Influence of cytokine and cytokine receptor gene polymorphisms on the degree of liver damage in patients with chronic hepatitis C

Sara Tatiana Moreira a,⁎, Giovanni Faria Silva b, Camila Fernanda Verdichio de Moraes c, Rejane Maria Tomasin Grotto c, Maria Inês de Moura Campos Pardini c, Maria da Graça Bicalho d, Ricardo Alberto Moliterno e

a Human Molecular Genetics Laboratory, Paraná Federal University of Technology, UTFPR, Curitiba, Parana, Brazil
b Gastroenterology Division, Internal Medicine Department, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
c Molecular Biology Laboratory of Blood Transfusion Center, Botucatu Medical School, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
d Immunogenetics and Histocompatibility Laboratory, Genetics Department, Paraná Federal University, UTFPR, Curitiba, Parana, Brazil
e Immunogenetics Laboratory, Department of Basic Health Sciences, Maringa State University, UEM, Maringa, PR, Brazil

⁎ Corresponding author at: Human Molecular Genetics Laboratory, Parana Federal University of Technology, UTFPR, Extension of Cherry Street, Santa Helena, Parana 83892-000, Brazil.
E-mail address: stmoreira_17@yahoo.com.br (S.T. Moreira).

ARTICLE INFO

Article history:
Received 7 February 2016
Revised 5 April 2016
Accepted 20 April 2016
Available online 21 April 2016

Keywords:
Cytokine
Hepatic cirrhosis
Hepatitis C
Liver fibrosis
Polymorphism

ABSTRACT

Hepatic fibrosis may be the result of repetitive injury to hepatocytes caused by HCV infection and the immune response to it. Cytokines regulate the inflammatory response to injury and modulate hepatic fibrogenesis. Single nucleotide polymorphisms (SNPs) located in cytokine genes may influence the cytokine expression and secretion that may contribute to hepatic fibrogenesis in HCV infection. The aim of this study was to determine the genotype of 22 SNPs found in the genes of 13 cytokines/cytokine receptors to assess the influence of polymorphic variants on the stage of liver damage in Brazilian patients chronically infected with HCV genotype 1 only. 141 unrelated patients were grouped according to their stage of fibrosis: absence of fibrosis or patients in the initial stages of fibrosis (F0-F2, n = 84), patients with advanced stages of fibrosis or cirrhosis (F3-F4, n = 57), without cirrhosis (F0-F3, n = 103), and with cirrhosis (F4, n = 38). The comparison of frequencies in each sub-sample was performed by 2 × 2 contingency tables using the chi-square or Fisher’s exact test. Stepwise logistic regression was also used to assess independent associations between cirrhosis or fibrosis with polymorphic variants. The TNFA-308G:A genotype conferred increased risk of fibrosis and cirrhosis. The TNFA-238G:C genotype was associated with protection from cirrhosis. The IL10-819C:T genotype conferred protection from fibrosis and the IL1B-511C:T genotype conferred increased risk of cirrhosis. Some of these genotypes showed results on the borderline of statistical significance in the bivariate analysis. We conclude that gene variants of cytokines/receptors may influence liver damage in patients chronically infected by HCV genotype 1.

© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
agent (Rau et al., 2012). Single nucleotide polymorphisms (SNPs), located in regulatory/coding regions of cytokine genes, might influence the expression and secretion of cytokines, resulting in the production of different phenotypes (Perrey et al., 1998; Tambur et al., 2001). Furthermore, changes in the levels of different cytokines seem to contribute to hepatic fibrogenesis in HCV infection (Guo et al., 1999; Andersen et al., 2011).

Although there are studies relating polymorphic variants in cytokine genes to the severity of liver damage in chronic hepatitis C (Romero-Gomez et al., 2011), some studies have yielded contradictory results due to poor study design. Most studies apply heterogeneous HCV genotype samples, with or without concurrent hepatitis B virus (HBV) and human immunodeficiency virus (HIV) viral infections. Therefore, further research is required to clarify the current role of genetic variants in liver fibrosis (Bataller et al., 2003). Moreover, no studies using this approach were previously carried out in Brazil. Therefore, the objective of this study was to evaluate the influence of polymorphic variants in cytokine and cytokine receptor genes, in some way associated with the development of fibrosis or cirrhosis (Xu et al., 2012), on the stages of liver damage in Brazilian patients chronically infected with HCV genotype 1 only, the more frequent one in Brazil (Campioni et al., 2005).

2. Materials and methods

2.1. Casuistry

Seven hundred and sixty one patients seen at the Division of Gastroenterology, University Hospital at Botucatu's Medicine School, Brazil, between September 2004 and January 2009, were diagnosed as infected by HCV. Of these, 141 unrelated patients were included in this study, according to the following criteria: infection only by HCV genotype 1, diagnosis based on the presence of viral RNA confirmed by molecular tests, chronicity characterized by liver biopsy and persistence of viral RNA in serum, liver biopsy performed prior to the beginning of antiviral treatment, and signing the consent form. Patients with positive serology for hepatitis B and/or human immunodeficiency virus, and hemophiliac patients with other liver diseases were excluded. Patients that used alcohol or recreational drugs during treatment were also excluded. Clinical data were obtained from medical records. Patients were regarded as a mixed ethnic group (excluding Oriental ancestry), given that phenotypic evaluations based on physical characteristics such as skin color are not good predictors of genomic African ancestry in Brazilian populations (Parra et al., 2003). The study protocol was approved by the Ethics Committee in Human Research, Botucatu's Medicine School, Universidade Estadual Paulista and have been performed according to the World Medical Association Declaration of Helsinki.

2.2. Liver biopsy

The stage of fibrosis was determined by histological liver assessment. Percutaneous biopsies were performed by a pathologist with the use of Tru Cut or Menghini needles. The fragment analysis was only performed when at least eight portal areas could be seen. Tissues were stained with hematoxylin–eosin, Masson's trichrome, and reticulin stains and analyzed by the METAVIR scale system (Asselah et al., 2009), which classifies the damage of the liver sample from zero to four (F0 – no fibrosis, F1 – portal fibrosis without septa, F2 – portal fibrosis with few septa, F3 – portal fibrosis with many septa, F4 – cirrhosis).

Patients were grouped according to their stage of fibrosis: the absence of fibrosis or patients in the initial stages of fibrosis (F0-F2, n = 84), patients with advanced stages of fibrosis or cirrhosis (F3-F4, n = 57), without cirrhosis (F0-F3, n = 103), and with cirrhosis (F4, n = 38). Subsequently, the allele, genotype, and haplotype frequencies were compared between the first and second group of patients, to evaluate if the studied polymorphic variants influenced the development of hepatic fibrosis. The frequencies were also compared between the last two groups of patients to evaluate their influence on the development of hepatic cirrhosis.

2.3. Viral genotyping

HCV genotyping was defined through the reverse line probe assay technique (INNOLIPA® v.1.0, Innogenetics, Ghent, Belgium), according to the manufacturer's instructions. This genotyping was preceded by the extraction of total RNA present in the patient's plasma, followed by a reverse-transcription-polymerase chain reaction (RT-PCR), using the Amplicor HCV test version 2.0 kit (Roche Diagnostic System, Branchburg, NJ, USA).

2.4. Genomic DNA extraction

Genomic DNA was extracted from whole blood obtained from an initial volume of 10 ml, collected into tubes containing EDTA. The extraction was performed through the Salting-out technique (Lahiri and Nurnberger, 1991) or a BioPure commercial kit (Biometrix Diagnóstica, Curitiba, Pr, Brazil).

2.5. Genotyping of polymorphic variants in cytokine/cytokine receptors genes

The genotyping of the polymorphic variants of cytokine genes was performed with 75–125 ng/ml of DNA, by PCR-SSP (polymerase chain reaction with sequence-specific primers) using the Cytokine Genotyping kit (Dynal Biotech, Invitrogen® Corporation, Brown Deer, WI, USA) according to the manufacturer's instructions. It was determined that the alleles, genotypes and haplotypes for 22 SNPs were located in 13 cytokine/cytokine receptors genes (Table 1). The amplified fragments were separated in a 2% agarose gel in a horizontal electrophoresis system. The interpretation of the results was performed according to standard forms provided by the manufacturer of the Cytokine Genotyping kit. Ten patients had not all SNPs typed because typing problems in kit used.

2.6. Statistical analysis

The allelic and genotypic frequencies were obtained by direct counting. Haplotype frequencies were estimated based on the genotype frequencies observed through the likelihood method using the EM algorithm (expectation maximization), which is part of an integrated software package available in Arlequin version 3.5 (Excoffier et al., 2005). Convert software was used to prepare the input file for the Arlequin package (Glaubitz, 2004). The Hardy–Weinberg equilibrium of the genotype frequencies was evaluated through Arlequin version 3.5 (Excoffier et al., 2005).

The comparison of frequencies in each sub-sample was performed by 2 × 2 contingency tables using the chi-square or Fisher's exact test, when n ≤ 5 in any cell. Differences were considered statistically significant when P ≤ 0.05. The association strength was assessed by Odds Ratio (OR) obtained with a confidence interval (CI) of 95% (Woolf, 1955). Haldane correction was employed when n ≤ 5 in any cell (Svegaard and Ryder, 1994). Statistical analyses were performed using the Vassar Stats software (http://faculty.vassar.edu/lowry/VassarStats.html). Stepwise logistic regression was also used to assess independent associations between cirrhosis or fibrosis with polymorphic variants, besides some other categorical explanatory variables, such as age and gender. The analysis was conducted using the SPSS 20.0 statistical package (SPSS, Inc., Chicago, IL, USA).
3. Results

3.1. Demographic and clinical information of patients

Demographic and clinical information of patients is shown in Table 2. According to METAVIR score, 59.6% of patients presented no or mild fibrosis (F0–F2) and 73.1% presented no cirrhosis (F0–F3) (5.0% were F0, 31.2% F1, 23.4% F2, 13.5% F3 and 26.9% F4). The mean age and duration of infection of patients with advanced fibrosis or cirrhosis (F3–F4) was higher than for the patients with no or mild fibrosis (F0–F2) (49.0 ± 9.2 years vs 40.1 ± 9.6 years, \(P < 0.05 \) and 26.0 ± 9.0 years vs 19.0 ± 6.9 years, \(P < 0.05 \), respectively). The same trend was observed for patients with cirrhosis (F4), when compared to non-cirrhosis patients (F0–F3) (50.1 ± 9.5 years vs 41.3 ± 9.7 years, \(P < 0.05 \) and 27.9 ± 9.7 years vs 19.8 ± 7.1 years, \(P < 0.05 \), respectively).

3.2. Allele frequencies

Allele frequencies of polymorphic variants in the assessed cytokine genes are shown in Table 3. For technical reasons, some patients did not have all their SNPs typed. The frequency of the IL4RA +1902A allele was higher in patients with advanced stages of hepatic fibrosis (20.0% vs 10.1% \(P = 0.0203; \ OR = 2.2206; \ IC = 1.1190–4.4066 \), as well as in patients with cirrhosis (22.2% vs 11.2% \(P = 0.0200; \ OR = 2.2733; IC = 1.1235–4.5988 \)). Accordingly, reciprocal association (protection) was also observed for the TNFA-308/G allele.

Table 2

Demographic and clinical information of patients of a Brazilian population with chronic hepatitis C classified according to the degree of fibrosis by the Metavir scale.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Patients (n = 141)</th>
<th>F0–F2 (n = 84)</th>
<th>F3–F4 (n = 57)</th>
<th>F0–F3 (n = 103)</th>
<th>F4 (n = 38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years, mean ± SD)*</td>
<td>43.7 ± 10.4</td>
<td>40.1 ± 9.6</td>
<td>49.0 ± 9.2</td>
<td>41.3 ± 9.7</td>
<td>50.1 ± 9.5</td>
</tr>
<tr>
<td>Gender n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>65 (76.6)</td>
<td>60 (71.4)</td>
<td>43 (75.4)</td>
<td>81 (78.6)</td>
<td>27 (71.0)</td>
</tr>
<tr>
<td>Female</td>
<td>33 (23.4)</td>
<td>24 (28.6)</td>
<td>14 (24.6)</td>
<td>22 (21.4)</td>
<td>11 (28.0)</td>
</tr>
<tr>
<td>Duration of infection (years, mean ± SD)*</td>
<td>21.8 ± 8.5</td>
<td>19.0 ± 6.9</td>
<td>26.0 ± 9.0</td>
<td>19.8 ± 7.1</td>
<td>27.9 ± 9.7</td>
</tr>
<tr>
<td>METAVIR stage n (%)^b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0</td>
<td>7 (50)</td>
<td>7 (8.3)</td>
<td>–</td>
<td>7 (6.8)</td>
<td>–</td>
</tr>
<tr>
<td>F1</td>
<td>44 (31.2)</td>
<td>44 (52.4)</td>
<td>–</td>
<td>44 (42.7)</td>
<td>–</td>
</tr>
<tr>
<td>F3</td>
<td>33 (23.4)</td>
<td>33 (39.3)</td>
<td>–</td>
<td>33 (32.0)</td>
<td>–</td>
</tr>
<tr>
<td>F4</td>
<td>19 (13.5)</td>
<td>–</td>
<td>19 (33.3)</td>
<td>19 (18.5)</td>
<td>–</td>
</tr>
</tbody>
</table>

* \(P < 0.05 \) when comparing F0–F2 vs F3–F4 and F0–F3 vs F4.
^b \(P < 0.05 \) when comparing F0–F2 vs F3–F4 and F0–F3 vs F4.
^b Duration of infection was calculated only for 87 patients (F0 = 4, F1 = 25, F2 = 23, F3 = 14, F4 = 21). The duration of infection for 54 patients is unknown.
3.4. Haplotype frequencies

The haplotype frequency of polymorphic variants in cytokine genes is shown in Table 5. The haplotype TNFA-308/-238/GG was more frequent in patients with less severe stages of liver fibrosis as well as in the no cirrhosis group (F0-F2 vs F3-F4: 85.1% vs 74.5%; P = 0.0281; OR = 0.512; IC = 0.2799–0.9365 and F0-F3 vs F4: 84.5% vs 70.8%; P = 0.0112; OR = 0.4466; IC = 0.2372–0.8490, respectively). The haplotype TNFA-308/-238/AG was more frequent in patients with a more severe stage of fibrosis, as well as in the group with cirrhosis (F0-F2 vs F3-F4: 10.1% vs 20.0%; P = 0.0203; OR = 2.2206; IC = 1.119–4.4066 and F0-F3 vs F4: 11.1% vs 22.2%; P = 0.0200; OR = 2.2733; IC = 1.1235–4.5998).

3.5. Multivariate analysis

Multivariate logistic regression, adjusting for the simultaneous contributions of independent variables (gender, age, and polymorphic variants), indicated that age (F0-F2 vs F3-F4: P = 0.0001; OR = 1.101 and F0-F3 vs F4: P = 0.0001; OR = 1.162) and the TNFA-308/G:A genotype (F0-F2 vs F3-F4: P = 0.006; OR = 3.784 and F0-F3 vs F4: P = 0.008; OR = 4.495) conferred increased risk of fibrosis and cirrhosis. Moreover, the genotype TNFA-238G:C was associated with protection from cirrhosis (F0-F3 vs F4: P = 0.005; OR = 0.078). The IL10-819G:C genotype (F0-F2 vs F3-F4: P = 0.014; OR = 0.334) also conferred protection from fibrosis and the IL1B-511T:C genotype (F0-F3 vs F4: P = 0.011; OR = 3.871) conferred increased risk of cirrhosis. These results are shown in Table 6.

Some of these haplotypes showed results on the borderline of statistical significance in the bivariate analysis; the IL10-819G:T (F0-F2 vs F3-F4: 50.0% vs 34.5%; P = 0.0727; OR = 0.5278; IC = 0.2617–1.0642) and the IL1B-511C:T (F0-F2 vs F3-F4: 41.0% vs 57.9%; P = 0.0750; OR = 0.9787; IC = 0.9278–4.2196) genotypes. See Table 4.

4. Discussion

The genotype frequencies for all analyzed SNPs except the IL4RA +1902 position (P = 0.0017) are in Hardy–Weinberg equilibrium. It is not uncommon to find SNP frequencies not in Hardy–Weinberg equilibrium in patient samples (control free). Esser and Tomluk (2005) comment that if the deviation from Hardy–Weinberg equilibrium occurs only in the patient group, this provides further evidence of a real association with the disease marker in question (Esser and Tomluk, 2005).

Bivariate analysis work with two paired data sets studying whether a relationship exists between them: not taking in consideration the other interleukin genotypes that were also analyzed. On the other hand, the multivariate analysis allows to explore the joint performance of the genotypes, and to test for the effect of each one in the presence of the effect the other genotypes. We believe that this analysis better reflects what happens “in vivo”, where different genotype products can interact to produce a certain phenotype (Warner, 2012). So, we decided to include in the Discussion section only the genotypes that presented associations with the multivariate statistical analysis. We decided to keep the results with the bivariate analysis in the Results section of the paper because this is the statistical method most applied by researchers, so our data can be compared to others that use bivariate statistical analysis.

An association between the TNFA-308/A allele and more severe stages of liver fibrosis/cirrhosis has been observed in this work; individuals carrying this allele are about twice as likely to develop advanced stages of liver fibrosis/cirrhosis as non-carriers. Our results are in agreement with the literature (Yee et al., 2000; Yu et al., 2003; Dai et al., 2006; Kusumoto et al., 2006; Jeng et al., 2007). Nevertheless, other authors did not observe this association, or observed an inverse one. Goyal et al. (Goyal et al., 2004), when studying an Indian population chronically infected by HCV of different genotypes, found no association between the polymorphic variants of the TNFA-308 SNP and liver damage. Bouzgarrou et al. (Bouzgarrou et al., 2010), Barrett et al. (Barrett et al., 2003), and Powell et al. (Powell et al., 2000) also found no association between alleles, genotypes, and phenotypes of cytokine production and fibrosis when studying populations of Tunisia, Ireland, and Australia, respectively. Similarly, Bahr et al. (Bahr et al., 2003) found no association between the TNFA-308 SNP and liver cirrhosis in a German population. Goncharova et al. (Goncharova et al., 2008), on the other hand, reported a higher frequency of the TNFA-308/A allele.
in Russian patients with a lower stage of liver fibrosis/cirrhosis. The conflict between the results could be partially explained by ethnic differences among patients. Furthermore, most studies show sample group heterogeneity, which is formed, for example, by individuals infected with different viral genotypes, and in some cases, with an unrepresentative sample size.

Bivariate and multivariate analysis revealed TNFA-308G→A genotypic associations. The TNFA-308G:G genotype showed a negative association with liver damage, while the TNFA-308G:A genotype was positively associated with it. Radwan et al. (2012) also observed association between the G:A genotype and the development of liver cirrhosis, while Bahr et al. (Bahr et al., 2003) did not observe this association. Corchado et al. (Corchado et al., 2013), studying HIV co-infected patients, also found no associations for the TNFA-308G:A genotype. However, they observed an association of TNFA-238G:G genotype with cirrhosis. In the present study, this genotype showed a protective role. Our result is in agreement with the literature, since other authors have observed an association between TNFA-238A and development of chronic active hepatitis C, advanced fibrosis progression, or high risk of cirrhosis (Hohler et al., 1998; Yee et al., 2000). Furthermore, an association between the TNFA-238A allele and more intense inflammatory activity was observed (Pociot et al., 1995) but not with fibrosis/cirrhosis.

A possible biological explanation for the associations of the TNFA-308G–A position found in this study is the influence of the −308G→A polymorphism. Despite some controversy (Smith and Humphries, 2009), there is evidence that TNF transcription is highly influenced by the −308G→A polymorphism. The TNFA-308A allele has been shown to almost double the basal TNF mRNA transcription rate and to increase the plasma levels of TNF-α (Connolly et al., 2009). The number of −308/A alleles that an individual possesses plays a role in the plasma levels of TNF-α. A position. However, they observed an association of TNFA-238G→A and development of chronic active hepatitis C, advanced fibrosis progression, or high risk of cirrhosis (Hohler et al., 1998; Yee et al., 2000). Furthermore, an association between the TNFA-238A allele and more intense inflammatory activity was observed (Pociot et al., 1995) but not with fibrosis/cirrhosis.

A possible biological explanation for the associations of the TNFA-308G–A position found in this study is the influence of the −308G→A polymorphism. Despite some controversy (Smith and Humphries, 2009), there is evidence that TNF transcription is highly influenced by the −308G→A polymorphism. The TNFA-308A allele has been shown to almost double the basal TNF mRNA transcription rate and to increase the plasma levels of TNF-α (Connolly et al., 2009). The number of −308/A alleles that an individual possesses plays a role in the plasma levels of TNF-α.

Table 4

<table>
<thead>
<tr>
<th>Polymorphism</th>
<th>Genotypes</th>
<th>F0-F2</th>
<th>F3-F4</th>
<th>F0-F3</th>
<th>F4</th>
<th>(n = 84)</th>
<th>(n = 57)</th>
<th>(n = 103)</th>
<th>(n = 38)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL1A-889</td>
<td>C:C</td>
<td>45</td>
<td>54</td>
<td>56</td>
<td>54</td>
<td>59</td>
<td>57</td>
<td>61</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>C:T</td>
<td>33</td>
<td>39</td>
<td>37</td>
<td>38</td>
<td>31</td>
<td>32</td>
<td>31</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>T:T</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>IL1B-511</td>
<td>C:C</td>
<td>32</td>
<td>39</td>
<td>41</td>
<td>40</td>
<td>32</td>
<td>37</td>
<td>31</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>C:T</td>
<td>35</td>
<td>42</td>
<td>41</td>
<td>41</td>
<td>37</td>
<td>42</td>
<td>37</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>T:T</td>
<td>14</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>IL1B - 3962</td>
<td>C:C</td>
<td>52</td>
<td>63</td>
<td>67</td>
<td>62</td>
<td>52</td>
<td>63</td>
<td>52</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>C:T</td>
<td>27</td>
<td>32</td>
<td>31</td>
<td>31</td>
<td>27</td>
<td>32</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>T:T</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>IL1R1 p51 1970</td>
<td>C</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>T:T</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Notes to Table 4:

For technical reasons, some patients did not have all their SNPs typed, so N is variable in the Table.

P obtained through the chi-square test or Fisher’s test.

n = number of genotype; F% = relative frequency of genotypes.
times the chance of developing more advanced stages of liver cirrhosis; F4 is portal fibrosis without septa, F2 – portal fibrosis and few septa, F3 – numerous septa without cirrhosis, F4 – cirrhosis.

There are several polymorphisms in the IL1B gene, one being at position −511C>T (Wilson et al., 1993; Tseng et al., 2002). Bahr et al. (Bahr et al., 2003) found an association between −511/T:T genotype and liver cirrhosis. In the present study, multivariate analysis revealed the IL1B-511C/T genotype associated with development of liver cirrhosis. Other authors found no association for this position (Abbas et al., 2005). Findings on the biological functionality of this polymorphism have not been consistent across studies. The −511C:C genotype showed an increased release of IL-1β (Iaccoviello et al., 2005), while the −5111:T:T genotype also has been associated with higher levels of IL-1β (Hwang et al., 2002). There isn’t information on the level of IL-1β related to −511/C:T genotype. Some studies, however, indicate that multiple polymorphic loci may have combined effects on IL1B gene expression (Hull et al., 2004; Chen et al., 2006). So far, the association of the IL1B-511C/T genotype with cirrhosis in the present study can’t be explained by IL-1 release level.

5. Conclusions

Our results show that polymorphic variants for the TNFA-308G>A, TNFA-238G>A, IL10-819C>T, and IL1B-511C>T positions are associated with the stage of liver damage during chronic infection with HCV genotype 1. Some of our data confirmed the results of previous studies conducted in other populations, while others were novel and require replication to confirm. In this study, patients were thoroughly characterized with respect to the stage of liver damage and the time of infection, among other possible non-genetic interfering factors, forming a homogeneous group. These efforts may have more clearly characterized the host’s genetic interfering factors leading to liver damage of chronically HCV-1 infected patients. We are aware, however, that polymorphisms in cytokine/cytokine receptor genes are obviously not the only factors that influence the stage of liver damage and that polymorphisms in other genes certainly contribute to the process. Therefore, the conclusion is that the hepatic damage in chronically HCV-1 infected patients seems to be under the influence of gene polymorphisms for both cytokines and cytokine receptors; the knowledge of these markers may have prognostic significance in patients chronically infected with HCV, allowing a more aggressive therapy for those with increased risk of evolving to more severe forms of the disease.

Acknowledgments and disclosures

The authors wish to thank the individuals who donated blood samples and made this work possible. We would also like to thank our lab and Ph.D. colleagues for their help in several tasks. This work was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

The funding sources had no role in the study design, collection, analysis and interpretation of the data, in the writing or the decision to submit the paper for publication.