
Real-Time Botnet Detection Using
Nonnegative Tucker Decomposition

2019/4/8-12
SAC2019

Hideaki Kanehara1,2 Yuma Murakami1 Jumpei Shimamura3

Takeshi Takahashi2 Daisuke Inoue2 Noboru Murata1,2
1: Waseda University  
2: National institute of information and communications technology
3: Clwit Inc.

!2

1. Background

2. Methodology

Factorization-based method

Real-time tensor factorization

Botnet detection using NTD

3. Experiment

Experimental setting

Result

• NTD visualization

• Comparison with the actual traffic

• Related incident

Outline

!3

1. Background

2. Methodology

Factorization-based method

Real-time tensor factorization

Botnet detection using NTD

3. Experiment

Experimental setting

Result

• NTD visualization

• Comparison with the actual traffic

• Related incident

Outline

!4Background | Darknet

early detection of cyber attacks is essential

botnet: a group of infected
devices that are remotely
controlled by attackers

 -> DDoS attacks are often performed by botnets

unused IP address space

but in reality, a lot of
malicious packets arrive

• a network scanning (for
spreading malware
infection)

tells us the malicious
trend of the wide area of
the Internet without
having to monitor the
overall hosts

!5Background | Darknet

darknet

early detection of cyber attacks is essential
 -> DDoS attacks are often performed by botnets

Timestamp Src IP Src port Dst port …

12:34:56 12.125.x.x 37721 25 …

12:34:56 252.156.x.x 52521 23 …

12:34:57 123.35.x.x 25162 8888 …

12:34:58 156.33.x.x 12732 3218 …

… … … …

An example of the darknet traffic

Background | Darknet !6

Cooperative behavior (botnet) detection
Purpose

packet->

An example of the darknet traffic

Background | Research purpose

Cooperative behavior (botnet) detection

!7

an activity of a host group
using almost the same port numbers
at almost the same time/frequency

Purpose

Timestamp Src IP Src port Dst port …

12:34:56 12.125.x.x 37721 25 …

12:34:56 252.156.x.x 52521 23 …

12:34:57 123.35.x.x 25162 8888 …

12:34:58 156.33.x.x 12732 3218 …

… … … …

An example of the darknet traffic

Background | Research purpose

Cooperative behavior (botnet) detection

!8

an activity of a host group
using specific port numbers

at almost the same time/frequency

Purpose

Timestamp Src IP Src port Dst port …

12:34:56 12.125.x.x 37721 25 …

12:34:56 252.156.x.x 52521 23 …

12:34:57 123.35.x.x 25162 8888 …

12:34:58 156.33.x.x 12732 3218 …

… … … …
Also, we want to know …
 - Where are they from (src IP)
 - What is their aim (dst port)

!9

1. Background

2. Methodology

Factorization-based method

Real-time tensor factorization

Botnet detection using NTD

3. Experiment

Experimental setting

Result

• NTD visualization

• Comparison with the actual traffic

• Related incident

Outline

!10Overview of our proposed method

Timestamp Src IP Dst Port

12:34:56 12.125.x.x 25
12:34:56 252.156.x.x 23

… … …

30min

Data input stage

Feature extraction stage

Group activity detection stage

‣ Preprocessing darknet
traffic

‣ Extracting frequent patterns
‣ Real-time Tensor factorization
• LRA-NTD
• FSTD

‣ thresholding to raise alerts
‣ If group activities exist,
then trying to identify
their src IPs and dst ports

30 × 216 × 216

Timestamp Src IP Dst port

12:34:56 12.125.x.x 25

12:34:56 252.156.x.x 23

12:34:57 123.35.x.x 8888

12:34:58 156.33.x.x 3218

… … …

!11Data input stage | Tensor

Input data can be represented as
a tensor (multidimensional array)
Timestamp・Src IP・Dst Port

30 × 216 × 216

Cooperative behavior (botnet) detection
Purpose

min IP port
⇡ 1011

elements

Timestamp Src IP Dst Port

12:34:56 12.125.x.x 25

12:34:56 252.156.x.x 23

12:34:57 123.35.x.x 8888

12:34:58 156.33.x.x 3218

… … …

!12Data input stage | Tensor

Cooperative behavior (botnet) detection
Purpose

Botnet A

Botnet B

Botnet C

Botnet D

Input data can be represented as
a tensor (multidimensional array)
Timestamp・Src IP・Dst Port

30 × 216 × 216
min IP port

⇡ 1011
elements

Timestamp Src IP Dst Port

12:34:56 12.125.x.x 25

12:34:56 252.156.x.x 23

12:34:57 123.35.x.x 8888

12:34:58 156.33.x.x 3218

… … …

!13Why factorization?

Input data can be represented as
a matrix
Timestamp・Src IP・Dst Port

30 × 216 × 216
min IP port

Simplify the problem:

 Grouping similar hosts from src IP and dst Port

Source IP

!14Why factorization?

Src IP Dst Port

12.125.x.x 22

12.125.x.x 23

252.156.x.x 80

252.156.x.x 8080
… …

Simplify the problem:

 Grouping similar hosts from src IP and dst Port

12.125.x.x
252.156.x.x

…

22 23 80 … dst Port

src IP

x x

x x

x x

x x

…

!15Why factorization?

12.125.x.x
252.156.x.x

…

22 23 80 … dst Port

src IP

x x

x x

x x

x x

=…

x x
x x

x x

x x

x x

x x

5.12.x.x
5.15.x.x

…

80 81 8080 …

pairwise comparison
sorting

Simplify the problem:

 Grouping similar hosts from src IP and dst Port

!16Why factorization?

12.125.x.x
252.156.x.x

…

22 23 80 … dst Port

src IP

x x

x x

x x

x x

=…

Simplify the problem:

 Grouping similar hosts from src IP and dst Port

-> One Solution: apply the matrix factorization

x

x

22 23 80 …

x x
x xx

x

: #basis vectors = 2

r
r

r

dst Port

extracting important patterns

!17Why factorization?

12.125.x.x
252.156.x.x

12.126.x.x

5.188.x.x

dst Port

src IP

x x

x x

x x

x x

…

Simplify the problem:

 Grouping similar hosts from src IP and dst Port

x

x

x x
x x

x

x

22 23 80 8080

-> One Solution: apply the matrix factorization

!18Why factorization?

dst Port

x x

x x

x x

x x

…

Simplify the problem:

 Grouping similar hosts from src IP and dst Port

x

x

x x
x x

x

x

group A

12.125.x.x
252.156.x.x

12.126.x.x

5.188.x.x

src IP
a basis vector
≒ frequent pattern

22 23 80 8080

-> One Solution: apply the matrix factorization

!19Why factorization?

dst Port

x x

x x

x x

x x

…

Simplify the problem:

 Grouping similar hosts from src IP and dst Port

x

x

22 23 80 8080

x x
x x

x

x

12.125.x.x
252.156.x.x

12.126.x.x

5.188.x.x

a basis vector
≒ frequent traffic patterngroup B

src IP

-> One Solution: apply the matrix factorization

group A

!20Why factorization?

dst Port

x x

x x

x x

x x

…

Simplify the problem:

 Grouping similar hosts from src IP and dst Port

x

x

22 23 80 8080

x x
x x

x

x

12.125.x.x
252.156.x.x

12.126.x.x

5.188.x.x

a basis vector
≒ frequent traffic pattern

src IP

-> One Solution: apply the matrix factorization

Tensor factorization

higher-order extension of matrix factorization

!21Tensor factorization

22 23 80 … dst Port

src IP

=
12.125.x.x
252.156.x.x

12.126.x.x

5.188.x.x

?

…

time

x x

x x

x x

x x

…

 : a factor matrix, set of frequent patterns

 : a core tensor

 : #basis vectors of mode n
The larger, the better <=> computational cost

!22Tucker decomposition

G

A(1)

A(2)

�
A(3)

Y

Y ⇡ G ⇥1 A
(1) ⇥2 A

(2) ⇥3 A
(3)

⇥n : mode-n product

R1

R2

R3

G

A(n)

Rn

Nonnegativity constraint -> Nonnegative Tucker Decomposition
(NTD)

mode 1

mode 2

mode 3

weights

!23Real-time NTD implementation

Y

G

A(1)

A(2)

A(3)

NTD

min
G,A

1

2
||Y � G ⇥1 A

(1) ⇥2 A
(2) ⇥3 A

(3)||2

NTD [Kim+,2007]

A(n) A(n) � ⌘A(n) ~ @D

@A(n)

G G � ⌘G ~ @D

@G

!24Real-time NTD implementation

Y

G

A(1)

A(2)

A(3)

NTD

✕
min
G,A

1

2
||Y � G ⇥1 A

(1) ⇥2 A
(2) ⇥3 A

(3)||2

NTD [Kim+,2007]

A(n) A(n) � ⌘A(n) ~ @D

@A(n)

G G � ⌘G ~ @D

@G
Y 2 R30⇥216⇥216

!25Real-time NTD implementation

Y

G̃

Ã(1)
Ã(2)

Ã(3)

G

A(1)

A(2)

A(3)

NTD

✕

FSTD [Caiafa+,2010]
one of the fastest decomposition:
sampling the important fibers

min
G,A

1

2
||Y � G ⇥1 A

(1) ⇥2 A
(2) ⇥3 A

(3)||2

NTD [Kim+,2007]

Fiber Sampling Tensor Decomposition

!26Real-time NTD implementation

Y

G̃

Ã(1)
Ã(2)

Ã(3)
G

A(1)

A(2)

A(3)

NTD

G

A(1)

A(2)

A(3)

NTD

✕

Ỹ = G̃ ⇥1 Ã(1) ⇥2 Ã(2) ⇥3 Ã(3)

LRA-NTD [Zhou+,2015]
efficient NTD based
on two-step algorithm

FSTD [Caiafa+,2010]
one of the fastest decomposition:
sampling the important fibers

min
G,A

1

2
||Y � G ⇥1 A

(1) ⇥2 A
(2) ⇥3 A

(3)||2

min
G,A

1

2
||Ỹ � G ⇥1 A

(1) ⇥2 A
(2) ⇥3 A

(3)||2

NTD [Kim+,2007]

Low-Rank Approximation NTD

!27Real-time NTD implementation

LRA-NTD [Zhou+,2015]
efficient NTD based
on two-step algorithm

FSTD [Caiafa+,2010]
one of the fastest decomposition:
sampling the important fibers

Y

G̃

Ã(1)
Ã(2)

Ã(3)
G

A(1)

A(2)

A(3)

NTD

G

A(1)

A(2)

A(3)

NTD

✕

Ỹ = G̃ ⇥1 Ã(1) ⇥2 Ã(2) ⇥3 Ã(3)

NTD [Kim+,2007]

min
G,A

1

2
||Y � G ⇥1 A

(1) ⇥2 A
(2) ⇥3 A

(3)||2

min
G,A

1

2
||Ỹ � G ⇥1 A

(1) ⇥2 A
(2) ⇥3 A

(3)||2

Our NTD implementation

#basis vectors … NTD: FSTD: 25
CPU … Intel Xeon X5600 (2.8GHz)

R1 = R2 = R3 = 5

• computational time: 70-90s

• memory usage: 1.9-2.5G

!28Feature extraction using NTD

⇡

weight of each pattern

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Index

Index

Index

Index
Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Wl
is
t[
[d
]]
[,
 f
]

30 0.0.*.* 255.255.*.* 0 655351

results can be visualized like bipartite graphs

edge: core tensor values / node: basis vectors

!29Botnet detection | NTD visualization

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Index

Index

Index

Index

Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Wl
is
t[
[d
]]
[,
 f
]

30 0.0.*.* 255.255.*.* 0 65535
time

patterns
IP

patterns
port

patterns

1

Identify src IPs/dst ports of coordinated group

!30Botnet detection | thresholding

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Index

Index

Index

Index

Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Index

Wl
is
t[
[d
]]
[,
 f
]

Wl
is
t[
[d
]]
[,
 f
]

30 0.0.*.* 255.255.*.* 0 65535

(B)

(A)

(B)multiple IPs exceed a
threshold -> they might be

cooperative (botnet)

(A)
(B)

1

corresponding port numbers
that exceed a threshold ->
their attack destination

time
patterns

IP
patterns

port
patterns

botnet IPs

!31

1. Background

2. Methodology

Factorization-based method

Real-time tensor factorization

Botnet detection using NTD

Experiment

Experimental setting

Result

• NTD visualization

• Comparison with the actual traffic

• Related incident

Outline

!32Experimental settings

[1] NICTER, Inoue et al., 2008

Input: darknet traffic (TCP/UDP) in different
countries [1] (#IP addresses ≒ 35k)

Output: src IPs, dst ports of coordinated groups

real-time detection: apply NTD every 30 min

We introduce one of the interesting result and
evaluate qualitatively

factorized result of 5/9 5:30-6:00 TCP traffic

!33Result | NTD visualization

time src IP dst port
30 0.0.*.* 255.255.*.* 0 655351

!34Result | NTD visualization

～10000/TCP

30 0.0.*.* 255.255.*.* 0 655351
time src IP dst port

factorized result of 5/9 5:30-6:00 TCP traffic

identifying the botnet IPs and their dst ports

6379/TCP

original darknet TCP traffic (5/9 5:30-6:00)

!35Result | Original traffic

original darknet TCP traffic (5/9 5:30-6:00)

filtered by botnet IPs

!36

dst port

src IP

color: difference in
the basis vectors of
IP characteristics

size: #packets/min

Result | Original traffic

malicious group A: probing attack

!37

A total of 6318 ports

Result | Qualitative evaluation

0.0.*.*255.255.*.*

dst port

src IPIP
charasterics

malicious group B: exploiting some vulnerability?

!38

6379, 6380, 7379/TCP

Result | Qualitative evaluation

0.0.*.*255.255.*.*

dst port

src IPIP
charasterics

malicious group B: exploiting some vulnerability?

!39

6379, 6380, 7379/TCP

Result | Qualitative evaluation

0.0.*.*255.255.*.*

dst port

src IPIP
charasterics

What did they attempt to do?

On March 8, the research blog announced the malware that
abuse known vulnerabilities of Redis server (listens on the
port 6379 by default)

try to find vulnerable Redis servers by Internet-wide scanning

!40Result | Related incidents

https://www.imperva.com/blog/2018/03/rediswannamine-new-redis-nsa-powered-cryptojacking-attack/

!41Result | Related incidents

On March 8, the research blog announced the malware that
abuse known vulnerabilities of Redis server (listens on the
port 6379 by default)

try to find vulnerable Redis servers by Internet-wide scanning

the diameter and the color of the points: #botnet IPs

after publication, our
method continuously

detected group activities

summarized alerts on 6379/TCP

We proposed a novel botnet detection method from darknet traffic

Nonnegative Tucker decomposition (NTD):

 a powerful model for extracting co-occurrence patterns

 -> but requires too high computational cost

Efficient NTD implementation enough to run in real-time
LRA-NTD

FSTD

Demonstrated effectiveness by reviewing incidents

!42Conclusion

Future work

Improve the NTD algorithm

Our approach is very fast, but loses much
information

Quantitative evaluation

APPENDIX

