Constrained Least Squares

Stephen Boyd

EE103 Stanford University

November 9, 2017

Outline

Linearly constrained least squares

Least norm problem

Solving the constrained least squares problem

Linearly constrained least squares

Least squares with equality constraints

the (linearly) constrained least squares problem (CLS) is

minimize $||Ax - b||^2$ subject to Cx = d

- variable (to be chosen/found) is n-vector x
- ▶ m × n matrix A, m-vector b, p × n matrix C, and p-vector d are problem data (i.e., they are given)
- $||Ax b||^2$ is the objective function
- Cx = d are the equality constraints
- x is feasible if Cx = d
- ▶ x̂ is a solution of CLS if Cx̂ = d and ||Ax̂ b||² ≤ ||Ax b||² holds for any n-vector x that satisfies Cx = d

Least squares with equality constraints

- CLS combines solving linear equations with least squares problem
- ▶ like a bi-objective least squares problem, with infinite weight on second objective $||Cx d||^2$

Piecewise-polynomial fitting

• piecewise-polynomial \hat{f} has form

$$\hat{f}(x) = \begin{cases} p(x) = \theta_1 + \theta_2 x + \theta_3 x^2 + \theta_4 x^3 & x \le a \\ q(x) = \theta_5 + \theta_6 x + \theta_7 x^2 + \theta_8 x^3 & x > a \end{cases}$$

(a is given)

• we require
$$p(a) = q(a)$$
, $p'(a) = q'(a)$

▶ fit \hat{f} to data (x_i, y_i) , i = 1, ..., N by minimizing sum square error

$$\sum_{i=1}^{N} (\hat{f}(x_i) - y_i)^2$$

can express as a constrained least squares problem

Example

Piecewise-polynomial fitting

• constraints are (linear equations in θ)

$$\theta_1 + \theta_2 a + \theta_3 a^2 + \theta_4 a^3 - \theta_5 - \theta_6 a - \theta_7 a^2 - \theta_8 a^3 = 0$$

$$\theta_2 + 2\theta_3 a + 3\theta_4 a^2 - \theta_6 - 2\theta_7 a - 3\theta_8 a^2 = 0$$

• prediction error on (x_i, y_i) is $a_i^T \theta - y_i$, with

$$(a_i)_j = \begin{cases} (1, x_i, x_i^2, x_i^3, 0, 0, 0, 0) & x_i \le a \\ (0, 0, 0, 0, 1, x_i, x_i^2, x_i^3) & x_i > a \end{cases}$$

▶ sum square error is $||A\theta - y||^2$, where a_i^T are rows of A

Linearly constrained least squares

Outline

Linearly constrained least squares

Least norm problem

Solving the constrained least squares problem

Least norm problem

Least norm problem

special case of constrained least squares problem, with A = I, b = 0 *least-norm problem*:

minimize	$ x ^2$
subject to	Cx = d

i.e., find the smallest vector that satisfies a set of linear equations

Force sequence

- unit mass on frictionless surface, initially at rest
- ▶ 10-vector f gives forces applied for one second each
- final velocity and position are

$$v^{\text{fin}} = f_1 + f_2 + \dots + f_{10}$$

 $p^{\text{fin}} = (19/2)f_1 + (17/2)f_2 + \dots + (1/2)f_{10}$

$$\blacktriangleright$$
 let's find f for which $v^{\rm fin}=0,~p^{\rm fin}=1$

• $f^{\rm bb} = (1, -1, 0, \dots, 0)$ works (called 'bang-bang')

Least norm problem

Bang-bang force sequence

Least norm problem

Least norm force sequence

- \blacktriangleright let's find least-norm f that satisfies $p^{\rm fin}=1,~v^{\rm fin}=0$
- least-norm problem:

minimize
$$||f||^2$$

subject to $\begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ 19/2 & 17/2 & \cdots & 3/2 & 1/2 \end{bmatrix} f = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

with variable f

▶ solution f^{\ln} satisfies $||f^{\ln}||^2 = 0.0121$ (compare to $||f^{\rm bb}||^2 = 2$)

Least norm force sequence

Outline

Linearly constrained least squares

Least norm problem

Solving the constrained least squares problem

Optimality conditions via calculus

to solve constrained optimization problem

$$\begin{array}{ll} \mbox{minimize} & f(x) = \|Ax - b\|^2 \\ \mbox{subject to} & c_i^T x = d_i, \quad i = 1, \dots, p \end{array}$$

1. form Lagrangian function, with Lagrange multipliers z_1, \ldots, z_p

$$L(x,z) = f(x) + z_1(c_1^T x - d_1) + \dots + z_p(c_p^T x - d_p)$$

2. optimality conditions are

$$\frac{\partial L}{\partial x_i}(\hat{x}, z) = 0, \quad i = 1, \dots, n, \qquad \frac{\partial L}{\partial z_i}(\hat{x}, z) = 0, \quad i = 1, \dots, p$$

Optimality conditions via calculus

•
$$\frac{\partial L}{\partial z_i}(\hat{x}, z) = c_i^T \hat{x} - d_i = 0$$
, which we already knew

▶ first *n* equations are more interesting:

$$\frac{\partial L}{\partial x_i}(\hat{x}, z) = 2\sum_{j=1}^n (A^T A)_{ij} \hat{x}_j - 2(A^T b)_i + \sum_{j=1}^p z_j c_i = 0$$

- ▶ in matrix-vector form: $2(A^TA)\hat{x} 2A^Tb + C^Tz = 0$
- put together with $C\hat{x} = d$ to get *KKT conditions*

$$\begin{bmatrix} 2A^TA & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} \hat{x} \\ z \end{bmatrix} = \begin{bmatrix} 2A^Tb \\ d \end{bmatrix}$$

a square set of n+p linear equations in variables \hat{x} , z

KKT equations are extension of normal equations to CLS

Solution of constrained least squares problem

assuming the KKT matrix is invertible, we have

$$\left[\begin{array}{c} \hat{x} \\ z \end{array}\right] = \left[\begin{array}{cc} 2A^T A & C^T \\ C & 0 \end{array}\right]^{-1} \left[\begin{array}{c} 2A^T b \\ d \end{array}\right]$$

KKT matrix is invertible if and only if

$$C$$
 has independent rows, and $\left[egin{array}{c} A \\ C \end{array}
ight]$ has independent columns

• implies
$$m + p \ge n$$
, $p \le n$

▶ can compute \hat{x} in $2mn^2 + 2(n+p)^3$ flops; order is n^3 flops

Direct verification of solution

 \blacktriangleright to show that \hat{x} is solution, suppose x satisfies Cx=d

then

$$\begin{aligned} |Ax - b||^2 &= \|(Ax - A\hat{x}) + (A\hat{x} - b)\|^2 \\ &= \|A(x - \hat{x})\|^2 + \|A\hat{x} - b\|^2 + 2(Ax - A\hat{x})^T (A\hat{x} - b) \end{aligned}$$

▶ expand last term, using $2A^T(A\hat{x} - b) = -C^T z$, $Cx = C\hat{x} = d$:

$$2(Ax - A\hat{x})^{T}(A\hat{x} - b) = 2(x - \hat{x})^{T}A^{T}(A\hat{x} - b)$$

= $-(x - \hat{x})^{T}C^{T}z$
= $-(C(x - \hat{x}))^{T}z$
= 0

▶ so $||Ax - b||^2 = ||A(x - \hat{x})||^2 + ||A\hat{x} - b||^2 \ge ||A\hat{x} - b||^2$ ▶ and we conclude \hat{x} is solution

Solution of least-norm problem

- ▶ least-norm problem: minimize $||x||^2$ subject to Cx = d
- matrix $\begin{bmatrix} I \\ C \end{bmatrix}$ always has independent columns
- \blacktriangleright we assume that C has independent rows
- optimality condition reduces to

$$\left[\begin{array}{cc} 2I & C^T \\ C & 0 \end{array}\right] \left[\begin{array}{c} \hat{x} \\ z \end{array}\right] = \left[\begin{array}{c} 0 \\ d \end{array}\right]$$

▶ so $\hat{x} = -(1/2)C^T z$; second equation is then $-(1/2)CC^T z = d$ ▶ plug $z = -2(CC^T)^{-1}d$ into first equation to get

$$\hat{x} = C^T (CC^T)^{-1} d = C^{\dagger} d$$

where C^{\dagger} is (our old friend) the pseudo-inverse

so when C has independent rows:

- $\blacktriangleright \ C^{\dagger}$ is a right inverse of C
- \blacktriangleright so for any $d,\, \hat{x}=C^{\dagger}d$ satisfies $C\hat{x}=d$
- ▶ and we now know: \hat{x} is the *smallest* solution of Cx = d