Towards a Geographic Ontology Reference Model for Matching Purposes

Guillermo Nudelman Hess
Prof. Dr. Cirano Ioachpe
Prof.ssa. Dr. Silvana Castano
The need for a geographic ontology model
- Ontology matching context

The ontology model

Example

Conclusions and future directions
Introduction

- Ontologies used for many purposes
- For conventional ontologies, W3C standards are enough
 - OWL
 - RDF / RDFs
- Particularities of geographic information
 - Geometry
 - Location
 - Temporality
- However, conventional ontologies are not expressive enough
Introduction

- Need for a real spatio-temporal ontology
- Current geographic ontology efforts
 - GML in OWL
 - ISO 19109
 - Academical initiatives
Introduction

- Geographic matching context
 - Identify how much two elements information items (classes or data) are similar
 - Geographic information may come in different representations
 - Ontology is a mean of representing the information in a unique format
The ontology model

Ontology $O = \langle C, P, I, A \rangle$

- C is the set of concepts
- P is the set of properties
- I is the set of instances
- A is the set of axioms
The reference model

Context of a concept

- \(\text{ctx}(c) = <t(c), \{p(c)\}, \{x(c)\}> \)
 - \(t(c) \) is the concept identifier
 - \(p(c) \) is a property associated to the concept
 - \(x(c) \) is an axiom associated to the concept
The reference model

- Types of concepts
 - Domain concept (conventional) \rightarrow c
 - Geographic domain concept \rightarrow gc
 - Geometry concept \rightarrow geo
 - point, line, polygon
 - Time concept \rightarrow time
 - instant, period
The reference model

[Diagram showing a reference model with concepts such as Time, DomainConcept, Geometry, Instant, Period, GeographicDomainConcept, Metadata, Line, Point, Polygon, conventionalRelationship, spatialRelationship, and hasGeometry.]
The reference model

- **Property** \(p = <t(p), pd, \text{minCard}, \text{maxCard}> \)
 - **Data type** \(p = <t(p), dtp> \)
 - Attribute
 - Positional
 - **Object type** \(p = <t(p), gx, \text{minCard}, \text{maxCard}> \)
 - Conventional relationship: \(cr = (p \in P \mid gx : \neg gc) \)
 - Spatial relationship: \(sr = (p \in P \mid gx : gc) \)
 - Geometric relationship: \(ge = (p \in P \mid (gx:geo) \land \text{minCard} = 1) \)
 - Temporal relationship: \(tr = (p \in P \mid gx : time) \)
The reference model

- **Axioms**
 - Hierarchical relationships
 - Association between a concept and its instances
 - Restrictions over concepts
The reference model

- Instance $I = \langle t(c), t(i), VP, vMD \rangle$
 - $t(c)$ name of the concept being instantiated
 - $t(i)$ unique identifier of the instance
 - VP values of the properties associated to the concept
 - $vp = \langle t(p), val \rangle$
 - vMD value for the metadata
 - $vp = \langle t(mtd), val \rangle$
The reference model
The reference model

- Geographic region
 - Instances from a limited region
 - Covers all the instances from a set (MBR)
 - Use
 - Notion of region similarity
 - Accelerate the matching process
The reference model

- Metadata
 - Crucial for correct comparison
 - Coordinate reference system
 - Projection system
 - Scale
 - Acquisition / generation date
Example
Example
Conclusions

- Definition of a model for geographic matching purposes
 - Geographic, geometry and time concepts
 - Geographic instances
 - Geometric, temporal and spatial relationship properties
 - Constraints as ways of defining the ontology concepts
- Creation the Geographic Region notion
- What comes after
 - Development of a more sophisticated ontology based on the model
 - Reference ontology for the matching process
Thank you

Guillermo Nudelman Hess
hess@inf.ufrgs.br