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Abstract 

Dynamic scheduling increases the expressive power of logic programming 
languages, but also introduces some overhead. In this paper we present 
two classes of program transformations designed to reduce this additional 
overhead, while preserving the operational semantics of the original pro­
grams, modulo ordering of literals woken at the same time. The first class of 
transformations simplifies the delay conditions while the second class moves 
delayed literals later in the rule body. Application of the program trans­
formations can be automated using information provided by compile-time 
analysis. We provide experimental results obtained from an implementation 
of the proposed techniques using the CIAO prototype compiler. Our results 
show that the techniques can lead to substantial performance improvement. 

1 Introduction 

Most "second-generation" logic programming languages provide a flexible 
scheduling in which computation generally proceeds left-to-right, but some 
calls are dynamically "delayed" until their arguments are sufficiently in­
stantiated. This general form of scheduling, often referred to as dynamic 
scheduling, increases the expressive power of (constraint) logic programs. 
Unfortunately, it also has a significant time and space overhead. 

The main objective of this paper is to develop and evaluate high-level 
optimization techniques for reducing this additional overhead, while pre­
serving the semantics of the original program. We introduce two different 
classes of transformations. The first class simplifies the delay conditions 
associated with a particular literal. The second class of transformations re­
orders a delayed literal closer to the point where it wakes up. Both classes 
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of transformations essentially preserve the search space and hence the oper­
ational behavior of the original program. The only caveat is that reordering 
may change the execution order of delayed literals that are woken at exactly 
the same time. Note that this order is system dependent and it is rare for 
programmers to rely on a particular ordering. 

Using the CIAO prototype compiler we have built a tool which automat­
ically optimizes logic programs with delay using the above transformations. 
Initial experiments suggest that simplification of delay conditions is widely 
applicable and can significantly speed up execution, while reordering is less 
applicable but can also lead to substantial performance improvements. 

The promise of optimization of delay conditions using high-level program 
transformation was already illustrated in [7]. However, optimization was 
performed by hand and the particular transformation rules used were not 
detailed. Other related work has concentrated on detecting non-suspension 
(e.g., [6]) or is restricted to the case of some particular delayed conditions 
(e.g., [1]) usually found in functional languages, and the transformations 
applied do not guarantee that there will be no performance loss. In [4] 
program segments in which no suspension occurs are identified in order to 
perform low-level compiler optimizations. However, no suspension behaviour 
optimization or reordering is performed. 

2 Programs with Delay 

A constraint is essentially a conjunction of predefined predicates, such as 
term equations or inequalities over the reals, whose arguments are con­
structed using predefined functions, such as real addition. We let 3w9 be 
constraint 9 restricted to the variables W. 

In dynamically scheduled languages the execution of some literal can be 
delayed until a particular delay condition holds. A delay condition, Cond, 
takes a constraint and returns true or false indicating if evaluation can pro­
ceed or should be delayed. Typical primitive delay conditions are ground(X) 
which holds iff X is constrained to a unique value, and nonvar(X) which 
holds iff X is constrained to be a non-variable term. Delay conditions can be 
combined to allow more complex delay behaviour. They can be conjoined, 
written (Condi, Cond^), or disjoined, written (Cond\; Cond^)• 

We require a delay condition Cond to satisfy three properties. First, it 
must be downwards closed;, for any two constraints 9, 9' s.t. 9' —> 9, if Cond 
holds for 9, then it also holds for 9'. Second, it should not take variable 
names into account: for any variable renaming p and any constraint 9, if 
Cond holds for 9 then p(Cond) holds for p(9). Third, it should only take 
into account variables in the condition: for any constraint 9, Cond holds 
for 9 iff Cond holds for ^vars(Cond)® where vars returns the set of variables 
occurring in a syntactic object. 

A delaying literal is of the form delay Juntil(Cond,L), where Cond is a 



delay condition and L is a literal. Evaluation of L will be delayed until Cond 
holds for the current constraint store. Delay information can be predicate-
based and literal-based. In the former, the delaying literal appears as a dec­
laration before the definition of the predicate, each instance of the predicate 
inheriting the delay condition. In the latter, the delaying literal appears in 
the body of some clause only affecting the literal L. It is straightforward 
to use predicate-based declarations to imitate literal-based delay, and vice 
versa. For simplicity, we will restrict ourselves to literal-based delay. 

An atom has the form p(ti, ...,tn) where p is a predicate symbol and the 
ti are terms. A literal is either an atom, a delaying literal or a primitive 
constraint. A goal is a finite, non-empty sequence of literals. A rule is of 
the form H-.-B where H, the head, is an atom with distinct variables as 
arguments and B, the body, is a possibly empty finite sequence of literals. A 
constraint logic program, or program, is a finite set of rules. The definition 
of an atom A in program P , defnp(A), is the set of variable renamings of 
rules in P such that each renaming has A as a head and has distinct new 
local variables. 

When formalizing applicability conditions for our transformations we will 
be interested in annotated programs, in which information about run-time 
behaviour is collected at program points in the initial query and program. 
Program points occur between literals and at the start and end of all bodies 
of all rules of the program. For instance, the rule A:-L\,...,Ln has the 
program points A:-@Li(T),..., QLn@. 

We are assuming that all rule heads are normalized, since this simplifies 
the examples and corresponds to what is done in the analyzer. This is not 
restrictive since programs can always be normalized. However, so as to 
preserve the behaviour of the original program under dynamic scheduling, 
the normalization process must ensure that head unifications are performed 
simultaneously, that is, grouped together in one primitive constraint. See 
for instance, the definition of edge in the p a t h program of Example 2.1. 

The operational semantics of a program is in terms of its "derivations" 
which are sequences of reductions between "states". A state (A I 9 I D) 
consists of the current sequence of active literals A, the current constraint 
6, and the current sequence of delayed literals D. Our definition makes use 
of the parametric function awoken(D,0), which returns a sequence of the 
delayed literals (stripped of their delaying condition) in D that are awoken 
by constraint 6. The order of the literals returned by awoken is system 
dependent1 . A state (L :: A I 9 I D) can be reduced as follows: 

1. If L is a primitive constraint and 6 A L is satisfiable, it is reduced to 
(D' :: A I 9 A L I D \ D') where D' = awoken{D, 9 A L). 

2. If L is an atom, it is reduced to (B :: A I 9 I D) for some rule (L: -B) 
in the definition of L. 

1 However, it is a brave programmer indeed who makes use of such a system dependent 
feature when programming. 



3. If L is the delaying literal del ay -until (CL,LL): 

• If CL holds for 0, it is reduced to {LL::A161 D). 

• Otherwise, it is reduced to (A I 9 I D :: L). 

where :: denotes concatenation of sequences and we assume for simplicity 
that the underlying constraint solver is complete. A derivation from state 
S for program P is a sequence of states So => Si =>...=> Sn where So is S 
and there is a reduction from each Si to Sj+i. A derivation from a query Q 
for program P is a derivation from the state (Q I true I nil) for P , where nil 
is the empty sequence. 

The observational behavior of a program is given by its "answers" to 
queries. A finite derivation from a state S for program P is finished if the 
last state in the derivation cannot be reduced. A finished derivation from a 
state S is successful if the last state has form (nil I 9 I D). The constraint 
D A 3 m r s ( S ) U m r s (£ , )0 is an answer to S. 

E x a m p l e 2.1 The following program finds a path between two nodes in a 
directed graph. 

p a t h ( X . Y ) : - X=Y. 
p a t h ( X . Y ) : -

delay_until(ground(Z),edge(X,Z)), 

delay_until(ground(Y),path(Z,Y)). 
edge(X,Y):- head(X,Y)=head(a,b). 
edge(X,Y):- head(X,Y)=head(b,c). 

3 Simplification of Delay Conditions 

Delay conditions may be evaluated each time a variable is touched. Simpli­
fying such conditions can then lead to significant performance improvement. 
Essentially the behaviour of a delay condition is only relevant during the 
lifetime of the delaying literal. Hence, we can replace one delay condition 
by another (more efficient) condition if they are equivalent for all constraint 
stores that occur during the lifetime of the delaying literal. 

The lifetime of a delaying literal can be broken into three stages: initial 
states when it is first selected, waking states when it is woken, and delaying 
states when it sits in the collection of delayed literals. Consider the delaying 
literal DL = delay ..until (Cond,L). The initial context for DL, written 
I(DL), is the set of constraints 6 occurring in states of the form (DL :: 
A I 9 I D). The delaying context for DL, denoted D(DL), is the set of 
constraints 9 occurring in states of the form (A I 9 I D), where DL G D. 
Finally, the waking context for DL, W(DL), is the set of constraints 9 such 
that either there is a derivation of the form •••=>• (DL :: A I 9' I D) =^ (L :: 
A\ 9 \ D) =^ • • •, or there is a derivation of the form • • • => (A' \ 6' \ D') => 
(A I 9 I D) =$•••• where DL G D' \D. We can restrict the constraints in the 
initial, delaying and waking contexts to the variables in DL since this does 
not affect the behaviour of the delay condition. 



E x a m p l e 3.1 Consider the successful derivation for query ? - Y = b , 
delay _unt i l (ground (Y) ,path(X,Y)) and the program of Example 2.1. The 
initial, waking and delaying contexts for each of the delaying literals are: 

DL 
(a) delay_until(ground(Y) , path(X,Y)) 
(b) delay_until(ground(Z) ,edge(X,Z)) 
(c) delay_until(ground(Y),path(Z,Y)) 

I(DL) W(DL) D(DL) 
{Y = b} {Y = b} {} 
{true} {Z = b} {true} 
{Y = b} {Y = b} {} 

Given the contexts for a delaying literal, simplification can be then per­
formed by applying the following general rule: 

SIMP-EQUIV: Replace a condition C, by a more efficient one C", when they 
are equivalent in all contexts. If V 9 G (I(DL) U W(DL) U D(DL)), C holds 
for 6 iff C holds for 9, then we can rewrite C with C", denoted by C =^> C. 

The following are special cases of this general rule which are particularly 
amenable to automatic application. 

C O N T E X T - I N D E P : The following rewriting rules of Boolean algebra can al­
ways be exhaustively applied to obtain simpler delay conditions: 

1. (Cond,true) =^> Cond 3. (Cond;true) =^> true 
2. (true, Cond) =^> Cond 4. (true; Cond) =^> true 
5. (Cond, false) =^> false 7. (Cond; false) =^> Cond 
6. (false, Cond) =^> false 8. (false; Cond) =^> Cond 

Their application will often be enabled by rules 9 and 10 below. 

SIMP-TRUE: From downwards closure, delay conditions satisfied in all the 
initial contexts, are also satisfied in all delaying and waking contexts. Thus: 

9. If W G I(DL) Cond holds for 6 : Cond => true. 

Finally, we can replace de lay . u n t i l {true, L) by L. Delaying literals 
(a) and (c) in Example 3.1 can be simplified in this way. 

SIMP-FALSE: From downwards closure, if a delay condition is false in all 
waking contexts, it has been false throughout the life of a delaying literal: 

10. If W G W(DL) Cond does not hold for 9 : Cond = • false. 

E x a m p l e 3.2 Consider the following program, append3; which appends 
three lists together and the query ?- append3(X,Y,Z, [ a , b , c ] ) . 

append3(X,Y,Z,T):- delay_unti l((ground(X);ground(U)), append(X,Y,U)), 
delay_unti l((ground(U);ground(T)) , append(U,Z,T)). 

append(X,Y,Z):-head(X,Y,Z) = head([] ,V,V) . 
append(X,Y,Z):-head(X,Y,Z) = head([A|XI] ,Y1,[A|Zl]) , 

delay_unt i l ( (ground(Xl) ;ground(Zl)) ,append(Xl,Yl ,Z1)) . 

All calls to append wake up with the first two arguments free and the last 
one ground. Hence, we can use rule 10 followed by rule 8 to remove the 



first primitive delay condition in all delaying literals. Also, the second de­
laying literal in append3 as well as the delaying literal in the recursive rule 
of append, never delay since their third argument is ground in all initial 
contexts. Thus, using rule 9 the delaying condition can be removed. The 
resulting program (with program point annotations to be used later) is: 

append3(X,Y,Z,T):- @ delay_unti l(ground(U), append(X,Y,U)), 
© append(U,Z,T). © 

append(X,Y,Z):- © head(X,Y,Z)=head([],V,V).© 
append(X,Y,Z):- ® head(X,Y,Z)=head([A|XI],Y1,[A|Zl]), 

© append(Xl,Yl,Zl) .@ 

SIMP-CHOOSE: Sometimes, when the delay condition contains disjunctions 
it is possible to use just part of the condition, discarding the rest: 

1 1 . if V6eW(DL) Cond holds for 9 : (Cond;Cond') = • Cond 
12. if yeeW(DL) Cond holds for 9 : (Cond'; Cond) = • Cond 

If both rule 11 and 12 can be applied to a disjunction (Cond; Cond'), effi­
ciency considerations should be used to choose the best simplification. 

SIMP-PRIM: Replace a primitive condition Cp by a more efficient one C'p, if 
they are equivalent in all contexts: 

13 . If V 9 G (W(DL)UD(DL)) Cp holds for 9 iff C'p holds for 9 : Cp =>• C'p. 

For example, consider the p a t h program. In each of the delaying and wak­
ing contexts for the delaying literal (b) the variable Z is either free or 
ground. Hence we could replace the primitive wakeup condition ground(Z) 
by nonva r (Z) , which is cheaper, obtaining the same behaviour. 

T h e o r e m 3.3 Let DL = delayjuntil(Cand, L) be a delaying literal and 
Cond' be a delay condition obtained from Cond by the application of the 
rewriting rules 1,... ,13. Then: 

V6> G (I(DL) U D(DL) U W(DL)) Cond holds for 9 iff Cond' holds for 9 

Thus, application of the rewriting rules will not change the operational 
behaviour of a program. 

4 Reordering Delaying Literals 

If a delaying literal is known to always delay at some point, it seems worth­
while to try to move it to a later point. In particular, we would like to move 
the delaying literal to a point where it must wake, thus removing the delay 
conditions. For this paper we restrict ourselves to the (seemingly simple) 
case of moving delaying literals in the query or rule body in which they 
appear. 



E x a m p l e 4.1 Unfortunately, one has to be careful when moving delaying 
literals to later points, since this does not always preserve the search space 
of the program. Consider the following example program and the query 
?- de lay_unt i l (ground(Y) ,p (Y) ) , q(Y,Z). 

q(Y,Z) : - Y=2, long_computation(Z) . 
q(Y,Z) : - Y=3, Z=5. 
p(Y) : - Y=3. 

Since Y is initially free, de lay . u n t i l (ground(Y) ,p(Y)) delays. Hence, we 
might consider moving it after the call to q. / / we do, we can remove the 
delaying condition obtaining the reordered query ? - q ( Y , Z ) , p(Y). In the 
original query p(Y) is awoken before the long_computation occurs, it im­
mediately fails and the second rule for q is tried. This succeeds waking p (Y), 
which also succeeds. In the reordered query long_computation will be exe­
cuted before p(Y) wakes up. In the extreme case, it may not terminate. 

Intuitively, reordering can only be performed if in the original program 
the execution of q(Y,Z) is guaranteed to have finished by the time p(Y) is 
executed. 

E x a m p l e 4.2 Consider the simplified program of Example 3.2 and the query 
?- append3(X,Y ,Z , [a ,b , c ] ) . 

The literal DL = d e l a y - u n t i l (ground (U) , append (X,Y,U)) can be re­
ordered after append(U,Z,T) ; even though DL does not delay until the exe­
cution of append(U,Z,T) is finished. This is because DL only wakes up at 
program point ©, i.e. at the end of the execution of append(U,Z,T). Hence, 
DL cannot affect the execution of append(U,Z,T). 

We now formalize the transformation used in the above example. To 
reorder correctly we need to know at which points in the program a delaying 
literal can wake. We now define how to attach "wakeups" to program points. 
Consider the derivation: 

(L :: A I 6 I D) => (D' :: A I 6 A L I D \ D') ^ * {A I & I D") 

where L is a primitive constraint, 6 f\L is satisfiable and D' = awoken(D, 6 f\ 
L). In this derivation the delaying literals in D' have awoken at the pro­
gram point immediately after the constraint L. However, the set of delaying 
literals that wakeup in between L and the execution of A is D \ D". This 
is, in general, a superset of D', since the execution of D' may generate new 
constraints which may in turn wake up other delaying literals in D \ D'. For 
the above derivation, we then consider the set D \ D" as waking up at the 
program point after L. We define the annotation of a program P for query 
Q as the mapping from the program points of P to the union, for all possible 
derivations of Q, of the sets of waking up literals at that program point. 



E x a m p l e 4.3 In the program and query of Example 3.2, the wakeups at­
tached to program point © are {delay-until(ground(U),append(X,Y,U))}. 
The rest of program points have no associated wakeups. 

E x a m p l e 4.4 To see why we have to add all the delaying literals that wake 
up in between L and A consider the following program with query ? - g(X, Y). 

g(X,Y) : - © de lay_unt i l (ground(X) , p ( X , Y , Z ) ) , ® 
de lay_unt i l (ground(Y) , q ( Y ) ) , © r ( X ) . @ 

r(X) : - © X = 1 . ® 
p(X,Y,Z) : - © Y = 1 , ® long_computation(Z) . © 
q(Y) : - © Y = 2 . ® 

The annotated program points with associated wakeups are: 

© {delay-until (ground(X),p(X, Y, Z)), delay-until (ground(Y), q(Y))} 
® {delay-until (ground(Y),q(Y))}. 

If we had annotated © with the set of literals immediately awoken 
by X=l ; that is D', we would only obtain the first delaying literal, 
delay_unt i l (ground(X) , p(X,Y,Z)) . Thus, it would be hard to see that 
the second delaying literal wakes up within r (X) . 

Information about the program points at which a delaying literal can 
be awoken leads to a simple methodology for reordering a delaying literal. 
Before we detail the transformation we need to define at which program 
points a delayed literal can be awoken for reordering to be allowed. We first 
define the set of program points for a particular goal at which delayed literals 
may be awoken during the evaluation of the goal. The set of instantiating 
program points for a goal ®G@, denoted IPP(G), are: 

IPP(G) = < 

{©} if G is a constraint 
IPP(L) if G = delay-until(Cond, L) 

U G : -Bi€defnv{G) IPP(Bi) i f G i s a n a t o m 

IPP(L'){JIPP(G') ifG = L',G' 

Now we define the subset NIPP(G) of instantiating program points 
which are non-final for a goal @G@. A delayed literal will not be allowed 
to move across a goal if it wakes up at a non-final point: 

NIPP(G) = < 

0 if G is a constraint 
NIPP(L) if G = delay-until{Cond, L) 

U G : -Bi€defnp{G) NIPP{Bi) if G is an atom 
IPP(L'){JNIPP(G') ifG = L',G' 

The set of final instantiating program points for goal ®G@, denoted 
FIPP(G), is simply IPP(G) - NIPP(G). For example the instantiating 



program points for @append(U, Z,T).© in Example 4.2 are {©, © }. The 
final instantiating program points for @append(U, Z,T).© are { © }. 

We can now define two transformation rules which provide sufficient con­
ditions for reordering a delaying literal across the body in which it appears, 
while preserving the semantics of the program. Consider a rule of the form 
H : —Li,..., Li,DL, Z/j+2, • • • ,Lj, L j + i , . . . Ln where DL is a delaying lit­
eral. 

DOESNT-WAKE: We can reorder DL until immediately before Lj+\ if DL 
is definitely delayed before Lj+2 and it does not wake at any instantiating 
program point in the conjunction of literals I/ j+2, . . . ,Lj. 

FINAL-WAKE: We can reorder DL until immediately after Lj if DL is defi­
nitely delayed before Lj+2 and it does not wake at any non-final (instantiat­
ing) program point in the conjunction of literals I/j+2, • • •, Lj. In addition if 
DL wakes up at a final program point together with another delaying literal 
DL', then DL wakes only at final program points of the literal DL'. 

E x a m p l e 4.5 Consider the program and query of Example 4-4- The 
literal de lay_unt i l (ground(Y) , q(Y)) only wakes up at © which is 
a final program point for r ( X ) . However, reordering such literals 
would result in long_computation(Z) being performed. This is why 
an additional condition is introduced in the F INAL-WAKE rule. As 
delay_unt i l (ground(X) , p (X,Y,Z)) also wakes at program point © and 
delay_unt i l (ground(Y) , q(Y)) wakes up at © which is a non-final pro­
gram point within p (X,Y,Z) ; F INAL-WAKE is not applicable. We can how­
ever move de lay_unt i l (ground(X) , p(X,Y,Z)) until after the conjunction 
delay_unt i l (ground(Y) , q ( Y ) ) , r (X) using the F INAL-WAKE rule, since 
it only wakes at ©, a final program point of this conjunction. At this point it 
is guaranteed to wake, the delay condition can be removed, and the optimized 
rule is g ( X , Y ) : - de lay_unt i l (ground(Y) , q ( Y ) ) , r ( X ) , p(X,Y,Z) . 

If we now annotate this program for the query ? - g(X,Y) ; the new an­
notations would show that d e l a y - u n t i l (ground(Y) , q(Y)) could be moved 
after r ( X ) ; using the D O E S N T - W A K E rule. 

The reason why DOESNT-WAKE is correct is that since DL is not awoken 
during evaluation of I/j+2, •••, Lj it cannot affect the evaluation, and so can 
be added later. The reason why F INAL-WAKE is correct is that since DL 
is the last literal evaluated before returning from Lj, we can equivalently 
evaluate it as the first literal after returning from Lj. 

Unfortunately, there is a subtle problem with this reasoning. The prob­
lem is that both reordering rules may change the order in which literals are 
delayed, and so may affect the system dependent order in which literal are 
returned by awoken. This is only a problem in the case when more than 
one literal is awoken at the same time. 



E x a m p l e 4.6 Consider the following program and query: ? - g(T) 

g ( T ) : - delay_unt i l (ground(T) ,p(T)) , 
delay_until(ground(T) ,q(T)) , T = 1. (a) 

p ( T ) : - T = 2. 
q ( T ) : - long_computation(Z). 

At @ both delaying literals wake. If awoken returns p ( T ) : : q ( T ) ; the 
query quickly fails. There is no annotation in the body of q(T) which in­
cludes the delaying literal for p (T), hence F INAL-WAKE is applicable for the 
literal. Hence, g(T) : - de lay_unt i l (ground(T) , q ( T ) ) , T =1, p(T) . is 
a correct reordering. But for this program the long_computation is executed. 

However, note that behaviour of the transformed program is equivalent to 
that of the original program if awoken had returned q(T) : :p(T) instead. 

Therefore we have the somewhat weaker correctness result for the re­
ordering rules, that the transformed program behaves equivalently to the 
original program for some choice of the awoken function. However, as noted 
earlier it is rare for programmers to rely on the system dependent ordering 
of awoken to prune the program search space. 

5 Automating the Optimization 

We have built a prototype automatic transformation tool which works as 
follows. First, the original program is analyzed, and the program annotated 
with the inferred information is given to the optimizer. Using this informa­
tion, the optimizer first simplifies delay conditions as much as possible and 
then reorders those literals which are sure to delay. To reduce problems of 
the kind presented in Example 4.6, whenever more than one literal is re­
ordered to the same program point and no information about waking order 
is available, the optimizer keeps the relative order in which the reordered 
literals appeared in the original program. In addition, reordering may en­
able further optimizations, as the initial contexts in the new positions will 
in general be more instantiated than in the original ones. Hence, another 
analysis-optimization iteration could be performed. In some cases the cur­
rent implementation can perform further optimizations without re-analysis. 
Other optimizations traditionally used with fixed-scheduling constraint logic 
programs can also be performed after transformation. Currently we perform 
dead code elimination and simplification of built-ins. 

Different analysis frameworks have been recently developed for logic pro­
grams with dynamic scheduling (e.g., [7, 4, 3]). In our prototype we use the 
approach of [3]. However, simplification can be performed with any analy­
sis framework which, for a given analysis domain, approximates the initial, 
delaying and waking contexts for each delaying literal. For reordering, the 
analyzer needs to provide a description of the set of waking up literals at 



each program point. For the traditional optimizations, the analyzer needs 
to also provide a description of the constraints at each program point. 

The experimental evaluation uses the information provided by three dif­
ferent abstract domains. The Def domain2 [2] approximates groundness in­
formation. Thus, it can be used to infer the satisfiability of ground and 
nonvar tests. The ShFr domain [10] approximates not only groundness but 
also sharing and freeness information. Freeness information allows us to 
prove the unsatisnability of ground and nonvar tests. The Aeq domain3 com­
plements ShFr with more complex modes like non-freeness, non-groundness 
and linearity. Non-freeness and non-groundness allow more accurate infor­
mation about the behaviour of nonvar and ground tests. Linearity improves 
sharing and therefore the propagation of the other properties. 

6 Experimental Results 

Four different sets of benchmarks have been used in our experiments. The 
first set corresponds to those used in [7, 3]. They are essentially new, re­
versible versions of some standard symbolic programs. The original pro­
grams used static scheduling and could only be run in one mode. In the 
new versions dynamic scheduling has been added to allow them to run both 
forwards and backwards. This first set includes append3 (concatenates 3 
lists), n r ev (reverses a list in a naive way), permute (computes all permuta­
tions of a list), and q s o r t (the quick-sort algorithm). The second set corre­
sponds to standard mathematical benchmarks in which dynamic scheduling 
has been added to arithmetic constraints so as to allow them to run both 
forwards and backwards. This set includes f ac (factorial), f i b (Fibonacci), 
and mortgage. The programs in the third set are programs with dynamic 
scheduling resulting from the automatic translation of concurrent logic pro­
grams by the Qd-Janus system [5]. Dynamic scheduling is used to emulate 
the concurrency present in the original programs. This set includes nand (a 
nand-gate circuit designer, written by E. Tick) and t r a n s p (matrix trans-
poser, written by V. Saraswat). The Qd-Janus compiler already performs 
analysis and optimization of its input programs and aims to produce code 
with little redundant concurrency. The Prolog code it produces is competi­
tive in performance with compilers specifically designed for concurrent logic 
programs. The last set are NU-Prolog programs written by L. Naish which 
exploit rather complex dynamic scheduling for different purposes, and which 
have been translated into SICStus. This set includes nqueen (coroutining 
n-queens), s l o w s o r t (a generate and test algorithm), i n t e r p l (simple in­
terpreter for coroutining programs), and termcompare (term comparison). 

The following table provides information regarding the complexity 

2 This domain is a variant of the Prop domain [8]. 
3This domain is a modification of that of Mulkers et al [9]. We have added more 

complex modes but do not make full use of the equation modelling component. 



of the benchmarks used in our experiments. CI is the number of 
clauses analyzed, Lit is the number of literals, and DL is the number 
of delaying literals. Since programs have been normalized the (usually 
high) number of term equations is not 
counted in Lit. DL includes all calls to 
predicates affected by a delay declaration. 
For the first two sets of benchmarks we 
will consider two different versions of each 
program: in the first one ground condi­
tions are used in the delaying literals (_gr 
suffix), while in the second one nonvar 
conditions are used (_nv suffix). Note, 
however, that in n rev and q s o r t non­
var conditions do not always guarantee 
termination. Thus a mix of ground and 
nonvar conditions is used in the "_nv" 
version of these benchmarks. Different rows associated to the same bench­
marks indicate different queries. For the first two sets of benchmarks they 
perform forward and backward execution. 

The programs have been implemented using b l o c k (SICStus predicate-
based delay) declarations whenever possible, i.e., when only nonvar tests 
were involved. This is because they are the most efficient delay declarations 
in SICStus. Otherwise, when/2 (SICStus literal-based delay) declarations 
were used. The only exceptions are the programs in the third class where 
the compiler produces literal-based f r e e z e declarations. 

Our first set of experiments evaluates the cost of the automatic transfor­
mation using our prototype compiler described in the previous section. The 
following table shows the analysis times in seconds for each of the abstract 
domains described in the previous section as well as the time in milliseconds 
required to optimize the programs using the information inferred. The times 
are for code run under SICStus Prolog version 3.0 on a 55MHz SPARCsta-
tion 10 with 64 MBytes of memory. An oo indicates that the analyzer ran out 
of memory because too many calling patterns were produced in the analysis. 

Analysis times are generally acceptable, except for three programs: 
qsor t_nv, t r a n s p , and termcompare. Their times are slow because of their 
complex dynamic behaviour. However, it should be remembered that the 
analysis of logic programs with dynamic scheduling is still in its infancy and 
that we are using a prototype analyzer. As this technology improves, analy­
sis time should markedly decrease. Transformation times are very low - only 
when the amount of analysis information is enormous does the time reach 
more than one second. 

Our second experiment evaluates the effectiveness of the optimizations. 
The following table shows the execution time in milliseconds for the origi­
nal programs, and the speed-up obtained by the automatically transformed 
programs using simplification and then both simplification and reordering. 

Benchmark 

append3 
nrev 
permute 
qsort 

fac 
fib 
mortgage 

nand 
transp 

nqueen 
slowsort 
interpl 
termcompare 

CI 

3 
4 
4 
7 

8 
6 
8 

90 
112 

11 
9 

11 
27 

Lit 

3 
3 
3 
9 

27 
17 
29 

157 
180 

15 
8 

10 
37 

DL 

3 
3 
3 
9 

3 
4 
5 

13 
20 

11 
8 
3 

26 



Benchmark 

append3_gr 

append3_nv 

nrev_gr 

nrev_nv 

permute_gr 

permute_nv 

qsort_gr 

qsort_nv 

fac_gr 

fac_nv 

fib_gr 

fib_nv 

mortgage_gr 

mortgage_nv 

nand 
transp 

nqueen 

slowsort 

interpl 
termcompare 

Analysis (sec) 
Def 

0.0 
0.1 
0.0 
0.1 
0.0 
0.1 
0.0 
0.4 
0.0 
0.3 
0.0 
0.4 
0.0 
3.2 
0.0 

23.9 

0.0 
0.3 
0.0 
0.3 
0.0 
0.8 
0.0 
0.6 
0.0 
0.7 
0.0 
0.5 

0.5 
168.5 

0.0 
2.6 
0.0 
0.3 
0.9 
0.2 
7.8 

ShFr 

0.0 
0.1 
0.0 
0.2 
0.0 
0.1 
0.0 
0.1 
0.0 
0.5 
0.0 
2.8 
0.1 
2.8 
0.1 

1517.3 

0.0 
0.2 
0.0 
0.2 
0.0 
0.6 
0.0 
0.6 
0.0 
0.3 
0.0 
0.3 

0.7 
1621.5 

0.1 
3.7 
0.0 
0.5 
3.0 
0.3 

19.1 

Aeq 

0.0 
0.2 
0.0 
0.4 
0.0 
0.2 
0.0 
0.2 
0.0 
0.2 
0.0 
5.8 
0.1 

12.3 
0.1 
oo 

0.0 
0.4 
0.0 
0.4 
0.1 
0.9 
0.1 
0.9 
0.1 
0.5 
0.1 
0.5 

1.6 
oo 

0.1 
7.5 
0.1 
1.2 
2.0 
0.3 

158.3 

Transformation (msec) 
Def 

7 
13 
7 

20 
10 
17 
10 
30 
10 
17 
7 

20 
13 
47 
10 

243 

20 
40 
23 
37 
23 
43 
13 
43 
27 
77 
33 
57 

297 
1087 

30 
77 
23 
33 
37 
70 

233 

ShFr 

7 
20 
10 
20 
10 
17 
10 
10 
10 
23 
10 
57 
13 
63 
20 

2730 

30 
37 
23 
40 
23 
40 
20 
40 
33 
50 
30 
50 

303 
1620 

40 
113 
33 
43 
50 
90 

380 

Aeq 

10 
10 
7 

20 
10 
20 
10 
17 
7 

13 
10 
50 
10 
93 
13 
oo 

23 
57 
27 
50 
27 
70 
30 
67 
40 
67 
40 
70 

373 
oo 

40 
140 
23 
43 
37 
83 

1393 

We do this for each abstract domain. Since the information provided by 
Def never allows reordering, its column has been eliminated from Simp. + 
Reord. A blank entry in the Simplification column indicates that no delay 
condition was optimized, and a blank entry in the Simp. + Reord column 
indicates no reordering was performed and hence the speedup is the same 
as for simplification alone. A f indicates that no delaying literals remain in 
the transformed program. 

Our results demonstrate that both simplification and reordering can lead 
to an order of magnitude performance improvement, and that they give 
reasonable speedups in most benchmarks. The benchmarks nand, transp, 
i n t e r p l and termcompare which did not exhibit any measurable speedup 



Benchmark 

append3_gr 

append3_nv 

nrev_gr 

nrev_nv 

permute_gr 

permute_nv 

qsort_gr 

qsort_nv 

fac_gr 

fac_nv 

fib_gr 

fib_nv 

mortgage_gr 

mortgage_nv 

nand 
transp 

nqueen 

slowsort 

interpl 
termcompare 

Orig 

339430 
7438 

816 
3682 

342220 
5864 
3682 
1086 

28982 
1452 
2574 

836 
5908 
2138 

818 
1320 

3268 
15322 
2100 
1830 

35784 
37848 

668 
722 

4202 
5138 

646 
330 

464 
5609 

27218 
4684 
1466 
3388 
3160 
4418 
4456 

S implificat ion 
Def 

439.68 f 
1.49 
1.06 f 
1.03 

1368.88 f 
5.55 
1.03 

11.13 f 
2.66 
1.00 f 
1.02 

173.76 f 
2.31 

27.27 f 

1.54 f 
2.62 
1.00 f 
1.07 

61.06 f 
1.65 

1.11 t 
1.06 
6.55 f 
1.66 
1.03 f 
1.25 

1.00 
1.00 

8.14 
1.39 
8.52 
1.00 
1.00 
1.14 
1.00 

ShFr 

439.68 f 
1.49 
1.06 f 
1.03 

1368.88 f 
5.55 
1.03 
1.03 

11.13 f 
2.66 
1.00 f 
1.02 

173.76 f 
2.31 

27.27 f 
1.00 

1.54 f 
2.62 
1.00 f 
1.07 

61.06 f 
1.65 

1.11 t 
1.06 
6.59 f 
2.52 
1.03 f 
1.57 

1.00 
1.00 

8.14 
1.39 
8.52 
1.00 
1.00 
1.14 
1.00 

Aeq 

439.68 f 
1.49 
1.06 f 
1.03 

1368.88 f 
5.55 
1.03 
1.03 

11.13 f 
2.66 
1.00 f 
1.02 

173.76 f 
2.31 

27.27 f 
— 

1.54 f 
2.62 
1.00 f 
1.07 

61.06 f 
1.65 

1.11 t 
1.06 
6.59 f 
2.52 
1.03 f 
1.57 

1.00 
— 

8.14 
1.39 
8.52 
1.00 
1.00 
1.14 
1.00 

Simp. + Reord 
ShFr 

53.52 f 

3.44 f 

Aeq 

2.10 f 

68.19 f 

12.63 f 

5.46 f 

— 

53.52 f 

3.44 f 

— 

1.33 
1.08 

belong to the last two sets of benchmarks. It is perhaps not surprising that 
our optimizer found programs in these classes difficult to improve since they 
were either produced by a rather clever transformer which tries to avoid 
introducing delay where it is not needed or hand-crafted by an expert in 
dynamic scheduling. Unsurprisingly, the more sophisticated the analysis 
domain, the better the speed up. In particular the extra precision of Aeq is 
required to gain the most benefit from reordering. 

Our results are promising. They show that the transformation tech­
niques introduced in this paper can be automated and lead to significant 
performance improvement. This is important because dynamic scheduling 
looks set to become increasingly prevalent in (constraint) logic programming 



languages because of its importance in implementing constraint solvers and 
controlling search as well as for implementing concurrency. We noted that 
the effect of the transformation greatly depends on the implementation of 
the delay declarations, and therefore on the target language. In particular, 
since groundness is an expensive test its simplification gives great benefits. 
Lesser, although still significant benefits can be obtained for other delay con­
ditions. However this work is only a first step. Many other techniques for 
the automatic transformation of programs with dynamic scheduling remain 
to be investigated. 
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