A Database Design for a TTS Synthesis System Using Lexical Diphones

Tanya Lambert¹, Andrew Breen²

¹School of Computing Sciences, University of East Anglia, Norwich, UK, ²Nuance Communications, Norwich, UK
t.lambert@uea.ac.uk; abreen@nuance.com

Abstract

Database designs, if based on the premise that there are about 2000 diphones in English, as stated in many publications and on-line documents, are likely to render a database of diphones, which will fail to capture some important phonological phenomena of English. This paper proposes a TTS database, which is built from diphones inclusive of their syllabic stress; we term these units lexical diphones.

A comprehensive lexical diphone feature set is generated using a stress-annotated dictionary and continuous text and speech. A method based on multiple set cover algorithms, applied to wordlists of specialized English usage, and a knowledge-based phonological approach, are used to produce a core text corpus of 540 sentences. An objective evaluation of our database with other databases shows that our database (considering its size) has a higher concentration of lexical diphones; a subjective evaluation shows listeners’ preference for the speech where there are more lexical than phonemic units.

1 Introduction

Traditional database designs for speech recognition and synthesis systems consist of automatic or manual generation of a corpus of sentences from various literary genres according to phonetic or prosodic criteria [2, 3, 4, 5, 9]. The research by [4] considered building a large text corpus based on triphones with an objective of achieving a uniform coverage of the most frequent triphones. Database designs, which aim to cover the most frequent units, run a risk of performing badly when less frequent units are needed for synthesis. Optimal selection of text is generally achieved using some type of a greedy or genetic algorithm [2, 5, 4, 5, 9].

For open domain TTS synthesis systems, designing a speech database, which would contain all prosodic variations in English is a challenging task. It is implied in [1] that databases would have to be astronomical in size if all prosodic units are to be covered. Where the past research concentrated on improving the algorithm for text selection [1, 2, 9], not enough research has been done in terms of the database content. [3] emphasizes the need for a database corpus where sentences are “designed for synthesis as opposed to merely collected”.

Our database design uses three domains: phonetic dictionaries, continuous speech and text, and well documented and researched phonological phenomena in English as in [7,11]. Our approach is concerned with capturing producible and permissible phonological events in English speech (both of English and non-English origin (e.g. schnapps)). The format of this paper is as follows: section 2 is an analysis of the distribution of lexical diphones and triphones in various text domains. A new database design and a set cover algorithm are outlined in section 3. Section 4 examines the coverage of lexical units in our database with Messiah, Arctic [3] and TIMIT-SI. A subjective evaluation is given in section 5, followed by our conclusions and further work in sections 6 and 7 respectively.

2 Lexical Diphones and Triphones

For a language such as English, where phonological and prosodic speech variations are related to the context’s stress, it is insufficient to consider units without associated accent patterns. We propose here a database design where units are defined by their lexical stress.

In what follows, we examine the feasibility of achieving a full-coverage of lexical diphones for 44 phone-based transcription for British English. Each phone in a word is given a stress label of its parent syllable. Three labels are differentiated, 1 if the syllable bears a primary stress, 2 if the syllable bears a secondary stress and 0 if it is unstressed. Initial diphones in words August, Augustine and Augustinian are the same phonemically, but the syllabic stress in these words clearly distinguishes their acoustic properties (e.g. /'ægʌst/, /əˈstɪn/, and /ˈɔːstɪn/ where ‘ marks the primary and , marks the secondary stress). A phonetic analyzer tool was built for the purpose of extracting the relevant stress information from text sources.

We first examined the frequency distribution of lexical diphones and triphones in a comprehensive phonetic dictionary with greater than 300,000 orthographic entries and with extensive coverage of all morphological inflectional forms used in English. (Table 1).

<table>
<thead>
<tr>
<th>No of words</th>
<th>Unique lex. diph.</th>
<th>Unique lex. triph.</th>
<th>Unique phonemic diph.</th>
<th>Unique phonemic triph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>dictionary (≥300K words)</td>
<td>9210</td>
<td>88318</td>
<td>1670</td>
<td>26026</td>
</tr>
</tbody>
</table>

Table 1: Frequency distributions of lexical and phonemic diphones and triphones in an English phonetic dictionary.

If we assume that every word in the dictionary can be followed by any other word (this is an unlikely scenario in normal speech), we could obtain an overestimated figure of how many juncture diphones are producible in English. From the dictionary of approximately 300K words, we estimated that there are 15982 distinct producible lexical juncture diphones. However, not all of these combinations would be permissible by English grammar and syntax rules.
A more realistic account of the distribution of lexical juncture diphones in English can be calculated from various samples of continuous text and speech, retrieved from [6, 13], as shown in Table 2.

<table>
<thead>
<tr>
<th>Text Genre (No of Words)</th>
<th>Unique lex. diph. in text</th>
<th>Unique phonemic diph. in text</th>
<th>Unique lex. juncture diph.</th>
<th>Unique phonemic juncture diph.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Writings of A. Lincoln (~38000)</td>
<td>3146</td>
<td>1299</td>
<td>1826</td>
<td>845</td>
</tr>
<tr>
<td>A sample of spoken English (78148) [10]</td>
<td>4262</td>
<td>1454</td>
<td>2540</td>
<td>1028</td>
</tr>
<tr>
<td>The Mill on the Floss by G. Eliot (266290)</td>
<td>5544</td>
<td>1539</td>
<td>3189</td>
<td>1138</td>
</tr>
<tr>
<td>Various text genres (1.75 million words)</td>
<td>8331</td>
<td>1635</td>
<td>5331</td>
<td>1331</td>
</tr>
</tbody>
</table>

Table 2: Distribution of lexical diphones in various text genres

Out of approximately 15982 producible lexical juncture diphones in English, only 33.4% were encountered in the collection of texts from various genres containing over 1.75 million words. The variability of lexical diphones at word boundaries in text and speech is much greater than the variability of lexical diphones within words. As juncture diphones combine phones from different syllables, phones within a juncture diphone may carry different stress.

Frequency distributions of lexical diphones and triphones are dependent on a text genre. Less than 50% of lexical diphones, and less than 20% of lexical triphones, may be common to different text genres, as shown in Table 3. With regard to similar genres, about 85% of lexical diphones and 74% of lexical triphones were found to be common to two novels by the same author (i.e. Pride and Prejudice and Sense and Sensibility by J. Austen).

<table>
<thead>
<tr>
<th>Text genre (ca. 100K-120K words)</th>
<th>Lex. Diph. (unique)</th>
<th>Lex.Triph. (unique)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pride and Prejudice, J. Austen</td>
<td>4404</td>
<td>28477</td>
</tr>
<tr>
<td>Newspaper / adverts</td>
<td>5275</td>
<td>33747</td>
</tr>
<tr>
<td>Science Monthly</td>
<td>5517</td>
<td>38135</td>
</tr>
<tr>
<td>Names and Surnames</td>
<td>6082</td>
<td>45328</td>
</tr>
<tr>
<td>Common to all above texts</td>
<td>2747</td>
<td>7250</td>
</tr>
</tbody>
</table>

Table 3: Frequency distribution of lexical diphones and triphones in specified text samples.

Phonological phenomena [7,11] (nasal assimilation, elisions, consonant voicing and devoicing, clear and dark /l/’s, vowel reductions, linking-r and r-controlled vowels, juncture plosives, if not found during automatic selection, are manually added to the database. Similarly, the coverage of all diphone stress patterns in homographs and the diversity of monosyllabic, di-, tri- and polysyllabic words are represented.

3.1 Set Cover Problem

For a phonological feature (e.g. lexical diphones, triphones) \(P = \{1, \ldots, n\}\) and a text source \(S = \{P_1, \ldots, P_m\}\), the set cover problem [8] can be represented by a matrix \(A: \{1, \ldots, m\} \times \{1, \ldots, n\}\) where the matrix element \(a_{ij} = 0\) if \(P_j \notin S_i\) and \(a_{ij} = 1\) if \(P_j \in S_i\). The maximum coverage of phonological features for a specific text source can be given by the equation (1):

\[
C_s = \max \sum_{j=1}^{n} a_{ij} \quad (1)
\]

The overall objective here is to find a minimum number of phrases/sentences from a given text corpus, which have the maximum number of covered units from the phonological feature set.

4 Evaluation of Text Corpus

The distribution of lexical diphones and triphones in our database (540 sentences) is compared with Messiah, used by the BT’s Laureate’s TTS system (279 sentences), one of the
Arctic databases, used by the Festival Speech Synthesis System (1132 sentences) and TIMIT-SI (1890 sentences). Although, according to the number of words used in each database, the relationship is Messiah < Our database < Arctic < TIMIT-SI, as shown in the inset bar chart in Figure 3, the distribution of lexical diphones and triphones in these four databases does not follow the same trend, as Figure 3 shows.

![Figure 3: Lexical diphones and triphones in four databases](image1)

Figure 4 shows differences in coverage units w.r.t. training sets 1 to 12, where our database is referred to as A and the database with which it is being compared as B. Set theory operations are used to represent two conditions: A-B (units found in our database but not B) and ~AB (units found in B but not our database). Units found in both databases (AB) and units not found in either database (~A~B) w.r.t. a text source are not shown in the graph.

4.1 Evaluation of Speech Corpus

90 sentences with varied stress patterns containing frequent and rare speech phenomena, were synthesized twice by a state-of-the-art commercial TTS system, once using 540 sentences from our database (referred to hereafter as “speech database A”) and once using 279 sentences from the Messiah database (hereafter referred to as “speech database B”).

Both databases were recorded by the main author of this paper at the university’s recording studio as 44 kHz, mono, linear speech files, and subsequently treated in the same manner with regard to speech annotation process and voice generation. The availability of lexical diphones and triphones per sentence is greater in our database (A) than Messiah (B). For the entire set of 90 sentences the difference in a number of units present in two text databases was found to be statistically significant at 95% CI and 99% CI with likelihood ratio, LR [12], of 502.4, p-value <0.0000 for lexical diphones and LR of 718.2, p<0.0000 for lexical triphones. With regard to individual sentences, the difference in the lexical coverage within two
databases was found to be statistically significant at 95% CI in 47% of sentences for lexical diphones (chi-square exceeding 4.1 and p-value < 0.04) and in 60% of the sentences for lexical triphones (chi-square exceeding 4.7 and p-value < 0.03). The difference in the lexical coverage in two databases was found to be significant at 99% CI for 32% of lexical diphones and triphones.

4.2 Unit Selection and Lexical Units

For the entire set of 90 sentences, 61% of lexical units were selected by unit selection when speech database A was used, and 50% of lexical units were selected when speech database B was used, as shown in Figure 5. The number of lexical triphones in sentences synthesized from speech database A exceeds that from B by 13.2%. In sentences synthesized from speech database A, lexical units are more abundant in 73% of the test sentences, this figure being significant at 95% CI in 43% of the test sentences.

4 Conclusions

The phonological content of a speech database is the blueprint from which TTS concatenative synthesis systems generate their speech. This paper proposes diphones with lexical stress as units, which are more appropriate than phonemic diphones for capturing phonological variations in English. Concatenative units in synthesized speech are more acceptable to listeners if they originate from a suitable syllabic environment and carry appropriate accent patterns. Traditional methods in database designs, which consist of collecting sentences from text genres, usually end up in large text databases, which are costly to record. Our modular design with multiple set cover algorithms, applied to text sources with different narrative styles and extensive manual corrections, produced a core database that is smaller in size but better in unit coverage.

7 Further Work

Our core database has been extended in order to achieve a near-full coverage of phonological units. Whilst we do not aim to cover every prosodic unit in our text database design, we aim to include phonological features of speech that from a perceptual perspective, really matter.

8 Acknowledgements

We thank the Nuance staff, Ellis Breen for help with auto-annotations tools, and Barry Eggleton for useful hints on improving the settings on the university’s recording equipment.

9 References