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Abstract: The neural network approach is proposed for studying very-low- and low-frequency
(VLF and LF) subionospheric radio wave variations in the time vicinities of magnetic storms and
earthquakes, with the purpose of recognizing anomalies of different types. We also examined the days
with quiet geomagnetic conditions in the absence of seismic activity, in order to distinguish between the
disturbed signals and the quiet ones. To this end, we trained the neural network (NN) on the examples
of the representative database. The database included both the VLF/LF data that was measured during
four-year monitoring at the station in Petropavlovsk-Kamchatsky, and the parameters of seismicity
in the Kuril-Kamchatka and Japan regions. It was shown that the neural network can distinguish
between the disturbed and undisturbed signals. Furthermore, the prognostic behavior of the VLF/LF
variations indicative of magnetic and seismic activity has a different appearance in the time vicinity of
the earthquakes and magnetic storms.

Keywords: earthquake precursors; magnetic storm; neural network; low frequency electromagnetic
signals

1. Introduction

Very-low-frequency/low-frequency (VLF/LF) signal monitoring (range, 10–50 kHz) has become
one of the main research methods in the studies on the state of the lower ionosphere and the upper
atmosphere. The application of this method for analyzing signal variations that are associated with
seismic activity was applied in [1–4]. In addition to the conventional night-time fluctuation method,
the natural time analysis to the subionospheric VLF data has been presented in [5]. It was shown that
the lower ionosphere, as seen by VLF propagation, exhibited critical characteristics from two weeks up
to two days before the main shock of the disastrous 2016 Kumamoto earthquakes (EQ) (15 April 2016).

The main problem in applying this method for earthquake prediction is distinguishing the signal
anomalies of seismic origin against the background of global perturbations, which are caused in the
lower ionosphere by magnetic storms and sub-storms, and proton and electron fluxes. It was previously
established that magnetic storms and solar energetic particle fluxes can induce phase and amplitude
variations in the VLF signal [6–9]. The correlation of the phase and amplitude variations in the LF signal
to the disturbance storm time (DST) index, as well as the correlation of the outer-zone particles (protons
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and electrons) to the high-pitch angle was revealed in [10–12]. In this work, we applied a neural
network method for estimating the VLF/LF signal sensitivity to geomagnetic and seismic activity.

It should be noted, however, that other methods based on entropy have been recently found
that when analyzing the earthquake time series in a new time domain termed natural time [13], it is
observed that the entropy plays an important role. Specifically, upon analyzing the seismic time series
in the Chiapas region before the occurrence of the M8.2 earthquake on 7 September 2017 in Mexico, the
entropy change under time reversal exhibits a minimum almost three months before, and in particular
on 14 June 2017 [14]. The study of the complexity measures associated with the fluctuations of either
the entropy defined in natural time and/or the entropy change under the time reversal of the seismicity
in the Chiapas region from 1 January 2012 until 20 October 2017, was continued in [15].

The neural network approach was developed to understand how the brain solves the problem of
learning, pattern recognition, and decision making. The ability of the neural network to approximate
any continuous function with arbitrary accuracy was used in a variety of geophysical applications.
The neural network technology was applied in the tasks of parameter estimation, filtering, classification,
and prediction. The supervised neural networks were used for function approximation and inversion
problems in Refs. [16–19]. The recurrent neural network was constructed for predicting the magnetic
storm intensity [20]. Forecasting the earthquake magnitudes based on the neural networks were
considered in [21,22]. A new signal processing algorithm (WANEH) inspired by the deep learning
paradigm was presented in [23]. It combines wavelets, neural networks, and a Hilbert transform.
The probabilistic receiver operating characteristics (ROC) method [24], supported by the confidence
ellipses [25], was employed for determining the anomaly detection threshold and the statistical
significance of the detector’s outcome. The authors proposed a unique Deep Neural Network structure
for reconstructing the normal behavior and the time–frequency analysis of the residual signal in
relation to the probabilistic ROC. The method was shown to be able to automatically detect anomalies
in the seismic electrical signal, which could be used to predict earthquake activity. Furthermore,
the method can be used in combination with crowdsourcing of smartphone data to locate road defects.
In the road anomaly case, the proposed algorithm was compared to two known road anomaly detection
methods based on a probabilistic method [26], and based on wavelet decomposition and support
vector machines [27]. The comparison confirms the good performance of the WANEH algorithm.

The artificial neural network was applied to forecast gasoline consumption in [28]. The neural
network based on the backpropagation algorithm was implemented using the cross entropy error
function in the training stage. The cross entropy function was proven to accelerate the back-propagation
algorithm, and to provide good overall network performance with relatively short stagnation periods.
A method for estimating the VLF/LF signal sensitivity to seismic processes using a neural network
approach based on the backpropagation technique was proposed in [29,30]. The trained neural network
was applied in the forecasting mode for the automatic detection of anomalous changes in the VLF/LF
signal related to the seismic activity above a certain threshold.

For further study, we develop a neural network method to find the geomagnetic VLF/LF signal
anomalies. We compare the behavior of the seismic and geomagnetic VLF/LF signal anomalies in the
time vicinity of the earthquakes and magnetic storms. We also test the neural network on the set of
time intervals with quiet geomagnetic and seismic conditions for analyzing the behavior of VLF/LF
signal in many aspects.

2. Materials and Methods

The database for our study is based on the VLF/LF signals measured during monitoring in the
Kuril Kamchatka region. We analyzed the observations of 2004–2007. The receiver was installed in
Petropavlovsk-Kamchatski, and the radio transmitter JJY was located in Japan (see Figure 1).
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Figure 1. A map showing the positions of the receiver in Petropavlovsk-Kamchatsky (PTK) and the 
transmitter JJY (40 kHz). 

The database included the amplitudes and phases of the VLF/LF signals and the corresponding 
parameters of regional seismicity (the magnitudes of seismic events M and distances D from the 
earthquake epicenters to the axis of the receiver–transmitter path, hypocentral depth H, ratio R/D, 
between the radius R of the area of precursory manifestations and distance D). These parameters 
were taken from the earthquake catalog (https://earthquake.usgs.gov/contactus/golden/neic.php). 
We also used information about the global perturbations of the lower ionosphere caused by the 
magnetic storm and relativistic high energy electron flux (https://www.swpc.noaa.gov/). 

The examples of the anomalies in the amplitude and phase of the real LF data measurements at 
the Petropavlovsk-Kamchatski station during a super strong magnetic storm in 28–31 October 2003 
(DST ~ −400 nT), and in connection with the earthquake on 17 March 2001 (M = 5.5) are shown in 
Figures 2 and 3 correspondingly. In Figure 3, besides the real data we showed the differences or 
residual signals. For each month, an average background (model) signal was calculated based on data 
from the ‘quiet days’, and then the residual signals of amplitude and phase (dA and dP) were 
calculated as the difference between the observed and model signals. 

The anomalies in the amplitude began together with the sudden commencement and continued 
during the main and recovery stages of the storm. The phase anomalies were observed during the 
main and recovery stages. 

 
Figure 2. The anomalies in the amplitude and phase of the JJY signal during a super strong magnetic 
storm ‘Halloween” over 28–31 October 2003. The top panel shows the disturbance storm time (DST) 
index of magnetic activity, the two next panels show the amplitude and phase of the JJY signal. 

Figure 1. A map showing the positions of the receiver in Petropavlovsk-Kamchatsky (PTK) and the
transmitter JJY (40 kHz).

The database included the amplitudes and phases of the VLF/LF signals and the corresponding
parameters of regional seismicity (the magnitudes of seismic events M and distances D from the
earthquake epicenters to the axis of the receiver–transmitter path, hypocentral depth H, ratio R/D,
between the radius R of the area of precursory manifestations and distance D). These parameters
were taken from the earthquake catalog (https://earthquake.usgs.gov/contactus/golden/neic.php).
We also used information about the global perturbations of the lower ionosphere caused by the
magnetic storm and relativistic high energy electron flux (https://www.swpc.noaa.gov/).

The examples of the anomalies in the amplitude and phase of the real LF data measurements at
the Petropavlovsk-Kamchatski station during a super strong magnetic storm in 28–31 October 2003
(DST ~−400 nT), and in connection with the earthquake on 17 March 2001 (M = 5.5) are shown in
Figures 2 and 3 correspondingly. In Figure 3, besides the real data we showed the differences or
residual signals. For each month, an average background (model) signal was calculated based on
data from the ‘quiet days’, and then the residual signals of amplitude and phase (dA and dP) were
calculated as the difference between the observed and model signals.
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Figure 2. The anomalies in the amplitude and phase of the JJY signal during a super strong magnetic
storm ‘Halloween” over 28–31 October 2003. The top panel shows the disturbance storm time (DST)
index of magnetic activity, the two next panels show the amplitude and phase of the JJY signal.
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occurrence time of the earthquake. The red lines are the level of two standard deviations. The filled 
areas highlight the anomalies in the amplitude and phase of the LF signal related to the earthquake. 
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second step, the recognition (prediction) procedure was executed on the previously trained neural 
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Figure 3. The anomalies in the low-frequency (LF) signal observed in Petropavlovsk-Kamchatski before
the earthquake occurred on 17 March 2001 (M = 5.5). Top-down: the residual amplitude, the amplitude
of the JJY signal, the residual phase, and the phase of JJY signal. The arrow shows the occurrence time
of the earthquake. The red lines are the level of two standard deviations. The filled areas highlight the
anomalies in the amplitude and phase of the LF signal related to the earthquake.

The anomalies in the amplitude began together with the sudden commencement and continued
during the main and recovery stages of the storm. The phase anomalies were observed during the
main and recovery stages.

In Figure 3 besides the real data, we show the differences or residual signals. For each month,
an average background (model) signal is calculated based on data from the ‘quiet days’, and then
the residual signals of amplitude and phase (dA and dP) are calculated as the difference between the
observed and model signals. The anomalies of the signal in this case were observed 3–4 days before
the earthquake.

In order to estimate the behavior of the VLF/LF variations associated with the geomagnetic
activity, earthquakes, and quiet conditions, we applied the neural network technique for the prediction
and classification problem. We also used supervised learning because we knew both the input and
corresponding output values for creating the training dataset. At the first step, the neural network
was taught the relationship between the input and output from this training set. At the second step,
the recognition (prediction) procedure was executed on the previously trained neural network for the
unknown data that we want to recognize.

The most common example of the supervised learning is the multi-layer perceptron. We used the
three-layer perceptron, as illustrated in Figure 4. The first and third layers were referred to as the input
and output layers, respectively. The second layer was referred to as the hidden layer. The neurons of
each layer were shown by circles. The neurons of the previous layer were connected with the neurons
of the next layer. The lines between the layers represented the weights that are applied to the outputs
of each layer. The backpropagation technique [31], based on the multi-layer perceptron, is described
by the following formula:

yl
i = f (∑

j
W l

ijxj), (1)

where yl
i is the output signal of the neuron i of the layer l, W l

ij are the weight connections between
the neurons of layers l − 1 and l, xj is the value of the neuron j-th of layer l − 1, and f is the neuron
response function. In our case, the neuron response function is defined by the logistic function:

f (z) =
1

1 + e−z (2)
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Thus, the input signal propagated forward from one layer to another layer.
At the training stage, our purpose was to obtain the output signal yi on the third layer that

minimizes the total standard error:
E = ∑

p
∑

i
(yi − yt

i)
2. (3)

The summation was carried out for each training example p over all neurons i of the output layer.
The “target” value yt

i represented the sample value for the corresponding training example. The real
value yi represented the value of the output neuron that was formed as a result of signal propagation
(1). The values of the weights were determined by back-propagating the errors between the inputs and
outputs for minimizing error (3) by the gradient descent technique:

∆W(n)
ij = −α

∂E
Wij

+ β∆W(n−1)
ij , (4)

where ∆W(n)
ij is the increment of the weight connection at the step n, ∆W(n−1)

ij is its increment at the
previous step, α and β are the internal parameters of the neural network.

The recognition procedure is carried out at one passage of the recognizable signal from the input
to the output, and it uses the weight connections that are specified in the teaching process.

We applied the neural approach for the recognition (prediction) the disturbed and undisturbed
VLF/LF signals. The optimal teaching database was formed after many experiments on teaching and
testing the neural networks. As a result, we selected 80 examples for the neural network teaching.
Each example included the input and output data. The input vector X consisted of the mean values
and variances that were calculated from the amplitudes and phases of the signals during the night
time of five days before the prognostic day. Thus, the number of neurons in the input layer was 20.
In the process of NN teaching, we should establish the correspondence between the input and output.
The output vector Y was equal to 1 for 40 examples of the disturbed VLF/LF signals. The output vector
Y was equal to 0 for 40 examples of the quiet signals in the absence of seismic and geomagnetic activity.
The number of neurons in the hidden layer was 8. The NN architecture is illustrated in Figure 4.
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corresponding level of the correlation Ct is used as the output data. 

Figure 4. Three-layer perceptron of the backpropagation neural network used for recognition
(prediction) of disturbed and quiet signals. The input signal is composed of the means and variances
values of the phases (S1Ph(t-n) and S2Ph(t-n), respectively), and amplitudes (S1A(t-n) and S2A(t-n),
respectively) during the night time for five days before the prognostic day (n varies from 1 to 5).
The corresponding level of the correlation Ct is used as the output data.
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The mean and variances values of the amplitude and phase are denoted by S1A, S2A, and as S1Ph

and S2Ph respectively. In the output layer of the NN, a single neuron has the sense of the correlation
coefficient (by the absolute value) Ct.

The result of the recognition is formed as the output after teaching the neural network. In our
case, the final result represented by the value of the coefficient of correlation associated with the quiet
or disturbed signals on the sixth day, because at the stage of teaching, we set the correspondence
between the characteristic changes in the VLF/LF signals five days before a prognostic day and
the correlation coefficient on the sixth day. The correlation coefficient varied from 0 to 1 due to the
interpolation properties of the neural network. We assumed that when the correlation was above 0.5,
the classifying the event into the disturbed signal was probable. We interpreted the value of the output
as the characteristic classifying the events into the disturbed and quiet signal. In this case, the neural
network was used not only for the prediction, but also for the signal classification.

3. Results

This study addresses the analysis of the behavior of the VLF/LF signals caused by the geomagnetic
activity. Another objective of the study was to distinguish between the anomalies of non-seismic and
seismic origin. For the comparison, we should also understand the behavior of the VLF/LF signals
corresponding to the quiet geomagnetic and seismic conditions. For this aim, we should examine the
variations in the phase and amplitude of VLF/LF signals on the set of the time intervals including
the day of the magnetic storms and seismic events. We should also analyze the behavior of the signal
during the quiet days.

For this purpose, we moved the previously trained neural network along the time axis. We formed
the input vector using the five days before the prognostic day of the selected time interval. We applied
this vector on the input layer of the trained neural network and received the value of the coefficient
of correlation on the sixth day in the output layer. After this, we repeated the recognition procedure
on the same NN with a shift by one day, etc. Thus, we moved the 5-day time window of the input
vector along the given time interval, with a one-day shift. As a result, we obtained the values of
the correlation for the entire time interval, including the days of the geomagnetic or seismic activity,
and the quiet days.

The trained neural network was used for detecting the anomalous changes in the VLF/LF signal
caused by the magnetic activity with the magnetic activity index DST ≤−60 nT. Besides, the considered
time intervals did not include the time vicinity of the day (including the day itself) when the flux of
relativistic electrons exceeded the given threshold. We also excluded from the consideration the time
intervals with the day of the seismic event with the magnitude M ≥ 5.5. The examples of this analysis
are illustrated in Figure 5a,b, which shows the correlation coefficients on the considered time intervals
obtained as the result of NN prediction.
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1 March). Each column in Figure 5a,b represents the values of the coefficient of correlation on a certain
day of the considered time period. The dashed line in this diagram represents the threshold value of
the coefficient of correlation, which is equal to 0.5. The arrow marks the first day of the magnetic storm.

The dashed line in the graphs depicts the level of the correlation coefficient equals to 0.5. The arrow
marks the first day of the magnetic storm. We can see that the magnetic storm-induced disturbances
in the signals arose on the very day of the magnetic activation (Figure 5a), and in addition, a few
days after it or after the day of the onset of magnetic activation (Figure 5b). Indeed, the disturbance
in the signal occurred not only on the day of the magnetic storm, but also the day after it [10–12].
For example, if a magnetic storm began in the daytime, then as a rule, the disturbance in the signal
occurred only the next day.

We analyzed five time intervals with the days of the magnetic storms overall. These days are
presented in Table 1 with information about the magnetic activity index DST.

Table 1. The five magnetic storms with magnetic activity index DST ≤ −60 nT for the considered five
time intervals in 2004, 2005, and 2007.

N Year Month Day DST

1 2007 11 20 −63
2 2007 5 23 −63
3 2007 4 1 −63
4 2005 6 23 −66
5 2004 7 17 −80

We did not detect the disturbances in the signals before the days of the magnetic storms in all
considered cases. In one case of the five, the disturbances in the signals caused by magnetic storms
were not detected absolutely. These results corresponded to the conclusions that had been obtained in
previous work [10–12].

For comparing the behavior of VLF/LF signals that were subject to the geomagnetic and seismic
activity, we should be reminded of the results concerning the prediction of seismic events with
magnitudes M ≥ 5.5 [29]. In a previous study, we tested 12 time intervals with a length of 6–8 days of
2004, 2005, 2006, and 2007. Each time interval contained the day of the seismic event with magnitudes
M ≥ 5.5.

The example of NN predicting the behavior of the VLF/LF signals caused by the earthquakes
with M ≥ 5.5 is illustrated in Figure 6.
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Figure 6. The neural network prediction of the seismic event for 24–28 September 2006. Each column
in the upper diagram in Figure 4 represents the value of magnitude of the earthquakes which occurred
on a certain day of the considered time period. When the magnitude is equal to or more than 5.5,
the corresponding column is marked with the following parameters: magnitude M, depth H, distance D
from the epicenter of the earthquake to the axis of the “transmitter–receiver” line, and the ratio R/D.
The dashed line depicts the threshold at which M ≥ 5.5. The corresponding values of the coefficient of
correlation are shown in the lower diagram. The dashed line here represents the threshold value of the
coefficient of correlation of 0.5.

We considered the results of the NN prediction for the time interval from 24–28 September 2006
which included the day of the seismic event of 28 September 2006. In the first bar graph in Figure 4,
the magnitudes for each day of the selected time interval are represented by the columns. The dashed
line denotes the threshold value of the magnitude M = 5.5. The following parameters of the
seismic event are indicated near the column denoting the seismic event with magnitude M ≥ 5.5:
the magnitude M, the depth H, the distance from the epicenter to the receiver–transmitter axis D,
and the R/D ratio. The values of the coefficient of correlation for the same days obtained as the result
of NN prediction are shown in the second bar graph. These values were formed by the NN output,
which was moved along the given time interval with a one-day shift. The dashed line in this diagram
marked the coefficient of correlation as being equal to 0.5. The diagram in the bottom panel of Figure 4
shows that the correlation coefficients were higher than the threshold value of 0.5, three days before
the earthquake of 28 September, and on the very day of the earthquake.

Thus, the NN recognized the earthquake-related disturbances in the signal on nine of the 12 time
intervals considered. The information about the earthquakes predicted by the neural network is
presented in Table 2.

Table 2. The nine seismic events with M ≥ 5.5 predicted by the neural network.

N Year Month Day Time Latitude (◦) Longitude (◦) Depth (km) M D (km) R/D

1 2006 9 28 1:36 46.5 153.3 11 5.9 154.7 2.22
2 2004 9 13 3:0 44 151.4 8 6.1 223.7 1.87
3 2004 11 2 13:4 38.8 142.8 23 5.6 26.1 9.8
4 2007 1 11 20:34 43.5 147.1 10 5.5 45.7 5.07
5 2005 3 11 18:47 43.1 144.7 54 5.5 187.7 1.23
6 2005 3 16 13:23 43.5 146.9 39 5.6 59.4 4.3
7 2005 8 1 4:40 46.9 153.9 16 5.7 156.8 1.8
8 2004 5 29 3:47 37.7 141.9 29 5.8 51.9 5.9
9 2004 7 21 0:11 40.9 143.1 30 5.5 127.9 1.81

An important fact is that the disturbances in the signal were not only predicted on the day of
the earthquake but also before the earthquake for all nine seismic events [29,30], in contrast to the
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appearance of such disturbances in the signals on the very day of the magnetic activation and a few
days after it, or after the day of the onset of magnetic activation, but not before.

The results of this comparison showed that the neural network analysis allowed the anomalies
of the VLF/LF signals of seismic and magnetic origin to be distinguished in the time vicinities of the
earthquakes and magnetic storms.

However, for making the final conclusion we need to examine the trained neural network on the
set of the time intervals which do not include the days of seismic events with magnitudes M ≥ 5.5.
Besides, the considered time intervals did not include the days when the magnetic activity index
DST and the flux of relativistic electrons exceeded the given thresholds. We tested 89 days overall on
different time intervals in 2004, 2005, 2006, and 2007.

The results of NN recognition (prediction) of the behavior of the VLF/LF signals during the quiet
seismic and geomagnetic conditions are illustrated in Figure 7a,b.
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Figure 7. The neural network prediction on the time intervals with quiet seismic and geomagnetic
conditions: (a) the results of the prediction for 6–13 May 2007; (b) the results of the prediction for
6–17 March 2006.

The same previously-trained neural network was used for the earthquake prediction. As an
example, we considered the results of the NN prediction on the time interval from 6–13 May 2007
shown in Figure 7a. The columns and dashed lines in the top and bottom diagrams of Figure 7 have
the same meaning, as in Figure 6. In the upper diagram, the magnitudes for each day of the selected
time interval are indicated near the columns. The dashed line denotes the threshold value of the
magnitude M = 5.5. We saw that the behavior of the coefficient of correlation on 8 May demonstrated a
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disturbance in the signal. It could be classified as a “false alarm”. Similar results were shown in the
time interval from 6–17 March 2006 in Figure 7b. These “events” could be related to the unaccounted
influence of the meteorological parameters of the atmosphere.

The “false alarms” were recognized by the neural network in 12 cases out of 89. Such “events”
were sparse in the sense that a few days before and few days after them, there were no other
“events”. These local “events” differed from the recognized seismic events, which were preceded by
the disturbance of the signal over several days before the earthquake, and on the day of the earthquake.
The results of this study show that the neural network can distinguish in time the signals disturbed by
seismic activity from the quiet ones.

4. Discussion

The trained neural network detected the anomalous changes in the VLF/LF signal caused by the
magnetic storms. The changes in the VLF/LF signal, indicative of magnetic activity, were identified in
four of the five time intervals. The results of this study show that the pattern of the changes induced in
the VLF/LF signals by the earthquakes and magnetic activity is different in time. In contrast to the
behavior pattern of the magnetic activity in time, the neural network can predict the seismic events
using the night-time anomalies in the VLF/LF signals as the precursors of the earthquakes.

Besides, the neural network can distinguish the signals disturbed by the seismic activity from the
quiet ones. The detection of the local “false alarms” on the “quiet” time intervals is different from the
detection of the seismic events, which are characterized by the disturbance of the signal several days
before the earthquake, and on the day of the earthquake.

It is worth noting that we did not take into account the proton and electron fluxes, and the
meteorological characteristics of the atmosphere. The combination of the disturbances caused in the
signals by these factors, in addition to the magnetic activity, can complicate the pattern of the changes
in the signals in time.
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