From: AAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Controlling Communication in Distributed Planning
Using Irrelevance Reasoning

Michael Wolverton

Marie desJardins

SRI International
333 Ravenswood Ave
Menlo Park, CA 94025
{mjw|marie}@erg.sri.com

Abstract

Efficient and effective distributed planning requires
careful control over how much information the plan-
ning agents broadcast to one another. Sending too lit-
tle information could result in incorrect plans, while
sending too much information could overtax the dis-
tributed planning system’s resources (bandwidth and
computational power). Ideally, distributed planning
systems would have an efficient technique for filtering
a large amount of irrelevant information from the mes-
sage stream while retaining all the relevant messages.
This paper describes an approach to controlling infor-
mation distribution among planning agents using #r-
relevance reasoning (Levy & Sagiv 1993). In this ap-
proach, each planning agent maintains a data structure
encoding the planning effects that could potentially be
relevant to each of the other agents, and uses this struc-
ture to decide which of the planning effects that it gen-
erates will be sent to other agents. We describe an
implementation of this approach within a distributed
version of the SIPE-2 planner. Our experiments with
this implementation show two important benefits of the
approach: first, a noticeable speedup of the distributed
planners; second—and, we argue, more importantly—a
substantial reduction in message traffic.

The Problem

Real-world plans in modern organizations are often de-
veloped by committee, with multiple planners who are
each responsible for a particular part of the plan or a
specific activity within the planning process, and who
cooperate to combine their results into a final integrated
plan. There is a growing need for technology that sup-
ports this decentralized planning activity by providing
the functionality of Al planning systems in a distributed
environment. In this model, multiple planning agents
are distributed across different processes and locations,
perhaps each supporting a user in a mixed-initiative
planning session. They cooperate to develop a single
integrated plan for a joint planning problem. Each
agent is assigned a collection of subgoals from the high-
level goal to work on. To plan effectively, the agents

OCopyright ©1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

must communicate with one another during the plan-
ning process. This means that a given agent must send
messages to some or all of the other agents about the
current state of its subplan development: what condi-
tions are being made true or false in its current partial
plan, what resources are being used, what constraints
have been generated, and so forth. This communica-
tion is necessary so that the planning agents can detect
and avoid potential conflicts and potential duplications
of work early in the process, instead of having to replan
major portions of the joint plan if the conflicts are dis-
covered at the end of the process when the completed
subplans are merged.

This need for communication introduces a new prob-
lem: what exactly should the agents send to one an-
other? More specifically, how does a planning agent,
A, determine whether a given planning decision it has
made is important to the problem solving of another
agent, B? It cannot answer this last question precisely
without actually solving B’s subplan, so it must rely
on a heuristic answer to a slightly different question:
is the planning decision likely to be important to B’s
planning? The consequences for having either an overly
permissive or an overly strict answer to that question
are serious. If the heuristic allows too many messages to
be sent—for example, by broadcasting every planning
decision made by every agent to every other agent—it
can quickly overburden the resources of the distributed
planning system in several ways:

¢ By overloading the communication links between
planners, especially in situations where bandwidth is
limited

e By bogging down the planning algorithms with nu-
merous irrelevant predicates and constraints to add
to the agents’ partial plans

¢ By overwhelming the human operators at each of the
planning nodes with a flood of messages they do not
need to see.

On the other hand, a heuristic that sends too little infor-
mation will suppress messages that reveal conflicts and
other interactions between agents’ subplans. If even
one such message goes unsent, an undetected conflict
can lead to extensive replanning when the subplans are

merged, or, depending on the planning algorithm, the
inability of the system to find a correct plan at all. One
possible approach would be to bypass the heuristic en-
tirely, and instead have a user or set of users select the
information that gets passed from agent to agent. This,
however, is clearly an impossibly large task in complex,
real-world planning domains.

Example Figure 1 shows a simple transportation ex-
ample demonstrating the problem. In this example,
there are two Hierarchical Transition Network (HTN)
planning agents cooperating to transfer a payload from
TRUCK-A to TRAIN-A. The truck agent is responsi-
ble for moving the truck from LOC-A to LOC-C and
unloading the payload there. The train agent is re-
sponsible for moving the train to LOC-C and loading
the payload there. The agents’ current partial plans
are shown in Figures 1(a) and 1(b). In those dis-
plays, rounded rectangles represent primitive actions,
and they are shown with all the planning effects they
produce. Hexagons represent unexpanded goals. The
lighter-shaded goals are the responsibility of the plan’s
owner, while the darker-shaded goals are the responsi-
bility of the other agent.

At this point in the distributed planning process, the
truck agent has completed its part of the joint plan—the
only two unexpanded goals in its display are the respon-
sibility of the other agent—and is ready to broadcast
the relevant effects of its actions to the train agent. It
could broadcast all the effects its actions produced, in-
cluding all of the effects having to do with the location
of TRUCK-A. However, a cursory glance at the plan-
ning operators that the train agent will use to solve
its goals reveals that the location of TRUCK-A can-
not possibly be relevant to the train agent’s planning.
For example, LOAD-OP, the operator that the train
agent will use to solve its (LOADED ...) goal, is shown
(Figure 1(c)). TRUCK-A will not unify with the vari-
able PAYLOADI, so none of the truck agent’s (AT-
LOC TRUCK-A ...) effects can possibly threaten or
satisfy LOAD-OP’s first precondition. Also, if LOAD-
OP is to be used to solve the train agent’s (LOADED
...) goal, the variable VEHICLE1 will be instantiated to
TRAIN-A; since TRUCK-A will not unify with TRAIN-
A, the truck-agent’s (AT-LOC TRUCK-A ...) effects
also will not be relevant to LOAD-OP’s second precon-
dition. Those effects are similarly irrelevant to the train
agent’s other goal.

The only effect that could be relevant is in the last
action—(AT-LOC PAYLOAD-A LOC-C)—which uni-
fies with LOAD-OP’s first precondition. The truck
agent must inform the train agent of that effect only.
It can avoid sending all the other effects, if it can get a
description of the predicates that might be relevant to
the train agent’s problem solving (via the train agent
or by its own analysis of the train agent’s goals and

planning operators).

This paper describes an approach to reducing mes-
sage traffic among distributed HTN planning agents by
using érrelevance reasoning (Levy & Sagiv 1993). In
this approach, agents identify relevant planning effects
by constructing a set of query trees based on an analysis
of their planning operators and assigned goals. These
query trees are then used to generate a list of predicates
that could possibly be relevant to each agent’s plan-
ning, and each other agent uses that list to select which
of its own planning effects it will send to the agent in
question. We have implemented this approach within
a distributed version of the SIPE-2! planner (Wilkins
1988), called Distributed SIPE. Our experiments with
Distributed SIPE show two important benefits of the
approach: first, a noticeable speedup of the distributed
planners; second—and, we argue, more importantly—a
substantial reduction in message traffic.

In the remainder of this paper we first introduce ir-
relevance reasoning and then describe our application
of it to distributed planning. Next, we discuss our im-
plementation of the approach and present experimental
results. Last, we discuss some of the issues raised by
our project and some of the open research problems in
this area.

The Approach
Irrelevance Reasoning

This section presents a very brief introduction to Levy
and Sagiv’s approach to irrelevance reasoning. For a
more thorough explanation, see (Levy & Sagiv 1993) or
(Levy 1993).

Irrelevance reasoning is a term describing a class of
techniques for identifying those parts of a knowledge
base (KB) that are irrelevant to a given query. Levy and
Sagiv identify several distinctions that can be made be-
tween different definitions of “irrelevant.” In this paper
we are concerned with what they term strong drrele-
vance: a closed formula ¢ in a KB is strongly irrelevant
to a query % if ¢ does not appear in any possible deriva-
tion of 4.2

To determine which formulas are irrelevant to a given
query, Levy and Sagiv construct a query tree, an AND-
OR tree consisting of goal nodes and rule nodes. The
root of the tree is a goal node labeled with the query.
Each goal node labeled g is an OR node, and has as
its children rule nodes for all the rules whose conse-
quent unifies with g. Each rule node labeled r is an
AND node, and has as its children goal nodes for each
conjunct in the precedent of r. There are special proce-
dures for handling recursive rules. Query trees provide
an efficient means for deriving various types of irrele-
vance claims about the KB. The result of most concern

1Gystem for Interactive Planning and Execution.
2This is actually a specialization of Levy and Sagiv’s
more general definition of strong irrelevance.

TRUCK AGENT

MOVE
T-LOC TRUCK-A LOC-B
[AT-LOC TRUCK-A LOG-;
SITED TRUCK-A LOC-B

RN

(TRANS-TO TRAIN-A LRC-C)

(a)

TRAIN AGENT

\ VARRAN

N\
(FRANG-TO TRAIN-A |;/occ)

4

—

(b)

£D PAYLOAD-A TRAIN-A)

OPERATOR: LOAD-OP
Purpose:
(LOADED PAYLOAD1 VEHICLE1)
Precondition:
(AT-LOC PAYLOAD1 LOCATION1)
(AT-1LOC VEHICLE1 LOCATION1)
PLOT:
Process
Action: LOAD
Arguments: PAYLOAD1, VEHICLE1,

LOCATION1
Effects:
- (CARRYING VEHICLE1 PAYLOAD1)
TN END PLOT
END OPERATOR

Figure 1: Time slice of a distributed planning session: (a) TRUCK AGENT’s completed partial plan; (b) TRAIN
AGENT’s incomplete partial plan; and (c) planning operator for solving TRAIN AGENT’s (LOADED ...) goal.

to us is the following: a ground fact p(ay,...,a,) is
strongly irrelevant to ¢ if and only if a4,...,a, does
not satisfy the label of any goal node of p in the query
tree for .

By removing from the KB formulas that are strongly
irrelevant to a query before searching the KB for an
answer to the query, irrelevance reasoning can substan-
tially reduce problem solving time. Levy and Sagiv
tested their query tree technique on various databases
and queries. They found that removing strongly irrele-
vant facts from the KB produced speedups in problem
solving of between 23% and 97%. In most test cases,
the time taken to construct the query tree and use it to
filter irrelevant facts was insignificant compared to the
time needed to find an answer to the query.

Selective Communication

Irrelevance reasoning speeds up problem solving by
shrinking the knowledge base—that is, by preventing
the problem solver from seeing facts and rules that
could not possibly be useful in its problem solving. This
technique can also be used to limit messages in dis-
tributed planning, provided we can construct a query
tree from a planning knowledge base. Fortunately,
while the problem solved by HTN planners is not equiv-
alent to that solved by deductive database search en-
gines, HTN operators do provide the same information
that is used to construct query trees—knowledge about

which rules (operators) can be used to solve a given
goal, knowledge about the subgoals that must be solved
when a rule (operator) is applied, and knowledge about
how variables are constrained when a rule (operator) is
unified with a goal.

An HTN operator typically contains four compo-
nents:

¢ a purpose—a predicate representing the higher-level
goal that the operator solves.

e preconditions—a collection of predicates representing
conditions that must be true in the world state before
the operator can be applied.

e a plot—a plan fragment that is inserted into the plan
in place of the higher-level goal matched by the pur-
pose. The plot consists of a partial ordering of goals
and primitive actions.

e constraints on the variables that are used as argu-
ments of the other three components. Our present
implementation propagates only class constraints,
but in principle the approach supports other types
of constraints as well.

The construction of a query tree using these kinds of
planning operators is similar to the method described in
the previous section. The root of the tree is a goal node
labeled with an agent’s planning goal. Each goal node
labeled g is an OR node, and has as its children rule

nodes for all the operators whose purpose unifies with
g. The contents of the rule node are the predicates
that result in unifying the operator’s purpose and its
preconditions with g. The label of the rule node is the
result of unifying the operator with g. Each rule node
labeled Op is an AND node, and has as its children goal
nodes for each subgoal contained in the plot of Op.

The use of the query tree for controlling communica-
tion in distributed planning works in three steps:

(1) When a planning agent is assigned new goals to solve,
it constructs a query tree for each goal.

(2) The agent generates a list of relevant predicates for
itself by walking the query trees and collecting all the
contents of rule nodes.

(3) The agent sends the collected list of relevant predi-
cates to each of the other planning agents.

During the course of distributed planning, whenever
an agent, A, is considering sending a planning effect to
another agent, B, A checks the effect against B’s list
of relevant predicates. If a predicate on the list unifies
with the effect, it is sent to B. Otherwise, it is not.

A variant on steps (1) and (2) above is to have each
agent compute the query trees for each other agent,
instead of computing the tree only for itself and broad-
casting the results to all other planners. This variant is
possible when all planning agents share the same plan-
ning knowledge base and when each agent knows the
other agents’ goals, as is the case in Distributed SIPE.
It is desirable when communication bandwidth is at a
premium, since it requires no extra communication be-
tween agents.

The query tree for the (LOADED ...) goal of the ex-
ample in Figure 1 is a simple one, with the goal node
root and a single child rule node. The rule node rep-
resents the operator LOAD-OP unified with the goal,
which is already fully instantiated. As a result, only
three ground predicates are relevant for that goal:

(LOADED PAYLDAD-A TRAIN-A)
(AT-LOC PAYLOAD-A LOC-C)
(AT-LOC TRAIN-A LOC-C)

Experimental Results

We have implemented the irrelevance reasoning com-
munication filtering method described above in Dis-
tributed SIPE (desJardins & Wolverton 1998), a dis-
tributed planning system built on the SIPE-2 planner.
In Distributed SIPE, multiple planning agents, running
as different processes and usually on different platforms,
cooperate to produce a joint plan. Each agent is a run-
ning instance of SIPE-2, with the following additional
capabilities:

e An agent can assign one or more of its subgoals to

another agent.

e An agent can send some or all of the planning ef-
fects contained in its current partial plan (i.e., effects
created by the actions and goals in its partial plan)

Domain/Problem Unfiltered | Filtered
Name [# ops | # acts || # Effects | # Effects
JMCAP 30 41 45 16
Trans 5 24 37 1

Table 1: Message Traffic Reduction

to another agent. It can send effects manually, in
which case a user selects the effects to be sent, or au-
tomatically, in which case the irrelevance reasoning
procedure selects the relevant effects from the com-
plete set of effects in the current plan. Along with an
effect, the sending agent sends information that al-
lows the receiving agent to know where to place the
effect in its plan.

e An agent can submit its completed subplan to a co-
ordinating agent.

e A coordinating agent can merge the subplans that
have been submitted to it.

Our experiments were designed to measure the utility
of irrelevance reasoning in distributed planning along
two dimensions: how effectively the approach reduces
message traffic, and to what extent the reduced mes-
sage traffic speeds up the planners. We measured these
effects in two domains: (1) a real-world maritime plan-
ning domain, JMCAP,® in which U.S. Navy and Ma-
rine Corps planners cooperate to produce a plan for a
Noncombatant Evacuation Operation (NEO); and (2)
a simple transportation domain from which the exam-
ple in Figure 1 is drawn.* Table 1 gives some details
about the two domains and problems used in the exper-
iments, specifically the number of planning operators in
the domain (“# ops”), and.the number of actions in the
bottom level of the final joint plan (“# acts”). In each
domain, we partition the top-level subgoals between two
agents, and then allow one agent to plan its assigned
subgoals to completion. That agent then sends some or
all of its planning effects to the other agent, which in
turn completes its subplan, resolving any conflicts and
capitalizing on any opportunities presented by the ef-
fects of first agent’s plan. We took measurements in two
different modes: using irrelevance reasoning to filter ir-
relevant effects, and using no filtering (i.e., sending all
the agent’s effects). We measured the number of mes-
sages that were sent in these two modes, along with
the CPU time used by query tree construction, filtering
effects, sending the effects across a network, and the
second agent’s planning of its subproblem.

Table 1 shows the reduction in message traffic from
applying irrelevance reasoning. Both domains showed
substantial reductions in the number of effects broad-
cast. In the JMCAP domain, where there is signifi-
cant overlap and interaction between the goals assigned

3Joint Maritime Crisis Action Planning.
“For the experiments, we solved a larger problem in this
domain than the one in Figure 1.

to the two agents, the filtered message passing sent 16
of the total 45 effects. In the transportation domain,
which was specifically designed to have very little over-
lap between the responsibilities of the two agents, ir-
relevance reasoning reduced the message traffic from 37
effects down to only one.

Table 2 shows the results of the planning time exper-
iments. The “Sending” columns represent the time it
takes for an agent to walk through the plan and collect
possible effects, filter out the irrelevant ones (if in filter-
ing mode), and send the messages to the other agents.®
The “Planning” columns represent the time it takes for
the second agent to complete its planning after it has
received all the effects sent by the first agent. The “QT
Gen.” column represents the time it takes to gener-
ate a query tree in filtered mode. Each “Total” col-
umn represents the sum of the previous numbers; it
adds the times of all activities in a distributed plan-
ning session that are part of or are effected by message
filtering. Each number represents an average over 20
runs of the system. The results show mild speedup in
the maritime domain, and substantial speedup in the
transportation domain. In JMCAP, sending and plan-
ning combined were 5% faster in the filtered mode, even
when query tree construction time was added. In the
transportation domain, the speedup was much more sig-
nificant: combined sending and planning (and QT con-
struction) was 35% faster in filtered mode. The result is
better for the transportation domain primarily because
the effects sent by the first agent represent a relatively
small part of the total planning problem of the second
agent in JMCAP—that is, the second agent in JMCAP
has a larger problem to solve than the first. The total
time difference between the filtered and unfiltered ap-
proaches is statistically significant for ¢ > 0.99 in both
domains,

It is important to note that, for many real-world do-
mains, reducing message traffic can be a much higher
priority than reducing planning time at the agent nodes.
Our application runs on a cluster of Sun SPARC Ul-
tra workstations linked by high-bandwidth connections,
but for many of the domains that drive this work—for
example, the maritime planning domain of JMCAP—it
is unreasonable to assume such high-bandwidth connec-
tions between agents. It is more likely that agents will
be communicating over low-bandwidth, wireless chan-
nels, and in these situations, the indiscriminate broad-
casting of all planning decisions made by all agents
is unacceptable. A second factor motivating the im-
portance of controlling message traffic is the need for
avoiding information overload of the human operator(s)

$Observant readers may put Table 1 and Table 2 together
and notice that it takes less than twice as much time to send
16 effects in the JMCAP domain as it takes to send one in
the transportation domain, and that it takes less than three
times as much time to send 37 effects as it takes to send
one in the transportation domain. This is because walking
through the plan collecting the effects represents a large
portion of the time reported in the “Sending” column.

at each agent. In many real-world domains, the dis-
tributed planning agents described here will not be op-
erating autonomously, but will each be serving as a tool
for a human planner or planning team. In these situa-
tions, even if the automated planning software may be
able to handle many irrelevant effects with a tolerable
increase in planning time, the human operator can more
easily be overloaded by being sent numerous facts irrel-
evant to his own tasks. Irrelevance reasoning can help
avoid overloading human planners as well as computer
planning systems.

Related Work

COLLAGE (Lansky 1994; Lansky & Getoor 1995) uses
a technique called localization to decompose a planning
problem into subproblems called regions. An agenda-
based mechanism generates a subplan for each region
(corresponding to the distributed agents in Distributed
SIPE), and a consistency agenda is used to propa-
gate changes between regions (corresponding to mes-
sage passing in Distributed SIPE). This approach im-
proves overall planning efficiency by permitting COL-
LAGE to solve the subproblems in each region (rela-
tively) independently.

Localizations in COLLAGE can be automatically
generated based on abstraction levels or scope. COL-
LAGE uses a set of heuristics to find regions that min-
imize the number of interactions that can occur be-
tween regions. This approach focuses on the problem
of assigning parts of the planning problem to regions
or agents, in contrast to our work, which uses the no-
tion of irrelevance (similar to COLLAGE’s notion of
scope) to manage the information flow among the dis-
tributed agents. The specification of the regions, and
of which constraints need to be propagated between re-
gions, is based on a set of action and constraint types
rather than a reachability analysis of the planning op-
erators as described in this paper. However, a modified
version of COLLAGE’s techniques could be applied to
Distributed SIPE to distribute the planning problem in
such a way that the interaction among the agents is
minimized.

Corkill (1979) describes a distributed version of
NOAH, a nonlinear hierarchical planner from which
SIPE is conceptually descended. Corkill’s distributed
NOAH allocates subgoals to distributed planners, and
applies distributed versions of NOAH’s plan critics to
identify interactions among the subplans. Corkill’s im-
plementation does interplanner constraint management
at a very fine grain, and communicates all constraints
that are possibly related to another planner without do-
ing any relevance filtering, so the system entails heavy
message traffic between the planners.

DIPART (Pollack 1996) is a distributed, real-time
planning system that focuses on issues arising in higher-
level control of distributed planning (such as the load
balancing of tasks). Communication among agents is
primarily at this higher, task-based, level, with some
support for incrementally merging subplans. However,

Unfiltered Filtered
Domain Sending | Planning | Total || QT Gen. | Sending | Planning | Total
JMCAP 459 15237 | 15696 994 231 13631 | 14856
Transportation 406 877 18 175 646 839

Table 2: Effect on Planning Time (in miliseconds)

to our knowledge, DIPART does not include a method
for automatically controlling message passing between
distributed planning agents.

STEAM (Tambe 1997) is a distributed agent archi-
tecture that builds on joint intentions theory (Levesque,
Cohen, & Nunes 1990) to enable coordinating agents
to maintain a coherent view of the team’s goals and
plans. STEAM uses team operators to represent shared
goals and to identify achieved, unachievable, or irrel-
evant goals; these in turn determine which informa-
tion is potentially relevant to other agents. This ap-
proach is extended with a decision-theoretic framework
that incorporates the costs and benefits of communica-
tion, as well as the probability that other agents already
have the information in question. STEAM’s notion of
relevance is rather different from Distributed SIPE’s—
rather than determining whether a piece of information
is (ir)relevant to another agent’s subgoals, the team op-
erators are used to determine whether a piece of infor-
mation directly contributes to the success or failure of
a joint goal. However, the decision-theoretic approach,
which is also used in (Gmytrasiewicz, Durfee, & Wehe
1991), represents an interesting extension that could be
layered on top of Distributed SIPE’s irrelevance compu-
tation to incorporate additional decision-making factors
in deciding whether and when to communicate informa-
tion between planning agents.

Huber and Hadley (1997) describe a multiagent sys-
tem in which reactive agents coordinate as teammates
in playing an internet game called Netrek. They
have applied plan-recognition techniques for agents to
implicitly coordinate (by understanding each others’
activities), and developed a limited communication
scheme for the agents to inform each other about their
activities. The key to the success of this approach is
that it uses an a priori analysis of the domain (per-
formed manually by the designers) to identify what in-
formation would be useful to communicate.

Discussion

We have described a technique for using irrelevance rea-
soning to reduce message traffic in a distributed plan-
ning system. The current implementation controls the
sending of effects generated by agents’ subplans. The
technique is general, and could be applied to other types
of message traffic in distributed planning systems, or to
other types of distributed problem solving system. For
example, irrelevance reasoning could be used to deter-
mine whether to send requests for other agents to solve

subgoals, or to achieve or maintain preconditions. An-
other application of irrelevance reasoning would be to
use the query trees to allocate subgoals among agents,
based on some notion of locality, to minimize interac-
tions among subplans (similar to the localization pro-
cess in COLLAGE).

The irrelevance reasoning approach could also be ex-
tended by incorporating notions of probability and util-
ity: how likely is it that an agent will in fact need to
know a piece of information, and how useful will it be to
the agent to know it? Also, at some cost in bandwidth,
query trees could be dynamically pruned as subplans
are generated (e.g., when an alternative planning strat-
egy has been ruled out, the associated preconditions
would no longer be relevant).

This paper addresses only the problem of managing
information flow by selecting which messages agents
should send each other. There are many other signifi-
cant challenges in developing distributed planning sys-
tems, including how to synchronize the activities of the
planning agents (who should do what, and when), how
to resolve conflicts when they arise, and how to merge
multiple subplans. Although we do not discuss these
issues in this paper, many of them are being addressed
in our ongoing research (desJardins & Wolverton 1998).

In summary, we have developed a novel method for
using irrelevance reasoning to control information flow
in a distributed planning system. We have implemented
the method in Distributed SIPE, and have demon-
strated its usefulness in a real domain. Irrelevance rea-
soning has previously been used successfully in deduc-
tion; this work extends the evaluation of this technique
into a new application area. In addition, this work rep-
resents an investigation of irrelevance reasoning in a
fundamentally different context, one in which irrelevant
facts have costs beyond simply increasing KB size—for
example, consuming valuable bandwidth. Limiting in-
formation flow has not been addressed by most previous
work in distributed planning and problem solving, and
the irrelevance reasoning approach will reduce the mes-
sage traffic in such systems substantially.

Acknowledgments

This research was funded by the Office of Naval Re-
search and the Space and Naval Warfare Systems Com-
mand (SPAWAR) under contract N66001-97-C-8515.
The JMCAP domain was constructed based on exper-
tise provided by Mr. Bob Rubin of Program Advance-
ment Group, Inc. The authors would like to thank

Mr. Dave Swanson, JMCAP Project Manager, for valu-
able guidance on our work. Thanks also to Karen My-
ers, David Wilkins, and the anonymous AAAI review-
ers for insightful comments on an earlier version of this

paper.

References

Corkill, D. D. 1979. Hierarchical planning in a dis-
tributed environment. In IJCAI-79.

desJardins, M., and Wolverton, M. J. 1998. Coor-
dinating planning activity and information flow in a
distributed planning system. In desJardins, M., ed.,
AAAI Fall Symposium on Distributed Continual Plan-
ning. AAAT Press Technical Report (forthcoming).
Gmytrasiewicz, P. J.; Durfee, E. H.; and Wehe, D. K.
1991. The utility of communication in coordinating
intelligent agents. In AAAI-91, 166-172.

Huber, M. J., and Hadley, T. 1997. Multiple roles,
multiple teams, dynamic environment: Autonomous
Netrek agents. In Autonomous Agents '97.

Lansky, A. L., and Getoor, L. C. 1995. Scope and
abstraction: Two criteria for localized planning. In
IJCAI-95.

Lansky, A. L. 1994. Located planning with diverse
plan construction methods. Technical Report FIA-
TR-9405, NASA Ames Research Center.

Levesque, H. J.; Cohen, P. R.; and Nunes, J. 1990.
On acting together. In AAAI-90.

Levy, A. Y., and Sagiv, Y. 1993. Exploiting irrelevance
reasoning to guide problem solving. In IJCAI-93.
Levy, A. Y. 1993. Irrelevance Reasoning in Knowledge
Based Systems. Ph.D. Dissertation, Computer Science
Department, Stanford University.

Pollack, M. E. 1996. Planning in dynamic environ-
ments: The “DIPART” system. In Tate, A., ed,,
Advanced Planning Technology: Technology Achieve-
ments of the ARPA/Rome Laboratory Planning Ini-
tiative. Morgan Kaufmann.

Tambe, M. 1997. Agent architectures for flexible, prac-
tical teamwork. In AAAI-97.

Wilkins, D. E. 1988. Practical Planning: Extending
the Classical AI Planning Paradigm. Morgan Kauf-
mann.

