DAOUD BSHOUTY and ABDALLAH LYZZAIK

On a question of T. Sheil-Small regarding valency of harmonic maps

Dedicated to Bogdan Bojarski on the occasion of his 80th birthday

Abstract

The aim of this work is to answer positively a more general question than the following which is due to T. Sheil-Small: Does the harmonic extension in the open unit disc of a mapping f from the unit circle into itself of the form $f\left(e^{i t}\right)=e^{i \varphi(t)}, 0 \leq t \leq 2 \pi$, where φ is a continuously non-decreasing function that satisfies $\varphi(2 \pi)-\varphi(0)=2 N \pi$, assume every value finitely many times in the disc?

Introduction. Let \mathbb{D} and \mathbb{T} be the open unit disc and the unit circle respectively, and let N be a positive integer. An N-valent quasi-homeomorphism from the unit circle into itself is a circle mapping $f: \mathbb{T} \rightarrow \mathbb{T}$ of the form $f\left(e^{i t}\right)=e^{i \varphi(t)}, 0 \leq t \leq 2 \pi$, where φ is a non-decreasing function that satisfies $\varphi(2 \pi)-\varphi(0)=2 N \pi$. It can be seen that every such quasi-homeomorphism is a pointwise limit of a sequence of circle mappings $f_{n}: \mathbb{T} \rightarrow \mathbb{T}$ of the form $f_{n}\left(e^{i t}\right)=e^{i \varphi_{n}(t)}, 0 \leq t \leq 2 \pi$, where φ_{n} is a continuously strictly increasing function that satisfies $\varphi_{n}(2 \pi)-\varphi_{n}(0)=2 N \pi$.

A 1-valent quasi-homeomorphism is referred to as quasi-homeomorphism.

The celebrated Radó-Kneser-Choquet Theorem can be stated as follows.

[^0]Theorem A (Radó-Kneser-Choquet Theorem [3, pp. 29-34]). Suppose that F is the harmonic extension in \mathbb{D} of a quasi-homeomorphism f from the unit circle into itself. Then F is univalent.

In an attempt to generalize this theorem to 2 -valent quasi-homeomorphisms f from the unit circle into itself, it was suggested that the respective functions F are at most 4 -valent. However, examples presented in [2] have shown that some of these mappings could be 6 -valent or 8 -valent. Furthermore, the construction procedure used in the paper suggested the possibility of finding a 2 -valent quasi-homeomorphism from the unit circle into itself whose harmonic extension in \mathbb{D} assumes a predetermined finite valency. But this remains an open problem.

In a personal communication with the first author about a decade ago, T. Sheil-Small raised the following question:

> If F is the harmonic extension in \mathbb{D} of a mapping f of the form $f\left(e^{i t}\right)=e^{i \varphi(t)}, 0 \leq t \leq 2 \pi$, where φ is a continuously non-decreasing function that satisfies $\varphi(2 \pi)-\varphi(0)=2 N \pi$, then does F assume every value finitely many times in the disc?

In this note, we show that the answer to this question is positive. In fact, a more general result is shown henceforth to be true.

For a function $F: \mathbb{D} \rightarrow \mathbb{C}$ and a point $\zeta \in \mathbb{T}$, let $C(F, \zeta)$ and $C(F, \mathbb{T})$ denote the cluster sets of F at ζ and on \mathbb{T} respectively.

The result of the note can be stated as follows.
Theorem 1. Suppose that F is the harmonic extension in \mathbb{D} of an N-valent quasi-homeomorphism f from the unit circle into itself that takes on three distinct values. Then F takes on every point in $\mathbb{D} \backslash C(F, \mathbb{T})$ finitely many times.

As a consequence we have:
Corollary 2. Suppose that F is the harmonic extension in the open unit disc of a mapping f of the form $f\left(e^{i t}\right)=e^{i \varphi(t)}, 0 \leq t \leq 2 \pi$, where φ is a continuously non-decreasing function that satisfies $\varphi(2 \pi)-\varphi(0)=2 N \pi$. Then F takes on every point in \mathbb{D} finitely many times.

Before embarking on the proof of Theorem 1, we define an algebraic curve as a connected component of the preimage of a straight line or circle under an analytic function.

Proof of Theorem 1. Write $F=u+i v$, where u and v are the real and imaginary parts of F. Suppose that there exist a point $\omega \in \mathbb{D} \backslash C(F, \mathbb{T})$ and a set S of countably infinitely many distinct values $z_{n} \in \mathbb{D}, n=1,2, \ldots$ such that $F\left(z_{n}\right)=\omega$ for all n; note that $\left|z_{n}\right| \leq \rho<1$ for some ρ since $\omega \notin C(F, \mathbb{T})$. Let $\omega=u_{0}+i v_{0}$ for $u_{0}, v_{0} \in \mathbb{R}$; then $u\left(z_{n}\right)=u_{0}$ and $v\left(z_{n}\right)=v_{0}$ for all n.

Consider the level set $u=u_{0}$; note that this is a set-union of mutually disjoint algebraic curves. Suppose that each of these curves carries a finite subset of S of the points z_{n}. Then these curves are countably infinite and may be denoted by $C_{n}, n=1,2, \ldots$. Label one of the points of $S \cap C_{n}$ by ζ_{n} for every n. Since $\left|\zeta_{n}\right| \leq \rho<1$ for all n, there exists a subsequence ($\zeta_{n_{k}}$) of $\left(\zeta_{n}\right)$ that converges to a point ζ. Evidently, $|\zeta| \leq \rho<1, F(\zeta)=\omega$ and ζ belongs to some level curve $C: u=u_{0}$. This yields a contradiction since near ζ the curve C fails to be isolated from the level curves C_{n}.

It follows that the level set $u=u_{0}$ is a disjoint union of finitely many algebraic curves of which one, say C, carries countably infinitely many points z_{n} that we denote by $\zeta_{1}, \zeta_{2}, \ldots$. Observe the following:
(1) C never encloses a Jordan domain in \mathbb{D} because of the maximum principle for harmonic functions;
(2) C is a union of analytic Jordan arcs γ that are mutually disjoint except possibly for a common critical point of u;
(3) Every γ clusters in \mathbb{T}.

Suppose that some arc γ accumulates on a non-degenerate subarc $J \subset \mathbb{T}$; denote the interior of J by J°. Let $\eta \in J^{\circ}$. Note that in every direction towards η from \mathbb{D} there exists a sequence of points in γ converging to η on which u attains the value u_{0}. This entails by a result of Schwarz [1, Theorem 23] that u is continuous and is identically u_{0} on J°.

Let g be the analytic completion on u. By the reflection principle, g is analytic on J°. Fix $\eta \in J^{\circ}$. It is immediate that $g([0, \eta])$ is an arc that meets the vertical line $L: u=u_{0}$ in the (u, v)-plane at countably infinitely many points that are away from infinity. Since both arcs $g([0, \eta])$ and L are analytic, $g([0, \eta]) \subset L$, see [4, Theorem 7.19, pp. 241-244], and equivalently $u=u_{0}$ on $[0, \eta]$. But η is an arbitrary point of J°; hence u is identically u_{0} on the open circular sector with vertex at the origin and subtending J° and consequently on \mathbb{D}, which yields a contradiction.

Thus every Jordan arc γ terminates in every direction at a point in \mathbb{T}. We contend that every γ is a crosscut of \mathbb{D}. For suppose otherwise, then some γ is a loop with a unique point $\eta \in \bar{\gamma} \cap \mathbb{T}$. If $G \subset \mathbb{D}$ is the bounded region enclosed by γ, then, because u is a bounded harmonic function, the limit

$$
\lim _{z \rightarrow \eta} u(z)=u_{0} \text { through values } z \in \bar{G} \text {. }
$$

We infer, by the maximum principle, that u is identically u_{0} in G and consequently in \mathbb{D}, which gives a contradiction. This proves our claim.

Suppose now that γ terminates at two distinct points $\alpha, \beta \in \mathbb{T}$, and let $\gamma^{\prime} \subset C$ be a crosscut of \mathbb{D} similar to γ. It is immediate that γ^{\prime} can not terminate at both α, β. In fact, γ^{\prime} can neither terminate at α nor at β. For suppose γ^{\prime} terminates at α; then, since C is connected, there exists a
continuum that meets both γ and γ^{\prime}. But then $K \cup \gamma \cup \gamma^{\prime}$ bounds a Jordan subdomain K of \mathbb{D}, which gives a contradiction.

It follows at once that $\bar{\gamma}$ and $\overline{\gamma^{\prime}}$ are either disjoint or cross at a singleton in \mathbb{D}; namely a critical point of u. Thus \bar{C} is a tree whose vertices are the critical points of u and the terminal points of the arcs γ. We show that this tree is finite. Suppose otherwise, then the crosscuts γ comprising C are countably infinite, and consequently the same are the endpoints of C. The latter points subdivide \mathbb{T} into countably infinitely many subarcs λ. Let λ_{1} and λ_{2} be two of these arcs that share a common terminal point ν, and let G_{1} and G_{2} be the Jordan domains bounded by $\bar{C} \cup \lambda_{1}$ and $\bar{C} \cup \lambda_{2}$ respectively. Note that G_{1} and G_{2} have a common boundary arc, denoted by $\delta \subset C$, with an endpoint at ν. Evidently, $g(\delta)$ is a line segment of the vertical line $L: u=u_{0}$. Note that g, like u, has no critical points in the interior of δ since g and u share these points, and that $u(z) \neq u_{0}$ and $u\left(z^{\prime}\right) \neq u_{0}$ for all $z \in G_{1}$ and $z \in G_{2}$ or else $C \cap\left(G_{1} \cup G_{2}\right)$ is nonempty.

It follows that $g\left(G_{1}\right)$ and $g\left(G_{2}\right)$ lie on different sides of L. But by the hypotheses on $f, u-u_{0}$ cannot change the sign more than N times. This implies at once that the number of $\operatorname{arcs} \lambda$ is at most $2 N$; thus the number of crosscuts γ comprising C is at most N.

We conclude that some crosscut γ, denoted by Γ, contains infinitely countably many points ζ_{n}. We may assume without loss of generality that $\zeta_{n} \in \Gamma$ for all $n=1,2, \ldots$.

On the other hand, by undergoing the same discussion on v instead of u we conclude that there exists a crosscut Γ^{\prime} that is contained in the level set $v=v\left(z_{0}\right)$ and contains infinitely countably many of the points $\zeta_{n} \in \Gamma, n=$ $1,2, \ldots$. Since every $\left|\zeta_{n}\right| \leq \rho<1 n=1,2, \ldots$ and the arcs Γ and Γ^{\prime} are analytic, Γ and Γ^{\prime} coincide.

Suppose now that $\xi \in \mathbb{T}$ is a terminal point of Γ (or Γ^{\prime}). Then

$$
u(z) \rightarrow u_{0} \quad \text { for } \quad z \in \Gamma \quad z \rightarrow \xi ;
$$

hence $u_{0} \in C(u, \xi)$. By the same token we conclude that $v_{0} \in C(v, \xi)$. Therefore, $\omega \in C(F, \mathbb{T})$ and we have a contradiction to our original assumption. This completes the proof of Theorem 1.

References

[1] Ahlfors, L., Complex Analysis, Third Edition, McGraw-Hill, New York, 1979.
[2] Bshouty, D., Hengartner, W., Lyzzaik, A. and Weitsman, A., Valency of harmonic mappings onto bounded convex domains, Comput. Methods Funct. Theory 1 (2001), 479-499.
[3] Duren, P., Harmonic Mappings in the Plane, Cambridge University Press, Cambridge, 2004.
[4] Markushevich, A. I., Theory of functions of a complex variable. vol. III, English edition translated and edited by Richard A. Silverman, Prentice-Hall Inc., N. J., 1967.

Daoud Bshouty
Department of Mathematics
Technion
Haifa
Israel
e-mail: daoud@tx.technion.ac.il

Abdallah Lyzzaik
Department of Mathematics
American University of Beirut
Beirut
Lebanon
e-mail: lyzzaik@aub.edu.lb

Received August 24, 2011

[^0]: 2000 Mathematics Subject Classification. Primary 26C10; Secondary 30C15.
 Key words and phrases. Harmonic mapping, cluster set.

