Fast Global Image Registration Using Random Projections

Dennis M. Healy, Jr.
Department of Mathematics,
University of Maryland
DARPA

Gustavo K. Rohde
Center for Bioimage Informatics
Biomedical Engineering Department
Carnegie Mellon University
Outline

- **Problem statement:**
 - Image registration
 - Global image registration (overview of current approaches)

- **Key concepts:**
 - Manifold interpretation (Whitney’s embedding theorem)
 - Random projections (Johnson-lindenstrauss lemma)

- **New global image registration algorithm**
 - Ideally suited for large-scale problems: many to one

- **Preliminary results**
 - Comparison with multiresolution-type projections onto B-spline function spaces.
Image registration

- Find spatial transformation that relates images
- Biomedical imaging applications:
 - Data fusion
 - Motion & distortion correction
 - Tracking
 - Atlas-based segmentation
 - Computational anatomy
 - Super-resolution
 - …
Image registration

- Find spatial transformation that relates images
- Biomedical imaging applications:
 - Data fusion
 - Motion & distortion correction
 - Tracking
 - Atlas-based segmentation
 - Computational anatomy
 - Super-resolution
 - ...
Image registration

- Find spatial transformation that relates images
- Biomedical imaging applications:
 - Data fusion
 - Motion & distortion correction
 - Tracking
 - Atlas-based segmentation
 - Computational anatomy
 - Super-resolution
 - ...
Image registration

- Find spatial transformation that relates images
- Biomedical imaging applications:
 - Data fusion
 - Motion & distortion correction
 - Tracking
 - Atlas-based segmentation
 - Computational anatomy
 - Super-resolution
 - …
Image registration

- Find spatial transformation that relates images
- Biomedical imaging applications:
 - Data fusion
 - Motion & distortion correction
 - Tracking
 - Atlas-based segmentation
 - Computational anatomy
 - Super-resolution
 - ...

Image registration

- Find spatial transformation that relates images
- Biomedical imaging applications:
 - Data fusion
 - Motion & distortion correction
 - Tracking
 - Atlas-based segmentation
 - Computational anatomy
 - Super-resolution
 - …
Image registration

- Find spatial transformation that relates images
- Biomedical imaging applications:
 - Data fusion
 - Motion & distortion correction
 - Tracking
 - Atlas-based segmentation
 - Computational anatomy
 - Super-resolution
 - ...
Image registration

- Find spatial transformation that relates images
- Biomedical imaging applications:
 - Data fusion
 - Motion & distortion correction
 - Tracking
 - Atlas-based segmentation
 - Computational anatomy
 - Super-resolution
 - ...
Image registration

- Find spatial transformation that relates images
- Biomedical imaging applications:
 - Data fusion
 - Motion & distortion correction
 - Tracking
 - Atlas-based segmentation
 - Computational anatomy
 - Super-resolution
 - …
Mathematical Formulation:

- **Spatial transformation of an image:**
 - Fit continuous model to image data:
 - Define spatial transformation:
 - Resample it:

- **Seek transformation that best matches some target image**
 - Minimization Problem

\[
\tilde{s}(x) = \sum_{j \in \Gamma} b_j \phi_j(x) \quad x \in \mathbb{R}^d
\]

\[
f_P : \mathbb{R}^d \to \mathbb{R}^d
\]

\[
\tilde{s}_P = \tilde{s}(f_P(i)) \quad i \in \mathbb{Z}^d
\]

\[
p^* = \text{arg min}_p \|t - \tilde{s}_p\|^
\]
Key problem: local optima

- Example:
 - Rotation and shear
Typical approaches

- **Correlation → FFT, phase shift**
 - Translations

- **Multiple resolutions**
 - Coarse to fine. Hope to avoid local optima due to high-frequency components

- **Symplex-type methods:**
 - Independent from local derivatives

- **Multiple (random) initializations**
 - Stochastic searches

- **Exhaustive searches**
Typical approaches

- Correlation → FFT, phase shift
 - Translations
- Multiple resolutions
 - Coarse to fine. Hope to avoid local optima due to high-frequency components
- Symplex-type methods:
 - Independent from local derivatives
- Multiple (random) initializations
 - Stochastic searches
- Exhaustive searches
Overview of new registration algorithm

- Based on exhaustive searches w.r.t. registration parameters
 - Cost function evaluation on reduced dimensions (teens instead of $N = Q^d$)
- For many to one image registration problems, articulated projections can be pre-computed
 - Nearest neighbor type of search
Manifold interpretation:

- Consider each image \((N = Q^d \text{ pixels}) \) as a point in \(N \) dimensional space:
 \[
 \tilde{s} \in \mathbb{R}^N
 \]

- The set of spatially transformed images does not fill the entire space:
 \[
 \tilde{s}_p = \tilde{s}(f_p(i)) \in \mathcal{M}^K \\
 \dim(p) = K < N
 \]
Example

- It is not possible to transform, by translations, rotations and scaling, the image of a nucleus to an image of a actin filaments:
Whitney’s embedding theorem

Theorem 2.1 [4] Let \mathcal{M} be a compact Hausdorff C^r K-dimensional manifold, with $2 \leq r \leq \infty$. Then there is a C^r embedding of \mathcal{M} in \mathbb{R}^{2K+1}.

- [Wakin, Baraniuk, ICASSP 06] Using mild assumptions, a randomly chosen projection from N to $2K+1$ is also one to one (with some probability).
 - Choose projection matrix P randomly (using a fixed random number generator)
 - Johnson-Lindenstrauss lemma can be used to obtain bounds on probability of errors.
Johnson-Lindenstrauss lemma

Lemma 2.2 [Johnson-Lindenstrauss] Let Ψ be a finite collection of points in \mathbb{R}^N. Fix $0 < \epsilon < 1$ and $\beta > 0$. Let \mathcal{P} be a random orthoprojector from \mathbb{R}^N to \mathbb{R}^M with

$$M \geq \left(\frac{4 + 2\beta}{\epsilon^2/2 - \epsilon^3/3}\right) \ln(|\Psi|)$$

If $M \leq N$, then, with probability exceeding $1 - (|\Psi|)^{-\beta}$, the following statement holds: For every $s, t \in \Psi$,

$$(1 - \epsilon) \sqrt{\frac{M}{N}} \leq \frac{\|\mathcal{P}s - \mathcal{P}t\|}{\|s - t\|} \leq (1 + \epsilon) \sqrt{\frac{M}{N}}$$
Random projection

\[
\mathbf{c} = \mathbf{P} \mathbf{s}
\]

\[
\mathbf{M} = \begin{pmatrix}
P_{1,1} & P_{1,2} & P_{1,3} & \cdots \\
P_{2,1} & P_{2,2} & P_{2,3} & \cdots \\
P_{3,1} & P_{3,2} & P_{3,3} & \cdots \\
\end{pmatrix}
\]

\[
\mathbf{N} = \begin{pmatrix}
\mathbf{s}_1 \\
\mathbf{s}_2 \\
\mathbf{s}_3 \\
\vdots \\
\end{pmatrix}
\]
Random projection example

\[\mathcal{P} \tilde{s}_p \]
Algorithm

- Consider the problem:
 - Registering many images to a template or atlas (affine)

- Training phase:
 - Compute random projections coefficients for some sampling of the parameter space.

- Registering an image to template
 1. Compute random projection
 2. Search for nearest neighbor

\[\mathbf{c}_{p_i} = \mathcal{P} \tilde{t}_{p_i} \]

\[d = \mathcal{P} s \]

\[p^* = \arg \min_{p_i} \| \mathbf{c}_{p_i} - d \| \]

\[p^* = \arg \min_{p} \| t - \tilde{s}_p \| \]
Experimental Results
Experiments

- Set of 87 cell nuclei images:
 - 382 x 512 pixels
- Registration:
 - Translation (x,y), rotation, scaling (x,y): 5 parameters
- Project to 20 dimensional space (from 382 x 512)
- Compare with orthogonal projection over B-spline function spaces (4 x 5 = 20)
 - Unser et al, IEEE TIP, 1995
Original data

Registered

B-spline

Random
Original data

Registered

B-spline

Random
Projection-based registration: B-splines vs. Random

\[\| \mathbf{t} - \hat{S}_p \| \]
With gradient descent minimization

\[\|t - \hat{S}_p\| \]
Gradient descent vs. RP + gradient descent

$$\| \mathbf{t} - \mathbf{s}_p \|$$
Details

- Mean error
 - B-spline projection: 6.96×10^6
 - Gradient descent: 5.45×10^6
 - Random projection: 4.81×10^6
 - All with gradient descent

- Direct comparisons
 - Number of times Rand. Proj. better than Grad. Des.: 69
 - Number of times Grad. Des. better than Rand. Proj.: 18
Computational complexity

- **Reduced from:**
 - Brute force nearest neighbor search:
 - $O(G^K N)$

- **To:**
 - Nearest neighbor search in reduced space:
 - $O(G^K M)$, with
 - $M \sim O(\ln(G^K))$

- **Could perhaps reduce further by reducing G^K with**
 - Multiscale image manifold representations:
 - Rahman et al, Multiscale Modeling and Simulation, 2005
Summary

- **Key problem:** local optima in image registration
- **Random projection-based fast exhaustive search:**
 - Borrow ideas from compressed sensing [Baraniuk & Wakin, ICASSP 06]
- **Experimental results**
 - Outperforms multi-resolution-type B-spline approximations
 - Outperforms gradient descent alone
- **Computational complexity:**
 - $O(G^K M)$
 - $M \sim O(\ln(G^K))$
END

Thank you