Monte Carlo tree search techniques in the game of Kriegspiel

Paolo Ciancarini and Gian Piero Favini
University of Bologna, Italy

22 IJCAI, Pasadena, July 2009
Agenda

- Kriegspiel as a partial information game
- MonteCarlo in Kriegspiel
- Experimenting different MonteCarlo approaches for Kriegspiel
Kriegspiel

- Kriegspiel is an imperfect information version of Chess.
- Players do not see their opponent's pieces; they only hear the outcome of each move from a referee.
- If a player gets the message “illegal move”, she is allowed to try again.
Referee’s messages

- **Illegal**: the move is retracted and another move must be tried
- **Silent** (no message): the move is legal and stays
- **Capture**: the move is legal and “something” has been captured
- **Check**: the move is legal and a direction of check is also given (row, column, diagonal, knight)

NB: there exist different variants of Kriegspiel where more or less information is given by the referee; we use the variant played on the ICC
Uncertainty in Kriegspiel

- The nature of Kriegspiel uncertainty is completely dynamic: information is scarce and ages quickly.
- Unlike Phantom Go or Stratego, information does not increase over time.
- In Kriegspiel we do not know what pieces the opponent has, where they are, and what he knows about us.
- Interestingly, most Chess strategies remain valid, for instance in the endgame (Exercise: define a winning strategy for KR vs K)
In Chess or Go “progress” is crucial: programs rely upon minimax and evaluations which compare White and Black positions.

How can we measure the progress if we do not see the opponent’s position?

Strategic victory condition: not based on the accumulation (and comparison) of an overall score, like in computer chess or go.

Material advantage helps, but it is not enough to win.
Research works on Kriegspiel

- Definition of game-theoretic algorithms for simple endings (Shapley, Boyce, Ferguson, Ciancarini and others)
- Planning based on MonteCarlo sampling (Parker and Nau and Subrahmanian, IJCAI 2005)
- AND-OR search of belief-state trees (Russell and Wolfe IJCAI 2005)
- Reasoning about partially observed actions (Rance Vogel Amir AAAI 2006)
- A full program to play Kriegspiel is described in Ciancarini Favini, IJCAI 2007. This program won the Kriegspiel Championship at the Computer Olympics in 2006 and 2009
Monte Carlo in Kriegspiel

- Monte Carlo Tree Search (MCTS) has been extensively used to play a variety of complex board games such as Go.
- It has also been used to play imperfect information games such as Phantom Go and Kriegspiel (Parker).
- Our aim is to adapt MCTS so it can play Kriegspiel better than our past program based on minimaxing a tree of metapositions.
Monte Carlo Tree Search (1/2)

- MCTS builds a game tree and usually consists of four steps that are repeated iteratively as long as time allows.

1) **Selection:** the algorithm selects a leaf node from the tree according to some policy (e.g., UCT: Upper Confidence-bound applied to Trees); it has similarities to an exploration/exploitation problem.

2) **Expansion:** optionally, the algorithm expands a leaf to the next depth level (for example, after x visits).
3) **Simulation**: A full game (or several) is simulated from a leaf node in the tree. Moves are random, but preferably guided by some heuristics.

4) **Backpropagation**: The value of the simulated game(s) is propagated to the node’s ancestors up to the root, usually by averaging it. This will affect subsequent selection steps.

… but how does a textbook application of this algorithm perform in Kriegspiel?
We have developed three different MCTS programs for Kriegspiel. We call them A, B and C.

Program A is textbook MCTS for Kriegspiel.

For each simulation... We create a random layout of enemy pieces.
Problems with approach A

- It is difficult to create good random layouts for the opponent’s pieces.
- It is also time-consuming, which is very harmful to a Monte Carlo method.
- Simulating the game with random moves makes for very long games that usually result in a draw regardless of the starting position.
- Except in very specific scenarios, approach A turns out to be about as strong as the random player.
Approach B (1/2)

- Approach B tries neither to generate layouts for the enemy pieces, nor to move them on the board.
- Only the player’s moves and their consequences are simulated.
- The referee’s messages are simulated.
- The algorithm estimates the probability of each message being given by the referee (can be upgraded with opponent modeling data).
- Even if the probabilities are not very accurate, they are more reliable than generating random layouts - not to mention much faster.
Spreading probabilities

- Every horizontal, vertical or diagonal sequence of 2 or more squares is considered.
- For each sequence, the total probability of a piece (other than King and Pawn) being there is unchanged, but the probabilities for the individual squares are adjusted so they are closer to the average.
- We ignore Knight moves for performance reasons.
Approach B (2/2)

- After estimating that, for example, Bb2-a1 has a 20% chance of capturing something...

- … we run our Monte Carlo simulations as before, but we simulate our own moves and update the board according to the referee’s simulated messages (as defined by a probability board).

- There is one more addition from approach A: a simulation cutoff after k moves.
Simulation cutoff

- Checkmate is approach A’s major problem. Progress to checkmate happens very seldom with random moves, adding too much noise to the evaluation.
- To remedy this, we add a little game-specific knowledge to the algorithm.
- Instead of running each simulation to the end, we stop it after k moves and adjudicate the game to the player that seems to be winning.
- This function is much simpler than a true “evaluation function” and just counts the number of pieces each player has.
Approach C

- The final approach is the same as approach B, with $k = 1$.
- Simulation is stopped after only one move.
- Since there is only one move to simulate, the result can be computed as a weighed average of the possible referee messages for that move.
- Every node is computed only once, saving time. Also, simulation is very accurate in the short range, though short-sighted (but the algorithm can use quiescence).
The three approaches

A
- Umpire is silent
- Pawn try
- Illegal move

B
- Value of b4-b5?
- Silent (35%)
- Pawn try (30%)
- Illegal (35%)

C
value = 0.35*v(silent) + 0.3*v(pawn_try) + 0.35*v(illegal)

Full game simulations
k-move simulations
Weighed average of B (k=1)
Experimental results

- We test our B and C programs against an existing Kriegspiel player based on minimax search.
- We test a 1,2,4 seconds per move.
- Surprisingly, short-sighted C performs best.

\[k = \frac{1}{10} \]
Conclusions

- C performs better because it simulates better in the short range and can explore more nodes, but...
- ... on higher time settings, B seems to be catching up. Eventually we expect B to be able to beat C.
- Longer simulations perform better as soon as they can explore enough nodes.
- The minimax player is clearly defeated by the Monte Carlo approach.
Question Time

- Questions?