Differential Privacy with Imperfect Randomness

Yevgeniy Dodis
New York University

Ilya Mironov
Microsoft Research

Adriana López-Alt
New York University

Salil Vadhan
Harvard University
Randomness in Cryptography

- Cryptographic algorithms require randomness.
 - Secret keys must have entropy
 - Many primitives must be randomized (Enc, Com, ZK, etc.)
- Common to assume perfect randomness is available
- But real-world randomness is imperfect.

```c
int getRandomNumber()
{
    return 4;  // chosen by fair dice roll.
    // guaranteed to be random.
}
```
Randomness in Cryptography

- Cryptographic algorithms require randomness.
 - Secret keys must have entropy
 - Many primitives must be randomized (Enc, Com, ZK, etc.)
- Common to assume perfect randomness is available
- But real-world randomness is imperfect.

Main Question: Can we base cryptography on (realistic) imperfect randomness?
Imperfect Sources

1. **Imperfect source** S: family of distributions R satisfying some property (i.e., entropy)
2. “Tolerate” imperfect source: have *one* scheme correctly working for *any* R in the source S

Main Question (Restated): What imperfect sources are enough for cryptography?
Extractable Sources

- Sources permitting (deterministic) extraction of nearly perfect randomness [vNeu, Eli’72, Blum’85 ...]
- Suffice for (almost) anything possible with perfect randomness
- **Bad news:** many sources are non-extractable 😞
Non-Extractable Sources

- **Obvious**: sources with no “entropy”
 - Clearly, cannot do crypto

- **What about “entropy” (weak) sources?**
 - Generally non-extractable [SV85,CG89] 😞
 - Simplest example: γ - Santha-Vazirani sources – $SV(\gamma)$
 - Produces bits b_1, b_2, \ldots, each having bias at most γ (possibly dependent on prior bits).

 \[
 \frac{1}{2} \cdot (1 - \gamma) \leq \Pr[b_i = 0 \mid b_1 b_2 \ldots b_{i-1}] \leq \frac{1}{2} \cdot (1 + \gamma)
 \]

- **Non-extractable**: for any $f: \{0,1\}^n \to \{0,1\}$, there exists a $SV(\gamma)$ distribution s.t. $f(SV(\gamma))$ has bias at least γ.
Randomness in Cryptography

Cryptography is Impossible

No Entropy (Deterministic)

Cryptography is Possible

Extractable Sources

General (Weak) Entropy Sources?

(Depends on Application)
BPP Simulation

Impossible

No Entropy (Deterministic)

Weak Sources

Extractable Sources

Possible

VV’85, SV’86, CG’88, Zuc’96, ACRT’99

Same good news for Crypto?
Many (but not all [DS02]) weak sources are sufficient for:

- **MACs** [MW’97, DKRS’06]
- **Signature Schemes** [DOPS’04] – under appropriate hardness assumptions.

Intuition: only require that it is hard to guess (“forge”) a long string, so having (min-)entropy suffices
Privacy/Secrecy (Enc, Com, ZK)

- **SV(γ)** not sufficient for:
 - Unconditionally-secure encryption [MP’90]
 - Computationally-secure encryption [DOPS’04]
 - Commitment, Zero-Knowledge, Secret-Sharing [DOPS’04]

- **[BD’07]**: If can generate k-bit SK from R, can extract k almost uniform bits from R.
 - **Traditional privacy requires** an extractable source.
Privacy/Secrecy (Enc, Com, ZK)

DOPS’04 Main Lemma: Let X be a “weak source”. If $f(X) \approx_c g(X)$, then $\Pr_{x \leftarrow U}[f(x) \neq g(x)] = \text{negl}(k)$

- We require adversary to have a negligible advantage in distinguishing (e.g. $\text{Enc}(0) \approx_c \text{Enc}(1)$)

- Can privacy/secrecy be based on weak (e.g., SV) sources if we (naturally) relax the security definition?
 - E.g. consider Differential Privacy
Differential Privacy [Dwork’06, DMNS’06]

- Database **D**: Array of rows.
 - Neighboring databases - \(D_1 \) \(D_2 \) differ in 1 entry.
- Queries \(f(D) \rightarrow Z \)
 - Low sensitivity queries – answer does not change by much on neighboring databases.

A mechanism **M** is \(\varepsilon \)-differentially private w.r.t. source **S** if for all neighboring databases \(D_1 \) \(D_2 \), all distributions \(R \in S \), and all possible outcomes \(z \):

\[
\frac{\Pr_{r \leftarrow R} [M(D_1, f; r) = z]}{\Pr_{r \leftarrow R} [M(D_2, f; r) = z]} \leq e^\varepsilon \approx 1 + \varepsilon
\]
Differential Privacy [Dwork’06, DMNS’06]

- Notice, ϵ cannot be negligible
 - Implies output of mechanism is negligibly close on any two different databases – not useful.
 - Hope to overcome impossibility result of DOPS’04.

A mechanism M is ϵ-differentially private w.r.t. source S if for all neighboring databases D_1 D_2, all distributions $R \in S$, and all possible outcomes z:

$$\frac{\Pr_{r \leftarrow R}[M(D_1,f;r) = z]}{\Pr_{r \leftarrow R}[M(D_2,f;r) = z]} \leq e^{\epsilon} \approx 1 + \epsilon$$
Utility

A mechanism M has ρ-utility w.r.t. source S if for all databases D and all distributions $R \in S$:

$$E_{r \leftarrow R} \left[|f(D) - M(D, f; r)| \right] \leq \rho$$

A mechanism M is ε-differentially private w.r.t. source S if for all neighboring databases D_1, D_2, all distributions $R \in S$, and all possible outcomes z:

$$\frac{\Pr_{r \leftarrow R}[M(D_1, f; r) = z]}{\Pr_{r \leftarrow R}[M(D_2, f; r) = z]} \leq e^\varepsilon \approx 1 + \varepsilon$$
Accurate and Private Mechanisms

Can we achieve a good **tradeoff** between privacy and utility?

Family of mechanisms is **accurate and private** w.r.t. source S if for all $\epsilon > 0$ there is M_ϵ that is ϵ-DP and has $g(\epsilon)$ utility w.r.t S, for some $g(.)$.
Additive-Noise Mechanisms (ANM)

\[M(D, f; r) = f(D) + X_\varepsilon(r) \]

- \([DN’03, DN’04, BDMN’05, DMNS’06, GRS’09, HT’10]\)
- E.g. Add \textbf{Laplacian} noise[DMNS’06]

\[M(D, f) = f(D) + \text{Lap}(1/\varepsilon) \]
\[M(D, f; r) = f(D) \pm \log(r)/\varepsilon \]

- \(\varepsilon\)-differentially private and has \(\Theta(1/\varepsilon)\)-utility w.r.t. \(U\)
- Hence, “non-trivial” w.r.t. \(U\)
Our Question

Are weak entropy sources sufficient to achieve “non-trivial” mechanisms?

- **Impossible**
 - No Entropy (Deterministic)

- **Possible**
 - γ-SV Sources
 - Extractable Sources

- **Negative** result
 - Additive-noise mechanisms cannot be “non-trivial” w.r.t. $SV(\gamma)$

- Most surprising, **positive** result
 - “Non-trivial” “SV-robust” mechanisms for low-sensitivity functions

- **Separation** between traditional and differential privacy
A General Lower Bound

First, a useful **Lemma**:

- Sets $T_1, T_2 \subset \{0,1\}^n$ s.t. $|T_1| \geq |T_2| > 0$
- Define
 $$\sigma = \frac{|T_2 \setminus T_1|}{|T_2|}$$
 Degree of disjointness
 - Disjoint: $\sigma = 1$
 - Contained: $\sigma = 0$

- There exists distribution $SV(\gamma)$ s.t.

 $$\frac{\Pr_{r \leftarrow SV(\gamma)}[r \in T_1]}{\Pr_{r \leftarrow SV(\gamma)}[r \in T_2]} \geq (1 + \gamma \sigma) \cdot \frac{|T_1|}{|T_2|} \geq 1 + \gamma \sigma$$

 Factor by which $SV(\gamma)$ can increase ratio.
A General Lower Bound

- Fix neighboring databases D_1, D_2, query f and outcome z
- Define $T_b = \{ r \mid M(D_b, f ; r) = z \}$
 (i.e., set of coins that make M output z on D_b)

$$\frac{\Pr_{r \leftarrow SV(\gamma)}[M(D_1, f ; r) = z]}{\Pr_{r \leftarrow SV(\gamma)}[M(D_2, f ; r) = z]} = \frac{\Pr_{r \leftarrow SV(\gamma)}[r \in T_1]}{\Pr_{r \leftarrow SV(\gamma)}[r \in T_2]} \geq (1 + \gamma \sigma)$$

By lemma

In additive-noise mechanisms:
- T_1, T_2 disjoint, so $\sigma = 1$
- Explains why cannot have ε-DP for $\varepsilon < \gamma$
A General Lower Bound

- Fix neighboring databases D_1, D_2, query f and outcome z
- Define $T_b = \{r \mid M(D_b, f; r) = z\}$
 (i.e., set of coins that make M output z on D_b)

\[
\frac{\Pr_{r \leftarrow SV(\gamma)}[M(D_1, f; r) = z]}{\Pr_{r \leftarrow SV(\gamma)}[M(D_2, f; r) = z]} = \frac{\Pr_{r \leftarrow SV(\gamma)}[r \in T_1]}{\Pr_{r \leftarrow SV(\gamma)}[r \in T_2]} \geq (1 + \gamma \sigma)
\]

By lemma

Conclusion:
- ϵ-DP w.r.t. $SV(\gamma)$ requires $\sigma \leq \epsilon/\gamma = O(\epsilon)$
- $T_1 \cap T_2$ must be “big” – a $1 - \epsilon$ fraction of T_2.
Consistent Sampling (Man’94, Hol’07, MMP+’10)

A mechanism M has **ε-consistent sampling** if for all queries $f \in F$, all neighboring databases D_1, D_2, and all possible outcomes z:

$$\frac{|T_1 \setminus T_2|}{|T_2|} \leq \varepsilon$$

Lemma: If M is ε-consistent, then M is ε-DP w.r.t. U

Proof:

$$\frac{\Pr_{r \leftarrow U_n}[M(D_1,f;r) = z]}{\Pr_{r \leftarrow U_n}[M(D_2,f;r) = z]} = \frac{\Pr_{r \leftarrow U_n}[r \in T_1]}{\Pr_{r \leftarrow U_n}[r \in T_2]} = \frac{|T_1|}{|T_2|} = \frac{|T_1 \cap T_2|}{|T_2|} + \frac{|T_1 \setminus T_2|}{|T_2|} \leq 1 + \varepsilon$$
A New Mechanism

\[M(D, f) = [f(D) + \text{Lap}(1/\varepsilon)]_{1/\varepsilon} \]

- Round outcome to nearest multiple of \(1/\varepsilon \)
 - Utility is conserved (asymptotically): still \(\Theta(1/\varepsilon) \)-utility
A New Mechanism

\[M(D,f) = [f(D) + \text{Lap}(1/\varepsilon)]_{1/\varepsilon} \]

- Round outcome to nearest multiple of \(1/\varepsilon\)
 - Utility is conserved (asymptotically): still \(\Theta(1/\varepsilon)\)-utility
A New Mechanism

\[M(D,f) = [f(D) + \text{Lap}(1/\varepsilon)]_{1/\varepsilon} \]

- Round outcome to nearest multiple of \(1/\varepsilon \)
 - Utility is conserved (asymptotically): still \(\Theta(1/\varepsilon) \)-utility
- Guarantees \(T_1, T_2 \) will intersect on a large fraction of coins, as required for \(\varepsilon \)-consistent sampling.
- **Overcomes our lower bound.**
A New Mechanism

\[M(D,f) = [f(D) + \text{Lap}(1/\varepsilon)]^{1/\varepsilon} \]

Can we implement it in a “SV-robust” manner?

- **Yes!** But **non-trivial**
 - Not every implementation is “SV-robust”
 - \(\varepsilon \)-consistent sampling is **necessary** but not **sufficient**

- Define **\(\varepsilon \)-SV-consistent sampling**
 - Natural definition, does not reference \(SV(\gamma) \)
 - **Sufficient** for “SV robustness”

- Use **arithmetic coding** to ensure SV-consistency
 - Need to be careful with **finite precision**
Differential Privacy – Our Results

- Differential privacy is**possible** with $SV(\gamma)$ sources.
- Separation between **traditional** (Enc/Com/ZK) and **differential** privacy.
Differential privacy is possible with $SV(\gamma)$ sources.

- Separation between traditional (Enc/Com/ZK) and differential privacy.

- Motivate consistent sampling as a design paradigm.
 - Useful applications in upcoming CCS paper [Mir’12].

Thank you!