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Least squares with equality constraints

I the (linearly) constrained least squares problem (CLS) is

minimize ‖Ax− b‖2
subject to Cx = d

I variable (to be chosen/found) is n-vector x

I m× n matrix A, m-vector b, p× n matrix C, and p-vector d are
problem data (i.e., they are given)

I ‖Ax− b‖2 is the objective function

I Cx = d are the equality constraints

I x is feasible if Cx = d

I x̂ is a solution of CLS if Cx̂ = d and ‖Ax̂− b‖2 ≤ ‖Ax− b‖2 holds
for any n-vector x that satisfies Cx = d
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Least squares with equality constraints

I CLS combines solving linear equations with least squares problem

I like a bi-objective least squares problem, with infinite weight on
second objective ‖Cx− d‖2
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Piecewise-polynomial fitting

I piecewise-polynomial f̂ has form

f̂(x) =

{
p(x) = θ1 + θ2x+ θ3x

2 + θ4x
3 x ≤ a

q(x) = θ5 + θ6x+ θ7x
2 + θ8x

3 x > a

(a is given)

I we require p(a) = q(a), p′(a) = q′(a)

I fit f̂ to data (xi, yi), i = 1, . . . , N by minimizing sum square error

N∑
i=1

(f̂(xi)− yi)2

I can express as a constrained least squares problem
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Example
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Piecewise-polynomial fitting

I constraints are (linear equations in θ)

θ1 + θ2a+ θ3a
2 + θ4a

3 − θ5 − θ6a− θ7a
2 − θ8a

3 = 0

θ2 + 2θ3a+ 3θ4a
2 − θ6 − 2θ7a− 3θ8a

2 = 0

I prediction error on (xi, yi) is aTi θ − yi, with

(ai)j =

{
(1, xi, x

2
i , x

3
i , 0, 0, 0, 0) xi ≤ a

(0, 0, 0, 0, 1, xi, x
2
i , x

3
i ) xi > a

I sum square error is ‖Aθ − y‖2, where aTi are rows of A
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Least norm problem

I special case of constrained least squares problem, with A = I, b = 0

I least-norm problem:

minimize ‖x‖2
subject to Cx = d

i.e., find the smallest vector that satisfies a set of linear equations
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Force sequence

I unit mass on frictionless surface, initially at rest

I 10-vector f gives forces applied for one second each

I final velocity and position are

vfin = f1 + f2 + · · ·+ f10

pfin = (19/2)f1 + (17/2)f2 + · · ·+ (1/2)f10

I let’s find f for which vfin = 0, pfin = 1

I fbb = (1,−1, 0, . . . , 0) works (called ‘bang-bang’)
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Bang-bang force sequence
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Least norm force sequence

I let’s find least-norm f that satisfies pfin = 1, vfin = 0

I least-norm problem:

minimize ‖f‖2

subject to

[
1 1 · · · 1 1

19/2 17/2 · · · 3/2 1/2

]
f =

[
0
1

]
with variable f

I solution f ln satisfies ‖f ln‖2 = 0.0121 (compare to ‖fbb‖2 = 2)
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Least norm force sequence

0 2 4 6 8 10

−0.05

0

0.05

Time

F
or
ce

0 2 4 6 8 10

0

0.5

1

Time
P
o
si
ti
o
n

Least norm problem 13



Outline

Linearly constrained least squares

Least norm problem

Solving the constrained least squares problem

Solving the constrained least squares problem 14



Optimality conditions via calculus

to solve constrained optimization problem

minimize f(x) = ‖Ax− b‖2
subject to cTi x = di, i = 1, . . . , p

1. form Lagrangian function, with Lagrange multipliers z1, . . . , zp

L(x, z) = f(x) + z1(c
T
1 x− d1) + · · ·+ zp(c

T
p x− dp)

2. optimality conditions are

∂L

∂xi
(x̂, z) = 0, i = 1, . . . , n,

∂L

∂zi
(x̂, z) = 0, i = 1, . . . , p
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Optimality conditions via calculus

I
∂L

∂zi
(x̂, z) = cTi x̂− di = 0, which we already knew

I first n equations are more interesting:

∂L

∂xi
(x̂, z) = 2

n∑
j=1

(ATA)ij x̂j − 2(AT b)i +

p∑
j=1

zjci = 0

I in matrix-vector form: 2(ATA)x̂− 2AT b+ CT z = 0

I put together with Cx̂ = d to get KKT conditions[
2ATA CT

C 0

] [
x̂
z

]
=

[
2AT b
d

]
a square set of n+ p linear equations in variables x̂, z

I KKT equations are extension of normal equations to CLS
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Solution of constrained least squares problem

I assuming the KKT matrix is invertible, we have[
x̂
z

]
=

[
2ATA CT

C 0

]−1 [
2AT b
d

]
I KKT matrix is invertible if and only if

C has independent rows, and

[
A
C

]
has independent columns

I implies m+ p ≥ n, p ≤ n
I can compute x̂ in 2mn2 + 2(n+ p)3 flops; order is n3 flops
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Direct verification of solution

I to show that x̂ is solution, suppose x satisfies Cx = d

I then

‖Ax− b‖2 = ‖(Ax−Ax̂) + (Ax̂− b)‖2

= ‖A(x− x̂)‖2 + ‖Ax̂− b‖2 + 2(Ax−Ax̂)T (Ax̂− b)

I expand last term, using 2AT (Ax̂− b) = −CT z, Cx = Cx̂ = d:

2(Ax−Ax̂)T (Ax̂− b) = 2(x− x̂)TAT (Ax̂− b)
= −(x− x̂)TCT z

= −(C(x− x̂))T z
= 0

I so ‖Ax− b‖2 = ‖A(x− x̂)‖2 + ‖Ax̂− b‖2 ≥ ‖Ax̂− b‖2

I and we conclude x̂ is solution
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Solution of least-norm problem

I least-norm problem: minimize ‖x‖2 subject to Cx = d

I matrix

[
I
C

]
always has independent columns

I we assume that C has independent rows

I optimality condition reduces to[
2I CT

C 0

] [
x̂
z

]
=

[
0
d

]
I so x̂ = −(1/2)CT z; second equation is then −(1/2)CCT z = d

I plug z = −2(CCT )−1d into first equation to get

x̂ = CT (CCT )−1d = C†d

where C† is (our old friend) the pseudo-inverse
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so when C has independent rows:

I C† is a right inverse of C

I so for any d, x̂ = C†d satisfies Cx̂ = d

I and we now know: x̂ is the smallest solution of Cx = d
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