Review

HEALTHY AND PATHOLOGICAL CHANGES OF MYOMETRIUM: PREGNANT MYOMETRIUM, UTERINE FIBROIDS AND LEIOMYOSARCOMA

Pasquapina Ciarmela^{1*}, Soriful Islam¹, Pasquale Lamanna², Andrea Tranquilli³, Mario Castellucci¹

¹Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, Ancona, Italy. ²Obstetrics and Gynaecology Unit, Profili Hospital, Fabriano, Italy ³Woman's Health Sciences Department, Polytechnic University of Marche, Ancona, Italy

RESUMEN

El miometrio, la pared muscular del útero, puede modificar su misma masa y las propiedades celulares en el embarazo y también en los tumores como el leiomioma y el leiomiosarcoma. El leiomioma, dicho también fibroma, es un tumor benigno del útero y se considera como una de las causas más frecuentes de infertilità en el período reproductivo femenino. El leiomiosarcoma, en cambio, es un tumor maligno y agresivo de la musculatura lisa uterina. La presente revisión discute las características generales del leiomioma y el leiomiosarcoma y los relativos tratamientos clínicos actualmente usados y además describe las características del miometrio normal en el embarazo.

Palabras claves: miometrio gravídico, leiomioma, leiomiosarcoma

ABSTRACT

The myometrium, the muscular wall of the uterus, can modify its mass and cellular properties in pregnancy as well as in tumor conditions such as leiomyoma and leiomyosarcoma. Leiomyomas, also known as fibroids, are benign tumors of the uterus, considered to be one of the most frequent causes of infertility in reproductive years of women. Leiomyosarcomas in turn, are rare aggressive malignant uterine smooth-muscle tumors. The present review is discussing the general features of leiomyoma and leiomyosarcoma with their current treatments and also discussing the characteristics of normal pregnant myometrium and compare with leiomyoma.

Kew words: Pregnant myometrium, leiomyoma, leiomyosarcoma

INTRODUCTION

Uterus is a muscular organ representing one of the major female reproductive sex organs providing a suitable environment for embryos during reproductive event. The *uterus* is made up of three different layers such as *endometrium*, *myometrium* and *perimetrium* (Fig. 1). The *endometrium* is the innermost layer of the uterus which has many simple tubular glands which, secretion create a special environment in the uterus that is conducive for development of the embryo.

^{*} Correspondence to: **Pasquapina Ciarmela, Ph.D,** Department of Experimental and Clinical Medicine, Faculty of Medicine, Polytechnic University of Marche, via Tronto 10/a, 60020 Ancona, Italy. p.ciarmela@univpm.it

Received: 26 January, 2012. Revised: 27 February, 2012. Accepted: 5 March, 2012.

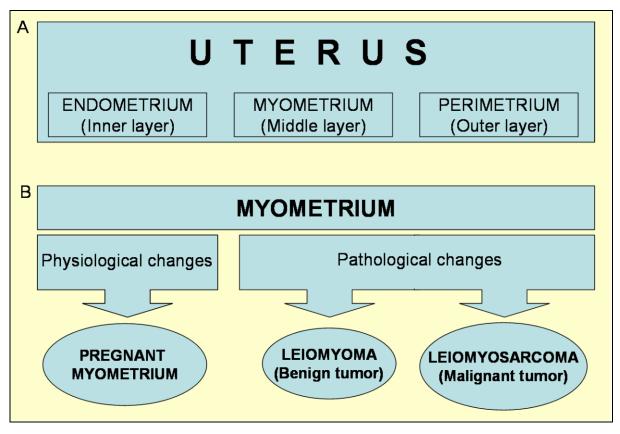


Figure 1: A. Different layer of uterus. B. Possible pathological and physiological changes occurring in myometrium.

There are several pathological conditions of endometrium such as adenomyosis (Tamai et al., 2005), endometriosis (Kennedy et al., 2005), endometrial cancer (Amant et al., 2005) and Asherman's symdrome (Yu et al., 2008). The perimetrium is the outermost layer of the uterus which has function of support. Myometrium is the middle layer of the uterus which is mostly pomposed of uterine smooth muscle cells. Its main function is to induce uterine contractions during labor. The myometrium undergoes significant changes in size and cellular properties specific physiological and pathological in conditions. The myometrium mass undergoes moderate changes during each reproductive cycle (Burroughs et al., 2000) and dramatic changes throughout pregnancy (Johansson, 1984; Shynlova et al., 2006) and menopause (Wu et al., 2000). Myometrial mass and cellular morphology are also modified in tumoral such as conditions leiomyosarcoma and leiomyoma (Matsuo et al., 1999; Walker and Stewart, 2005). Leiomyosarcoma is a relatively rare malignant tumor of uterine smooth muscle. On the other hand, uterine leiomyomas are

frequent benign tumors of *uterus* originating from myometrial tissue and have significant complications rate on women health in reproductive stage such as abnormal uterine bleeding, anemia and infertility. Despite the high prevalence and significant complications of these tumors on women's health, the etiology is incompletely understood. Consequently, therapeutic options are still limited.

PREGNANT MYOMETRIUM

The uterine mass growth during pregnancy represents one of the most remarkable events in reproduction, with massive increase in both size and number of myometrial smooth muscle cells, to allow the growing *fetus* to have the necessary support. During pregnancy, the *myometrium* mass undergoes changes in cellular phenotype, characterized by an early proliferative phase, an intermediate phase of cellular hypertrophy, and a final contractile/labour phase (Shynlova et al., 2009).

Studies on contractile properties of uterine *myometrium* revealed different behaviour of muscle cells of upper and lower segment of uterine wall during gestation (Lye et al., 1998). Current opinion suggests functional regionalization of the pregnant *uterus* occurs with the lower segment displaying a contractile phenotype throughout gestation changing to a relaxatory phenotype at labor to allow passage of the fetal head, whereas the upper segment has a relaxatory phenotype throughout most of gestation to accommodate the growing *fetus* and adopts a contractile phenotype for expulsion at labor (Lye et al., 1998; Myatt and Lye, 2004).

The reported studies on differential contractile characteristics suggest a topographic distribution in the different muscle layers of the myometrium (Myatt and Lye, 2004).

LEIOMYOMA

Uterine leiomyoma (also referred to as myoma, fibroids, leiomyomata, and fibromyoma) are benign (non-cancerous) tumors originating from the smooth muscle cells of the *myometrium* of the *uterus*. Uterine leiomyomas are found in 20-40% of women during their reproductive age (Wallach and Vlahos, 2004; Ciarmela et al., 2011). Fibroids may be symptomatic or asymptomatic. The severity of symptoms typically depends on size, number of myomas, and tumor location.

Symptoms: The common symptoms associated with uterine leiomyoma are irregular and excessive bleeding, very heavy and prolonged menstrual periods, often cause of anaemia, pain in the back of the legs, pelvic pain or pressure, bowel and bladder dysfunctions, pressure sensation in the lower abdomen, pain during sexual intercourse, infertility and recurrent abortion, an enlarged abdomen which may be mistaken for weight gain or pregnancy (Walker and Stewart, 2005; Marsh and Bulun, 2006; Evans and Brunsell, 2007). These tumors tend to grow rapidly during pregnancy and can therefore cause obstructed labour leading to fetal malpresentation and fetal anomalies that often require a Caesarean section; as well as postpartum haemorrhage secondary to uterine atony (Walker and Stewart, 2005).

Classification (*locations*): According to the location, leiomyomas are classified as subserosal, intramural and submucosal (Krysiewicz, 1992; Murase et al., 1999; Ahmadi et al., 2008).

Subserosal: These fibroids develop on the outer part of the uterus, just under the covering of the outside of the uterus and continue to grow outward. Subserosal fibroids may also grow on a stalk and referred to as "pedunculated subserosal fibroid". These typically do not affect a woman's menstrual flow but can cause pain due to their size and pressure on other organs.

Intramural: This is the most common type of fibroids. These fibroids develop completely within the muscular wall of the *uterus*, which makes the uterus feel larger than normal. Symptoms associated with intramural fibroids are heavy menstrual flow, pelvic pain, back pain, frequent urination, and pressure.

Submucosal: Submucosal fibroid is the least common, but most often accounts for symptoms. A submucosal fibroid develops just under the lining of the uterine cavity. Some of these fibroids grow on a stalk. These are referred to as "pedunculated submucosal fibroid". These are the fibroids that have the most effect on heavy menstrual bleeding and the ones that can cause problems with infertility and miscarriage (Krysiewicz, 1992; Murase et al., 1999; Ahmadi et al., 2008).

Classification (histological types): Uterine leiomyomas present with different histological types such as usual leiomyoma, cellular leiomyomas, symplastic (bizarre) leiomyoma, haemorrhagic cellular (apoplectic) leiomyoma, lipoleiomyomas, vascular leiomyomas, leiomyoma with haematopoietic elements, myxoid leiomyomas, epithelioid leiomyomas, clear cell and granular cell leiomyomas, intravenous leiomyomatosis, benign metastasizing leiomyoma, perinodular hydropic leiomyoma, multinodular hydropic leiomyoma and cotyledonoid dissecting leiomyoma (Dobashi et al., 1999; Hock et al., 2000; Abramson et al., 2001; Avritscher et al., 2001; Ceyhan et al., 2002; Kim et al., 2002; Kondi-Pafiti et al., 2006; Miettinen and Fetsch, 2006; Toledo and Oliva, 2008; Taran et al., 2010).

Treatments: Currently no available medicines are perfect for the management of uterine fibroids. Hysterectomy is the definitive treatment for women with symptomatic uterine fibroids (Farquhar and Steiner, 2002; Edwards et al., 2007). But main drawbacks of this surgical option is loss of fertility. Other disadvantages is that after surgery it takes long time to recover with significant complications such as hemorrhage, bowel or bladder injury, infection and pain (Brölmann and Huirne, 2008). Myomectomy via laparotomy, hysteroscopy, or laparoscopy is another surgical option to remove uterine fibroids in symptomatic women who wish to preserve their fertility or otherwise desire to keep their uterus (Frishman and Jurema, 2005).

Unfortunately, myomectomy is associated with significant morbidity including haemorrhage, adhesion formation, leiomyoma recurrence, blood transfusion, bowel injury and rarely hysterectomy (Olufowobi et al., 2004). Other treatments of leiomyoma include myolysis/cryomyolysis, MRIguided focused ultrasound surgery, Uterine artery embolization, Laparoscopic uterine artery occlusion, Doppler-guided uterine artery occlusion, and medical therapy (Evans and Brunsell, 2007; Brölmann and Huirne, 2008). Gonadotrophin-releasing hormone agonist

(GnRHa) is effective medical treatment for shrinking the fibroid size up to 50% of their initial volume and temporary control of bleeding. This type of treatment is restricted to a 3- to 6-month interval, but when treatment stops, usually fibroids came back their pretreatment size. In addition, side effects include menopausal symptoms and bone loss with long term use (Matta et al., 1989; Lethaby et al., 2002; Wallach and Vlahos, 2004; Rackow and Arici, 2006: Sankaran and Manyonda, 2008). Levenorgestrel intrauterine systems (LNG-IUS) can also reduce bleeding association with leiomyomas (Starczewski and Iwanicki, 2000; Wildemeersch and Schacht, 2002; Soysal and Soysal, 2005; Sayed et al., 2010). Currently, several other strategies are under investigation such as GnRHa with add-back therapy (with either progestagen, tibolone, combined oestrogen and progestagen, or raloxifene), GnRH antagonists (abarelix, cetrorelix and ganirelix), oestrogen selective receptor modulators antiprogestins (raloxifene), (tamoxifen and mifepristone), selective progesterone receptor modulator (asoprisnil, CDB-2914, CDB-4124, CP8863 and CP8947) aromatase inhibitors (anastrozole), cabergoline, danazol and gestrinone (Brölmann and Huirne, 2008; Lethaby and Vollenhoven, 2008; Luo et al., 2010; Catherino et al., 2010).

PREGNANT MYOMETRIUM AND UTERINE FIBROIDS: COMMON CHARACTERISTICS

Pregnant myometrium and uterine fibroids are both characterized by extraordinary myometrial growth rate, apposition of extracellular matrix and changes in physiological attribute (i.e. contraction). Leiomyomas share many characteristics with the parturient *myometrium*, including increased production of extra-cellular matrix components, the expression of receptors for peptide and steroid hormones and the expression of the gap junction protein connexin 43. The latter is required for cell-cell communication and the synchronous contractions at labor. However, postpartum unlike normal myometrium. leiomyomas fail to regress via apoptosis and undergo normal dedifferentiation (Andersen et al., 1993; Andersen and Barbieri, 1995; Walker Stewart, 2005). Leiomyomas and have characteristics of the well-differentiated uterine smooth muscle cells of pregnancy as evidenced by the fact that these tumor cells resemble myometrial cells of pregnancy more closely than they resemble typical myometrial cells of a nongravid uterus (Andersen et al., 1993; Andersen and Barbieri, 1995; Cesen-Cummings et al., 2003). Leiomyoma and pregnant myometrium both present dysregulated patterns of cellular differentiation and gene expression. In general, the major differences as compared to normal non-pregnant myometrium are found for estrogen regulated genes including those encoding structural proteins (i.e. collagens) (Andersen and Barbieri, 1995; Shynlova et al., 2009).

LEIOMYOSARCOMA

Uterine leiomyosarcoma is a rare aggressive malignant uterine smooth-muscle tumors, comprising about 1% of all uterine malignancies and 25~36% of uterine sarcomas (Echt et al., 1990; Emoto et al., 1999).

Symptoms: The most common symptoms are abdominal pain (35%), abnormal vaginal bleeding (53%) or palpable abdominal mass (14%) (Wu et al., 2008).

Classification: Most leiomyosarcomas have typical histologic features, and variants such as epithelioid leiomyosarcoma, differentiated leiomyosarcoma, leiomvosarcoma. myxoid intravenous leiomyosarcomatosis, osteoclast-like giant cells in smooth-muscle tumours. leiomyosarcoma with a clear cell component, leiomyosarcoma with liposarcomatous differentiation (Mentzel and Fletcher, 1994; Coard and Fletcher, 2002; Miettinen and Fetsch, 2006; Toledo and Oliva, 2008).

Treatments: The principle treatment of uterine leiomyosarcoma is surgical excision such as simple hysterectomy and bilateral salpingo-oophporectomy, however, surgical staging

appears to be less important due to rather frequent hematogenous spread (Mayerhofer et al., 1999; Nam, 2011). In postmenopausal women, bilateral salpingo-oophorectomy is recommended (Nam, 2011). Radiotherapy may be useful in controlling local recurrences and chemotherapy with doxorubicin or docetaxel/ gemcitabine is now used for advanced or recurrent disease, with response rates ranging from 27% to 36% (Hensley et al., 2008; Hensley et al., 2009). Aromatase inhibitor could be used for the management of uterine leiomyosarcoma (Hardman et al., 2007; O'Cearbhaill et al., 2010).

CONCLUSIONS

The myometrium is the muscular wall of the uterus which has important functional activities during reproductive cycle, pregnancy and menopause. Myometrium has two important pathological conditions such as leiomyoma and leiomyosarcoma. In this review we summarize the clinical anatomy information regarding leiomyoma, leiomyosarcoma and normal pregnant myometrium.

ACKNOWLEDGMENTS

We gratefully acknowledge the generous support of Fondazione Cassa di Risparmio di Fabriano e Cupramontana.

REFERENCES

- Abramson S, Gilkeson RC, Goldstein JD, Woodard PK, Eisenberg R, Abramson N. 2001. Benign metastasizing leiomyoma: clinical, imaging, and pathologic correlation. AJR Am J Roentgenol 176: 1409-13.
- Ahmadi F, Zafarani F, Niknejadi M, Vosough A. 2008. Uterine Leiomyoma: Hysterosalpingographic Appearances. International Journal of Fertility and Sterility 1: 137-144.
- Amant F, Moerman P, Neven P, Timmerman D, Van Limbergen E, Vergote I. 2005. Endometrial cancer. The Lancet 366: 491-505.
- Andersen J, Barbieri RL. 1995. Abnormal gene expression in uterine leiomyomas. J Soc Gynecol Investig 2: 663-72.
- Andersen J, Grine E, Eng CL, Zhao K, Barbieri RL, Chumas JC, Brink PR. 1993. Expression of

connexin-43 in human myometrium and leiomyoma. Am J Obstet Gynecol 169: 1266-76.

- Avritscher R, Iyer RB, Ro J, Whitman G. 2001. Lipoleiomyoma of the uterus. AJR Am J Roentgenol 177: 856.
- Brölmann H, Huirne J. 2008. Current Treatment Options and Emerging Strategies for Fibroid Management. The Internet Journal of Gynecology and Obstetrics 10 (1).
- Burroughs KD, Fuchs-Young R, Davis B, Walker CL. 2000. Altered hormonal responsiveness of proliferation and apoptosis during myometrial maturation and the development of uterine leiomyomas in the rat. Biol Reprod 63: 1322-30.
- Catherino WH, Malik M, Driggers P, Chappel S, Segars J, Davis J. 2010. Novel, orally active selective progesterone receptor modulator CP8947 inhibits leiomyoma cell proliferation without adversely affecting endometrium or myometrium. J Steroid Biochem Mol Biol 122: 279-86.
- Cesen-Cummings K, Houston KD, Copland JA, Moorman VJ, Walker CL, Davis BJ. 2003. Uterine leiomyomas express myometrial contractile-associated proteins involved in pregnancy-related hormone signaling. J Soc Gynecol Investig 10: 11-20.
- Ceyhan K, Simsir C, Dolen I, Calyskan E, Umudum H. 2002. Multinodular hydropic leiomyoma of the uterus with perinodular hydropic degeneration and extrauterine extension. Pathol Int 52: 540-3.
- *Ciarmela P, Islam MS, Reis FM, Gray PC, Bloise E, Petraglia F, Vale W, Castellucci M.* 2011. Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications. Hum Reprod Update 17: 772-90.
- *Coard KC, Fletcher HM.* 2002. Leiomyosarcoma of the uterus with a florid intravascular component ("intravenous leiomyosarcomatosis"). Int J Gynecol Pathol 21: 182-5.
- Dobashi Y, Iwabuchi K, Nakahata J, Yanagimoto K, Kameya T. 1999. Combined clear and granular cell leiomyoma of soft tissue: evidence of transformation to a histiocytic phenotype. Histopathology 34: 526-31.
- Echt G, Jepson J, Steel J, Langholz B, Luxton G, Hernandez W, Astrahan M, Petrovich Z. 1990. Treatment of uterine sarcomas. Cancer 66: 35-39.
- Edwards RD, Moss JG, Lumsden MA, Wu O, Murray LS, Twaddle S, Murray GD. 2007. Uterine-artery embolization versus surgery for symptomatic uterine fibroids. The New England journal of medicine 356: 360.

- *Emoto M, Iwasaki H, Ishiguro M, Kikuchi M, Horiuchi S, Saito T, Tsukamoto N, Kawarabayashi T.* 1999. Angiogenesis in carcinosarcomas of the uterus: differences in the microvessel density and expression of vascular endothelial growth factor between the epithelial and mesenchymal elements. Hum Pathol 30: 1232-41.
- *Evans P, Brunsell S.* 2007. Uterine fibroid tumors: diagnosis and treatment. Am Fam Physician 75: 1503-8.
- *Farquhar CM, Steiner CA.* 2002. Hysterectomy rates in the United States 1990-1997. Obstet Gynecol 99: 229-34.
- *Frishman GN, Jurema MW.* 2005. Myomas and myomectomy. J Minim Invasive Gynecol 12: 443-56.
- Hardman MP, Roman JJ, Burnett AF, Santin AD. 2007. Metastatic uterine leiomyosarcoma regression using an aromatase inhibitor. Obstetrics & Gynecology 110: 518.
- Hensley ML, Blessing JA, Mannel R, Rose PG. 2008. Fixed-dose rate gemcitabine plus docetaxel as first-line therapy for metastatic uterine leiomyosarcoma: a Gynecologic Oncology Group phase II trial. Gynecologic oncology 109: 329-334.
- Hensley ML, Ishill N, Soslow R, Larkin J, Abu-Rustum N, Sabbatini P, Konner J, Tew W, Spriggs D, Aghajanian CA. 2009. Adjuvant gemcitabine plus docetaxel for completely resected stages I-IV high grade uterine leiomyosarcoma: Results of a prospective study. Gynecologic oncology 112: 563-567.
- Hock YL, Goswami P, Rollason TP. 2000. Mitotically active haemorrhagic cellular (apoplectic) leiomyoma. Eur J Gynaecol Oncol 21: 28-9.
- Johansson B. 1984. Different types of smooth muscle hypertrophy. Hypertension 6: III64-8.
- Kennedy S, Bergqvist A, Chapron C, D'Hooghe T, Dunselman G, Greb R, Hummelshoj L, Prentice A, Saridogan E. 2005. ESHRE guideline for the diagnosis and treatment of endometriosis. Human reproduction 20: 2698-2704
- *Kim MJ, Park YK, Cho JH*. 2002. Cotyledonoid dissecting leiomyoma of the uterus: a case report and review of the literature. J Korean Med Sci 17: 840-4.
- Kondi-Pafiti A, Grapsa D, Kairi-Vassilatou E, Kontogianni-Katsarou K, Koliopoulos C, Botsis D. 2006. Mesenchymal tumors of the uterine corpus with heterologous and hematopoietic components: a study of ten cases and review of the literature. Eur J Gynaecol Oncol 27: 73-7.

- *Krysiewicz* S. 1992. Infertility in women: diagnostic evaluation with hysterosalpingography and other imaging techniques. American Journal of Roentgenology 159: 253-61.
- Lethaby A, Vollenhoven B, Sowter M. 2002. Efficacy of preoperative gonadotrophin hormone releasing analogues for women with uterine fibroids undergoing hysterectomy or myomectomy: a systematic review. BJOG: An International Journal of Obstetrics & Gynaecology 109: 1097-1108.
- Lethaby AE, Vollenhoven BJ. 2008. An evidencebased approach to hormonal therapies for premenopausal women with fibroids. Best Practice & Research Clinical Obstetrics & Gynaecology 22: 307-31.
- Luo X, Yin P, Coon VJ, Cheng YH, Wiehle RD, Bulun SE. 2010. The selective progesterone receptor modulator CDB4124 inhibits proliferation and induces apoptosis in uterine leiomyoma cells. Fertil Steril 93: 2668-73.
- *Lye SJ, Bernstein P, Oskamp M.* 1998. Is the attenuation of beta-adrenergic agonist efficacy during labor caused by elevated prostaglandin E levels? Am J Obstet Gynecol 179: 1168-74.
- *Marsh EE, Bulun SE.* 2006. Steroid hormones and leiomyomas. Obstet Gynecol Clin North Am 33: 59-67.
- Matsuo H, Kurachi O, Shimomura Y, Samoto T, Maruo T. 1999. Molecular bases for the actions of ovarian sex steroids in the regulation of proliferation and apoptosis of human uterine leiomyoma. Oncology 57: 49-58.
- Matta WHM, Shaw RW, Nye M. 1989. Long term follow-up of patients with uterine fibroids after treatment with the LHRH agonist buserelin. BJOG: An International Journal of Obstetrics & Gynaecology 96: 200-6.
- Mayerhofer K, Obermair A, Windbichler G, Petru E, Kaider A, Hefler L, Czerwenka K, Leodolter S, Kainz C. 1999. Leiomyosarcoma of the uterus: a clinicopathologic multicenter study of 71 cases. Gynecologic oncology 74: 196-201.
- *Mentzel T, Fletcher CD.* 1994. Malignant mesenchymomas of soft tissue associated with numerous osteoclast-like giant cells mimicking the so-called giant cell variant of "malignant fibrous histiocytoma". Virchows Arch 424: 539-45.
- *Miettinen M, Fetsch JF*. 2006. Evaluation of biological potential of smooth muscle tumours. Histopathology 48: 97-105.
- Murase E, Siegelman ES, Outwater EK, Perez-Jaffe LA, Tureck RW. 1999. Uterine Leiomyomas: Histopathologic Features, MR Imaging Findings, Differential Diagnosis, and Treatment1. Radiographics 19: 1179-97.

- *Myatt L, Lye SJ.* 2004. Expression, localization and function of prostaglandin receptors in myometrium. Prostaglandins Leukot Essent Fatty Acids 70: 137-48.
- Nam JH. 2011. Surgical treatment of uterine sarcoma. Best Practice & Research Clinical Obstetrics & Gynaecology.
- O'Cearbhaill R, Zhou Q, Iasonos A, Soslow RA, Leitao MM, Aghajanian C, Hensley ML. 2010. Treatment of advanced uterine leiomyosarcoma with aromatase inhibitors. Gynecologic oncology 116: 424-9.
- Olufowobi O, Sharif K, Papaionnou S, Neelakantan D, Mohammed H, Afnan M. 2004. Are the anticipated benefits of myomectomy achieved in women of reproductive age? A 5year review of the results at a UK tertiary hospital. J Obstet Gynaecol 24: 434-40.
- *Rackow BW, Arici A.* 2006. Options for medical treatment of myomas. Obstetrics and gynecology clinics of North America 33: 97-113.
- Sankaran S, Manyonda IT. 2008. Medical management of fibroids. Best Pract Res Clin Obstet Gynaecol 22: 655-76.
- Sayed GH, Zakherah MS, El-Nashar SA, Shaaban MM. 2010. A randomized clinical trial of a levonorgestrel-releasing intrauterine system and a low-dose combined oral contraceptive for fibroid-related menorrhagia. Int J Gynecol Obstet 112: 126-30.
- Shynlova O, Tsui P, Jaffer S, Lye SJ. 2009. Integration of endocrine and mechanical signals in the regulation of myometrial functions during pregnancy and labour. Eur J Obstet Gynecol Reprod Biol 144 Suppl 1: S2-10.
- Shynlova O, Oldenhof A, Dorogin A, Xu Q, Mu J, Nashman N, Lye SJ. 2006. Myometrial apoptosis: activation of the caspase cascade in the pregnant rat myometrium at midgestation. Biol Reprod 74: 839-49.
- *Soysal S, Soysal ME.* 2005. The efficacy of levonorgestrel-releasing intrauterine device in selected cases of myoma-related menorrhagia:

a prospective controlled trial. Gynecologic and obstetric investigation 59: 29-35.

- *Starczewski A, Iwanicki M.* 2000. [Intrauterine therapy with levonorgestrel releasing IUD of women with hypermenorrhea secondary to uterine fibroids]. Ginekologia polska 71: 1221.
- *Tamai K, Togashi K, Ito T, Morisawa N, Fujiwara T, Koyama T.* 2005. MR Imaging Findings of Adenomyosis: Correlation with Histopathologic Features and Diagnostic Pitfalls1. Radiographics 25: 21-40.
- *Taran FA, Weaver AL, Gostout BS, Stewart EA.* 2010. Understanding cellular leiomyomas: a case-control study. Am J Obstet Gynecol 203: 109 e1-6.
- *Toledo G, Oliva E*. 2008. Smooth muscle tumors of the uterus: a practical approach. Arch Pathol Lab Med 132: 595-605.
- *Walker CL, Stewart EA.* 2005. Uterine fibroids: the elephant in the room. Science 308: 1589-92.
- *Wallach EE, Vlahos NF.* 2004. Uterine myomas: an overview of development, clinical features, and management. Obstet Gynecol 104: 393-406.
- Wildemeersch D, Schacht E. 2002. The effect on menstrual blood loss in women with uterine fibroids of a novel. European Journal of Obstetrics & Gynecology and Reproductive Biology 102: 74-9.
- Wu TI, Hsu KH, Huang HJ, Hsueh S, Chou HH, Tsai CS, Ho KC, Chao A, Chang TC, Lai CH. 2008. Prognostic factors and adjuvant therapy in uterine carcinosarcoma. European journal of gynaecological oncology 29: 483-8
- Wu X, Blanck A, Olovsson M, Moller B, Favini R, Lindblom B. 2000. Apoptosis, cellular proliferation and expression of p53 in human uterine leiomyomas and myometrium during the menstrual cycle and after menopause. Acta Obstet Gynecol Scand 79: 397-404.
- Yu D, Wong YM, Cheong Y, Xia E, Li TC. 2008. Asherman syndrome-one century later. Fertility and sterility 89: 759-79.