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Computers in bacteriology
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Numerical methods are now widely used in the
classification of bacteria, and they are also being
explored in the field of identification. Identification
is the major interest for clinical work, but it should
be emphasized that good taxonomies are a pre-
requisite for satisfactory schemes of identification
or diagnosis. Much remains to be done in the
taxonomy of bacteria, and for this reason a brief
summary of numerical methods of classification
will be given before considering diagnosis. First,
however, some comments will be made on the
collection of laboratory data.

COLLECTION OF DATA

One of the special problems in bacteriology is that
the time and effort required to obtain a single piece
of information about a specimen (a bacterial
strain or a clinical sample) are high compared with
those for a higher organism like an insect. A brief
glance at a fly shows that it has two wings, six legs,
and so on. But to determine whether a bacterium
is indole positive or indole negative normally re-
quires cultivation in a tube of an appropriate
medium followed by chemical testing some hours
later. Since a tube of sterile medium costs quite
a lot (perhaps 4d, ie, 1.67 new pence, most of it
due to preparation costs) there is scope for methods
that reduce time and money, although there will
still be the costs of skilled labour and equipment
for setting up tests and reading them. High costs
are of course found in many areas of clinical
investigation, and provide much of the impetus
toward the current efforts in automation.

Savings in cost can be made in various ways.
Thus a divided Petri dish with 25 sterile compart-
ments has been developed in this Unit, which allows
many bacteriological tests to be made quickly and
cheaply using a multiple inoculator (Sneath and
Stevens, 1967). Each well in this dish costs something
like ld (about 0.4 new pence) of which about half
is the cost of medium plus dish and half due to
preparation. Also, with this dish one can fill and
inoculate about 500 tests per hour. Similarly there

are micro-methods that greatly shorten the time for
performing tests (see Hartman, 1968, for a compre-
hensive review of these micro-methods).
The use of methods like this still requires a good

deal of ingenuity if they are to be applied to clinical
bacteriology. They are at present best suited to the
collection of data for classification of bacteria
(eg, Lovelace and Colwell, 1968), or to screening
large numbers of specimens during an epidemic.
They could, however, be modified for routine use.
For example, each well in a divided dish could
contain a different medium, chosen so as to offer
a range of the most useful tests for identification;
each bacterium could then be inoculated into the
wells of one dish, and reading would be quick and
simple. The reading itself might perhaps be auto-
mated by photoelectric methods.
Of course in all such modifications of standard

methods it is extremely important that the results
should be highly reliable. This does not seem an
insuperable problem, though experience will be
needed to adapt them. The biggest obstacle to
employing automatic analysers of the kind used in
biochemical laboratories is the need to achieve
rigorous standards of sterility, and progress in this
respect is likely to be rather slow.

CLASSIFICATION

Bacteria have traditionally been classified by
considering relatively few characters of the organ-
isms, sometimes from tables of data (often incom-
plete), and giving great prominence to certain of
the characters. Numerical methods developed in the
last few years are intended to handle large tables
of data (as complete as possible) without giving
undue importance to any of the characters. Since
it is difficult to make sense of large tables of data,
computer methods are used to process them, and
an outline of these is given below. Fuller descriptions
of numerical taxonomy will be found in various
publications (eg, Sokal and Sneath, 1963; Sneath,
1962; Skerman, 1967).
A distinction should first be made between
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classification and identification. In the former
collections of bacteria are grouped into taxonomic
groups such as genera or species. In the latter an
unknown strain is identified with a previously
known taxonomic group. Although these two
processes can be to some extent performed simul-
taneously (or by repeated modification of prelimi-
nary classifications), it is convenient to distinguish
them because of the logical differences between
these two procedures. Classification is generally
of the kind loosely termed 'natural', and, in more
technical language, 'polythetic'. In such classifications
there are not necessarily any constant characters in
a given taxonomic group, though fortunately there
are usually a number of constant characters in
practice. These constant characters are, however,
not chosen a priori but emerge from the analysis
of a large set of characters whose constancy within
groups is not known initially for the obvious
reason that the groups themselves are not known at
this stage.

It is usual to give each character equal weight when
constructing a classification, which should be
contrasted with the weighting of characters that is
appropriate in identification. This point has aroused
some controversy, but the basic criticism of character
weighting for classification is that it is extremely
difficult to find any logical and consistent grounds
for allocating weights before the groups are known.
For certain special purposes one may of course use
frankly arbitrary classifications, such as phage
types, which do not necessarily agree with the
orthodox taxonomic groups; these are not further
considered here, because the selection of optimal
divisions for special purposes has not received much
careful study.

Numerical taxonomy relies on a large number of
characters of the bacteria, and the choice of these
requires consideration. The aim is to try to obtain
a representative sample of all the attributes of
the organisms; this is not strictly a random sample,
but should aim towards it. It is unsafe to rely on
only one class of characters, eg, serological or
carbohydrate fermentations, because they may not
always correlate well with other sorts of characters.
Nevertheless such discordance has usually been
fairly small, so that a set of characters covering
the main classes of attributes-morphological,
physiological, biochemical, etc-is generally quite
reliable.

It is, however, important to use a large number of
characters, because if too few are used the resem-
blances between bacteria are too uncertain for
satisfactory work. About 100 characters are desir-
able, and more if possible.
The next step is to convert the characters into

suitable coded form. With most bacteriological
data these can be conveniently scored as plus (+)and
minus (-) (usually represented for computation as 1
and 0), while missingentries are marked NC, meaning
that no comparison is to be made when this entry
is considered in the computer program. Certain
quantitative or semiquantitative characters may
need special coding (see Sneath, 1962; Lockhart,
1964), as may a few qualitative characters. The
resulting table of strains versus characters is fed
into the computer and the computer program carries
out the following steps.

1 The resemblance between each strain and
every other is calculated, commonly as the percentage
of agreements between the two arrays of character
values. This gives a chequerboard table, in which
the percentage similarity between each pair of strains
is recorded. A similarity value, for example, between
two strains that score respectively + + - - +
and + - i- + + might be given as three agree-
ments out of five, or 60 %.

2 The computer next sorts through the simi-
larity table and groups together the strains with the
highest mutual resemblances, giving groups of
strains that are highly similar to each other. For
example, if strains A and B are 950% similar, while
A and C, and B and C, are only 60% similar, then
AB would be a small group (in this instance of
only two members). Similarly C and D might be
88% similar, but all similarities between them and
A or B might be low, around 600%. We would then
have two separate groups, AB and CD.

3 This grouping process is repeated so as to
bring together the most similar groups, and groups
of groups, until all the bacteria have fused into
a single large group.

4 The computer then displays these groups in
one of several ways. The commonest is a taxonomic
tree, or dendrogram, which summarizes the group-
ings in a convenient form. We might show the four
strains A, B, C, D in our example:

Similarity Strain

k A B C D
100

90
80
70
60

I

These dendrograms can be used to decide what
groups should be recognized in a formal taxonomy,
although it should be noted that the choice of
similarity levels to represent species, genera, etc, is
largely arbitrary at present. It should also be noted
that there are commonly some aberrant strains that
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do not fit neatly into any group, though usually
they are a minority.

5 The computer can then be asked to list the
more constant characters for each group, as these
are the most suitable for use in schemes for identi-
fication.

There are various numerical methods for these
computer steps, but in general they give very similar
results when applied to bacteria, although improve-
ments in the methods are constantly being made.
Numerical methods are usually very successful
with bacteria (for reviews see Floodgate, 1961;
Sneath, 1964) and have also been applied to other
fields, eg, clinical medicine (see Baron and Fraser,
1968). They may also have a part to play in such
procedures as the automatic scanning of cervical
smears.

IDENTIFICATION

There are two well-known ways of identifying a
bacterium against recorded data. The first is by
means of a dichotomous key. The second is by
comparing the results of a number of tests with
diagnostic tables that list the characters of the
groups. These are examples of two basic strategies
for identification, which are respectively the 'se-
quential' and the 'simultaneous'. In the first a
single character is used at a time and a sequence
of these is followed through. In the second a number
of characters are considered simultaneously. Of
course many schemes make use of both principles.
A key may have several tests listed at each dichotomy,
although then the user may be puzzled if his
unknown agrees only with some of them. A
diagnostic table, too, may be broken into successive
stages, so that the user moves from a first-stage
table to a second-stage table on a smaller set of
bacteria, and so on.
Keys have certain advantages. They are compact

and easy to use. However, they suffer from dis-
advantages. It may not be possible to find mutually
exclusive and constant characters for the groups.
Also, if an error is made somewhere in the keying-out
process, the user may be led a long way from the
correct answer. These are particularly troublesome
with bacteria, where completely constant characters
may be hard to find, and where it is easy to make
technical errors in performing the tests. These
disadvantages are less with diagnostic tables, because
it is not difficult to see that one or two tests are
atypical as the user compares the unknown with the
columns of the table. It will be seldom worth
considering the use of a key stored in a computer
though the use of a computer to generate a printed
key from a given set of data may be worthwhile.

Tables, however, are well suited to computer use,
as the machine can store large tables and can very
quickly match the unknown against all the alterna-
tives. It can also make some estimate of the proba-
bility of correct identification, which is particularly
important in clinical work.
The basic form of a tabular system of identification

can be illustrated by considering a simplified
example. Below are shown three groups of bacteria,
together with an unknown strain which it is desired
to identify.

Character

Gram reaction
Lactose
fermented
Indole
MR
H,S

Klebsiella Escherichia Salmonella Unknown, u

+ +F _ _

+__

_- + +

In this example characters are taken as being
constant in the three genera. In practice the user
has to make allowances for the variability of
characters within taxonomic groups (as described
below, note that Klebsiella, for example, is sometimes
MR +) but the main principle is clear. We compare
the unknown with each group in turn and choose
the best matching group as the correct identification.
In this example the unknown is clearly Salmonella.
We may, however, find that the unknown does not
match well with any group and perfect matching is
rare if there are a lot of characters. This may be
because we have a strain that is atypical in some
respects, or one that is intermediate between two
groups, or perhaps our unknown belongs to a group
far from any that we have in our table. Cowan and
Steel (1965) give extensive tables for bacteria of
medical interest.
We can improve the power of our scheme by

calculating the degree of match between our un-
known and the various groups, and this leads
naturally to computer methods. The match values
are now virtually a set of similarity coefficients
between the unknown and the various groups in
the table, or some central representative of each
group.
There are several ways in which the computation

can be done. Thus Gyllenberg (1965) treats the
similarities (or rather the dissimilarities) as distances
between the unknown and each group; identi-
fication is made with the nearest group, provided
it is close enough upon various chosen criteria.
Rypka, Clapper, Bowen, and Babb (1967) have
described another computer technique.
We shall here take as an example the broad

outline of a method proposed by Dybowski and
Franklin (1968). They use a table in the computer
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which contains, instead of plus or minus values, the
frequency of positives of each test in the various
groups. Because there is always a small chance that
an atypical result may be obtained with the unknown,
or that a mistake has been made in testing, the
entries for constant characters are never 0% or
100%, but are set to figures such as 50% or 95%.
This prevents a mismatch on one test from com-
pletely excluding a group in the process described
below. They then argue as follows. If a group has
say 20% of positives in a given test, then the chance
that an unknown which scores plus really belongs
to that group is taken as only 200%, ie, 1/5. If it
scores minus, then the chance is taken as 800%, or
4/5. Further, if a second test is considered, in which
the group has 75 0 of positives, then the likelihood
that the unknown belongs to it is 75 % if it scores plus
and 250% if it scores minus. But suppose the un-
known scores plus, minus, on the two tests. The
chance on the first is 0-2 and on the second 0.25.
They take the likelihood considering both tests to be
0.2 x 0.25 = 005, or only 1/20. In this manner
the individual probabilities are multiplied together
for as many tests as are available.
As the number of tests is increased the joint

likelihood becomes increasingly small for a mis-
identification. For a correct identification it falls
more slowly. We therefore need some expression
that takes this into account. One of the most useful
is to compare the observed likelihood with the
maximum possible for a strain of the given group,
that is, a strain that possesses the commonest
states for every character. Thus, for our example
above, the best we could get was a stain scoring
minus on the first and plus on the second test,
whose likelihood would be 080 x 075 = 0.60.
The unknown which scored plus, minus, would be
compared with this maximum, as 0.05/0.60 = 0.083.
This is the model likelihood fraction, or MLF, and
approaches one for the best possible identifications.
When, for example, it is 0.95 we may take this as
indicating roughly a 95% probability that the
identification is correct. At some chosen level
the computer can be instructed to print the pre-
sumptive identification, together with the next best
candidate and its probability.

Furthermore, we can ask for the next tests to
perform, ie, those that will be most efficient in
distinguishing between the candidates, or in raising
the probability to an acceptable level. On obtaining
the results on these we can repeat the identification
in the hope of clinching the matter.
The original scheme of Dybowski and Franklin

ran into various difficulties. It does of course assume
that the joint probability can be obtained as above,
and therefore that there is not a significant degree

of correlation between characters. There will
certainly be some correlation, but this does not
seem to be a serious cause of trouble. Recent
experience at the National Collection of Type
Cultures with a modified form of this method is
much more promising. Drs S. P. Lapage, S. Bascomb,
W. R. Wilcox, and M. A. Curtis presented this
method at a demonstration meeting of the Society
for Applied Bacteriology in October 1968, and I
am indebted to them for an outline of their findings.
They use a set of 50 tests, but 30 are usually sufficient
to identify the 60 groups covering the general run
of Gram-negative rods of medical interest that grow
aerobically on nutrient agar. If there are only 15
tests then the number of doubtful results rises
steeply. This figure of 30 is of some interest, because
we would like to know whether it is near the theor-
etical minimum.
At first sight it would seem that about six positive

or negative tests would separate the groups, but of
course not all the 64 combinations of six tests
correspond to actual groups. It is worth noting
that in conventional keys for higher organisms the
number of characters, m, required to identify T
groups is usually such that m about equals T,
so that the ratio mIT is around 1.0. In the tables of
Cowan and Steel (1965), which must represent
about the most efficient scheme for bacteria without a
computer, mIT is on the average 1 2, and is never
much less than 1, even for the best known groups.
The ratio obtained by the workers at the National

Collection of Type Cultures is around 0.5, and if
this should be generally true for computer methods
it is a very significant saving in time and effort.
However, they did not obtain more than about
50% of correct identifications (at the rather strin-
gent probability level of 99.9%) on the first runs
when a free choice of 20 out of 50 tests was allowed
to the sender, so a value of m = 20 is probably too
low. They believe, however, that it may be possible
to reduce the 50 tests to about 30 with improved
knowledge. (An example of how to measure the
diagnostic power of a new test is given in Lapage
and Bascomb, 1968.) With m = 30 this would
still represent a saving of about half the usual
number of tests. At all events it seems very probable
that we cannot expect to reduce this number much
below 30, however powerful the diagnostic method.
They believe that some gains are possible by selecting
20 out of the 30 according to the source of the
specimen; an opportunity to test this hypothesis
has not yet arisen.
Lapage and his colleagues found that with 35

tests they obtained around 800% of identifications
(at the 99.9% level), and that increasing this number
did not raise the correct identifications very much.
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Sometimes a second or third run was needed, but
it may be possible to avoid this with better selection
of tests. It should be noted that even if only 80%
of strains can be uniquely identified as to group this
does not mean that the other 20% are badly mis-
identified, for they are usually allocated to the correct
general area. Also, these figures are based on field
strains which are largely unselected. (It is not
always possible to exclude some selection, and in
fact there was rather a high proportion of 'difficult'
strains.) When culture collection strains are used,
again with some 'difficult' strains, the acceptable
identifications rise to over 92 %. This itself indicates
one possible explanation; there may in fact be
around 20% of field strains that are not members of
recognized groups but are either intermediate
forms or aberrant forms. Certainly there must be
some new groups that need defining, but these
observations may provide support for the suggestion
(Sneath, 1968b) that the pattern of variation in
bacteria exhibits many scattered strains around and
between the denser clusters that are commonly
recognized as distinct groups.
Another point brought out by the study of

Lapage and his colleagues is that some tests are
very much worse than others as far as reproduci-
bility is concerned. Thus H2S, gelatin hydrolysis,
and nitrate reduction are much less repeatable than
acid from glucose or phenylalanine deamination.
On the whole, however, the tests are fairly reliable,
for there was only about an average of 6-2% of
disagreements on repeating the tests on a second
occasion, and I have the impression that this is
quite good for routine testing methods. Unpublished
work of the Pseudomonas Working Party of the
Society for General Microbiology supports this
conclusion.

Conditional probability methods of the kind
described above are potentially powerful, but they
have some weaknesses. If there is one bad mismatch,
eg, a plus when the table contains 5%, this will
pull down the probability measure a good deal. Yet
an aberrancy in one character perhaps should
not be treated so harshly. It may be noted that it is
multiplying the probabilities which is responsible.
With distance models the discrepancies are summed,
and the effect of one abberancy is less marked.
Multiplication is equivalent to summing logarithms,
so it might be worth considering, too, the summation
of other transformations that have a less drastic
effect than logarithms. All identification methods
will attempt to identify an unknown even if it
comes from outside the reference set of organisms,
but this should be readily detected in either method.

It is also possible that some of the difficulty may
lie in systematic errors that are due to different

times of reading or different growth rates of the
bacteria. Some suggestions have been made (Sneath,
1968a) to overcome these effects, and one of the
'pattern' coefficients proposed there may be of use
in improving methods of computer identification.
Thus, the coefficient DP might be treated as a
distance in distance models, and may give a worth-
while gain in correcting for systemic errors of the
kind mentioned above. For example, a slowly
growing strain of a group would not appear so
different from the reference description of that group
as it would if the more usual coefficient DT were
used. To do this, however, Dp would have to be
calculated using non-integral values in the 2 x 2
table, because the reference description would in
general contain non-integral values for the charac-
ters. This has no very obvious statistical justification,
and would have to be justified empirically. The
correction obtained by using DP is greatest (in
general) when the reference description has most of
its entries near 1 or 0. If they are all close to 0.5
then any coefficient is apt to be misleading.
However, Dp is not directly applicable to con-

ditional probability models, and the principle
would need modification, and empirical justification,
using logarithmic transformations. This could be
done on the following lines. A 2 x 2 table is set
up with the cells labelled a, b, d, c in the usual way.
Let the logarithms of the frequencies in the reference
group be symbolized by e for the 1 state and f for
the 0 state. Then for each character of the unknown
u the following scoring is used.

If u scores 1, then if 1 is the commoner state in
the group add e to a, otherwise add e to c and f
to b.

If u scores 0, then if 0 is the commoner state add
fto d, otherwise add e to c andfto b.

The logarithm of the corrected likelihood is then
taken as a + b + c + d minus the absolute difference
between b and c.

This provides substantial correction for growth
rates, etc, though it is not quite complete, and this
is probably desirable. It amounts to excluding a
large part of the adverse probabilities due to u
having more or fewer positive states than the reference
group. The differences due to pattern of tests is some
what accentuated. It would be necessary to use only
characters that can properly be considered positive
rather than negative.
Looking to the future, we may ask how computers

are likely to be used in clinical bacteriology lab-
oratories. Probably there will be two main ways.
Where time is not so important, particularly for
difficult problems, the computer might be used to
process data sent by post. It would have in store
more information than would be readily available
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in a laboratory. But quick access is extremely
important, both to obtain an answer the same day
and also to tell the laboratory what further tests
are suggested. For this it would be necessary to
have an on-line system, perhaps by a Telex instal-
lation, because telephone enquiries would not be
practicable except in an emergency.
Another alternative would be to have small

computers in the laboratory, and as the cost of
desk computers becomes less it may be possible to
have one of these actually in the laboratory. Existing
desk computers have too small a store. There may
be a place for special purpose computers (perhaps
of analog type) in the more distant future. There is
already interest in machines specially made for
identification. Olds (1966) has described one in
which light shines through superimposed punched
cards in such a way that it indicates those bacteria
compatible with the unknown, and he showed an
improved model at the Society for Applied Bacteri-
ology demonstration meeting in October 1968.
Aberrant test results, however, may cause trouble.
The sort of device described by Cowan and Steel
(1960) for use with diagnostic tables might be
modified to give semiautomatic identification.
We should, then, anticipate that routine automatic
identification will become possible before very
long.
Yet all the techniques so far discussed require

the carrying out of a number of bacteriological
tests. Is it likely that we might find some entirely
different method that required only one operation
by the user? Many suggestions have been made,
such as infrared absorption spectra or gas chroma-
tography, but none have yet proved very practicable.
It is, I suppose, possible that we might exploit the
specificity of serological techniques. Surface anti-
gens are too often strain specific, so that others
would have to be used. But one could not afford
to do large numbers of serological tests on each
isolate, so that in some way each antibody in a
polyvalent serum would have to be labelled. The
obvious way of doing this to to exploit position on a
surface, by binding antibodies in different patterns
and detecting which spots take up the antigen.
It will be a long time, though, before we can emulsify
a colony in the magic x-reagent, and, on spreading
it onto our special antibody slide, see its name
outlined in pretty colours!

SUMMARY

Three aspects of automation in clinical bacteriology
are discussed: rapid semiautomatic testing methods;
numerical taxonomy of bacteria; and computer
methods for identification of routine bacterial
isolates. The discussion of this last topic is directed
toward conditional probability models, in which the
unknown isolate is compared with a data matrix of
test results of various well defined groups of bacteria.
Such methods are capable of giving a high pro-
portion of correct identifications using a smaller set
of tests than would otherwise be needed. They can
also give some indication of the reliability of identi-
fication, together with the best additional tests for
distinguishing between those bacterial groups that
are most difficult to identify.
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