$ is a directed graph with vertex set $V(P_n) = \{v_1, v_2, \ldots, v_n\}$ and arc set $A(P_n) = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n\}$.

The directed cycle $C_n = v_1v_2\ldots v_nv_1$ is a directed graph with vertex set $V(C_n) = \{v_1, v_2, \ldots, v_n\}$ and arc set $A(C_n) = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1\}$.

The in-directed fan F_n^i is the digraph with vertex set $V(F_n^i) = \{c, v_1, v_2, \ldots, v_n\}$ and arc set $A(F_n^i) = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n\} \cup \{v_1c, \ldots, v_nc\}$.

The out-directed fan F_n^o is the digraph with vertex set $V(F_n^o) = \{c, v_1, v_2, \ldots, v_n\}$ and arc set $A(F_n^o) = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n\} \cup \{cv_1, \ldots, cv_n\}$.

Let $F_n^* \, = \, \{c, v_1, v_2, \ldots, v_n\}$ and arc set $A(F_n^*) = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n\} \cup \{cv_1, \ldots, cv_n\} \cup \{v_1c, \ldots, v_nc\}$.

The out-directed wheel W_n^o is the digraph with vertex set $V(W_n^o) = \{c, v_1, v_2, \ldots, v_n\}$ and arc set $A(W_n^o) = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1\} \cup \{cv_1, \ldots, cv_n\}$.

The in-directed wheel W_n^i is the digraph with vertex set $V(W_n^i) = \{c, v_1, v_2, \ldots, v_n\}$ and arc set $A(W_n^i) = \{v_1v_2, v_2v_3, \ldots, v_{n-1}v_n, v_nv_1\} \cup \{v_1c, \ldots, v_nv_1\}$.

For a graph G, G^* is the digraph obtained from G by replacing each edge of G by a symmetric pair of arcs.

For two vertex disjoint digraphs G_1 and G_2, $G_1 \oplus G_2$ is the digraph obtained by joining each vertex of G_1 to each vertex of G_2.

The complement of a digraph G with n vertices is the digraph $(K_n)^* - A(G)$, denoted \overline{G}.

In [1], Bolland and Miller introduced the concept of the eccentric digraph of a digraph and obtained some useful results as follow.

Proposition 1.1 For the complete digraph $(K_n)^*$, $ED((K_n)^*) = (K_n)^*$.

Proposition 1.2 For the complete multipartite digraph G, $ED^2(G) = G$.

Proposition 1.3 For a directed cycle C_n, $ED(C_n) = C_n$.

Note that the direction of any arc in $ED(C_n)$ is opposite to that in C_n.

Proposition 1.4 A non-trivial eccentric digraph has no vertex of out-degree zero.

Proposition 1.5

1. $p = 1, t = 0$ if and only if $G = K_n$.
2. $p = 1, t = 1$ if and only if $G = K_n^r$.
3. $p = 2, t = 0$ when $G = K_{n_1, n_2, \ldots, n_k}$ or $G = K_{n_1} \cup K_{n_2} \cup \ldots \cup K_{n_k}$.

In [1], Bolland and Miller introduced the concept of the eccentric digraph of a digraph and obtained some useful results as follow.
4. $p = 2, t = 1$ when $G = H_{n_1, n_2, \ldots, n_k}$ or $G = H_{n_1} \cup H_{n_2} \cup \ldots \cup H_{n_k}$
where $H_{n_1, n_2, \ldots, n_k}$ is a strongly connected subdigraph of $K_{n_1, n_2, \ldots, n_k}$ of order $n_1 + n_2 + \ldots n_k$.

$H_{n_1} \cup H_{n_2} \cup \ldots \cup H_{n_k}$ is a strongly connected subdigraph of $K_{n_1} \cup K_{n_2} \cup \ldots \cup K_{n_k}$ of order $n_1 + n_2 + \ldots n_k$.

Proposition 1.6 Let G be a digraph with $|V(G)| = n$ and no vertex of out-degree 0. Then G has a vertex of out-degree $n - 1$ if and only if $ED(G)$ has a vertex of out-degree $n - 1$.

In this paper, we have obtained some results on the eccentric digraphs of the digraphs.

2. New results

Lemma 2.1 The eccentric digraph of a directed path P_n is a directed graph G, where $V(G) = V(P_n)$ and $A(G) = \{v_i,v_j : i > j, i,j = 1,2,\ldots,n\}$.

Lemma 2.2 $ED((K_m \cup K_n)^*) = (K_m,n)^*$ and $ED((K_{m,n})^*) = (K_m \cup K_n)^*$. So $t((K_m \cup K_n)^*) = p((K_m \cup K_n)^*) = 1$.

Lemma 2.3 The digraph G_1 in Figure 1 satisfies that $ED(G_1) = K_1 \oplus (K_n)^*$ and $ED^2(G_1) = G_1$. So $t(G_1) = 0$, $p(G_1) = 2$, i.e. G_1 is periodic.

Proof: Suppose $V(G_1) = \{v_1,v_2,\ldots,v_n,c\}$ and c is the vertex of in-degree n and out-degree n. Since $e(c) = 1$ then the other vertex v_i is the eccentric vertex of c for any $i = 1,2,\ldots,n$. Since $\text{indegree}(c) = \text{outdegree}(c) = n$ then $e(v_i) = 2$ for any $i = 1,2,\ldots,n$. Thus, v_i is the eccentric vertex of v_j if $i \neq j$ and $i,j = 1,2,\ldots,n - 1$. So $ED(G_1) = (K_1 \oplus (K_n)^*)$. Furthermore, since $ED(K_1 \oplus (K_n)^*) = G_1$ then $ED^2(G_1) = G_1$. □

Lemma 2.4 Let $G = K_1 \oplus (K_n)^*$, then $ED(G) = G_1$ and $ED^2(G) = G$. So $t(G) = 0$, $p(G) = 2$, i.e. G is periodic, where G_1 is the digraph in the Figure 1.

Lemma 2.5 Let $G = rK_1 \oplus (K_n)^*$, then $ED^2(G) = G$. So $t(G) = 0$, $p(G) = 2$, i.e. G is periodic, where r is a positive integer.

Lemma 2.6 The eccentric digraph of F_n^1 is the digraph in Figure 2. Furthermore, $ED^2(F_n^1) = G_1$ and $ED^2(F_n^1) = ED^1(F_n^1)$. So $t(F_n^1) = p(F_n^1) = 2$.

Lemma 2.7 The eccentric digraph of F_n^2 is the digraph in Figure 3. Furthermore, $ED(F_n^2) = ED^3(F_n^2)$. So $t(F_n^2) = 1$, $p(F_n^2) = 2$.
Lemma 2.8 The eccentric digraph of F_n^* is the digraph in Figure 4. Furthermore, $ED(F_n^*) = ED^3(F_n^*)$. So $t(F_n^*) = 1$, $p(F_n^*) = 2$.

Lemma 2.9 The eccentric digraph of W_n^0 is also the digraph G_1 in Figure 1. Furthermore, $ED(W_n^0) = ED^3(W_n^0)$. So $t(W_n^0) = 1$, $p(W_n^0) = 2$.

Lemma 2.10 The eccentric digraph of W_n^1 is the out-directed wheel W_n^1, while the direction of the rim of $W_n^1 = ED(W_n^1)$ is opposite to that in W_n^1 and it satisfies that $ED^1(W_n^1) = W_n^0$ and $ED^2(W_n^1) = ED^4(W_n^1)$. So $t(W_n^1) = p(W_n^1) = 2$.

Lemma 2.11 $ED(C_n) = C_n$.
Note that the direction of any arc in $ED(C_n)$ is the same to that in the given cycle C_n. By proposition 1.3, $ED^2(C_n) = C_n^*$, where the direction of any arc of C_n is opposite to that in the directed cycle C_n.

Lemma 2.12 The eccentric digraph of the complement of P_n satisfies that $ED(P_n) = F_{n-1}^*$ and $ED^2(P_n) = ED^4(P_n) = ED(F_{n-1}^*)$, where v_n is the center of F_{n-1}^*. So $t(P_n) = p(P_n) = 2$.

Lemma 2.13 Let rP_2 be a digraph in the following Figure 5, then $ED(rP_2) = (K_{2r})^* - E(rP_2)$.

Lemma 2.14 Let the digraph $K_{m,n} - E(rP_2) = (mK_1 \oplus nK_1) - E(rP_2)$, then $ED(K_{m,n} - E(rP_2)) = ED^3(K_{m,n} - E(rP_2))$. So $t(K_{m,n} - E(rP_2)) = 1$, $p(K_{m,n} - E(rP_2)) = 2$, where $1 \leq r \leq \min\{m, n\}$.

Lemma 2.15 Let $S_{m,n}^i$ ($i = 1, 2$) be a directed double-star in the Figure 6 and Figure 7, then

(1) $ED^k(S_{m,n}^1) = \begin{cases} G_{1,1} & \text{if } k \text{ odd,} \\ G_{1,2} & \text{if } k \text{ even.} \end{cases}$

Note that $G_{1,1}$ is isomorphic to $G_{1,2}$ (See Figure 7 and Figure 8).

(2) $ED^3(S_{m,n}^2) = K_1 \oplus (K_{m+n+1})^*$ and $ED^2(S_{m,n}^2) = ED^4(S_{m,n}^2)$.

Theorem 2.1 Let G be a digraph with $|V(G)| = n$. If there is one vertex of in-degree $n-1$ and out-degree 0, then the vertex has out-degree $n-1$ in the eccentric digraph $ED(G)$.

Proof: Let $V(G) = \{v_1, v_2, ..., v_{n-1}, c\}$ and c be the vertex of in-degree $n-1$ and out-degree 0 in G. Then $e(c) = \infty$. Hence, every other vertex v_i ($i = 1, 2, ..., n-1$) is the eccentric vertex of c. Thus, c is a vertex of out-degree $n-1$ in $ED(G)$. □

Theorem 2.2 Let G be a digraph with $|V(G)| = n + 1$. If there is one vertex of out-degree n and in-degree 0 and others are reachable each other, then
$ED(G) = G_1$ and $ED(G) = ED^3(G)$.

Proof: Suppose that $V(G) = \{v_1, v_2, ..., v_n, c\}$ and c is the vertex of out-degree n and in-degree 0. Since $e(c) = 1$ then the other vertex v_i is the eccentric vertex of c for any $i = 1, 2, ..., n$. Since $\text{indegree}(c) = 0$, then $e(v_i) = \infty$ for $i = 1, 2, ..., n$. Since v_i and v_j are reachable for $i \neq j$, then c is the only eccentric vertex of v_i for any $i = 1, 2, ..., n$. From the above, we get that $ED(G) = G_1$. Furthermore, by lemma 2.3 we know that $ED^3(G) = ED(G)$. \qed

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{G_1}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{$ED(F^3_n)$}
\end{figure}
Figure 3 : \(ED(F_n) \)

Figure 4 : \(ED(F_n^*) \)

Figure 5 : \(rP_2 \)
Figure 6: $S^1_{m,n}$

Figure 7: $S^2_{m,n}$

Figure 8: $G_{1,1}$
Figure 9: $G_{1,2}$

References