THE DEPTH OF ULTRAPRODUCTS
OF BOOLEAN ALGEBRAS

SH853

SAHARON SHELAH

The Hebrew University of Jerusalem
Einstein Institute of Mathematics
Edmond J. Safra Campus, Givat Ram
Jerusalem 91904, Israel

Department of Mathematics
Hill Center-Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Road
Piscataway, NJ 08854-8019 USA

Abstract. We show that if μ is a compact cardinal then the depth of ultraproducts of less than μ many Boolean Algebras is at most μ plus the ultraproduct of the depths of those Boolean Algebras.

I would like to thank Alice Leonhardt for the beautiful typing.
This research was supported by the United States-Israel Binational Science Foundation
First Typed - 03/Nov/14
Latest Revision - 05/May/3
Monk has looked systematically at cardinal invariants of Boolean Algebras. In particular, he has looked at the relations between $\prod_{i<\kappa} \text{inv}(B_i/D)$ and $\prod_{i<\kappa} \text{inv}(B_i)/D$, i.e., the invariant of the ultraproducts of a sequence of Boolean Algebras vis the ultraproducts of the sequence of the invariants of those Boolean Algebras for various cardinal invariants inv of Boolean Algebras. That is: is it always true that $\prod_{i<\kappa} \text{inv}(B_i/D) \leq \prod_{i<\kappa} \text{inv}(B_i)/D$? Is it consistently always true? Is it always true that $\prod_{i<\kappa} \text{inv}(B_i)/D \leq \text{inv}(\prod_{i<\kappa} B_i/D)$? Is it consistently always true? See more on this in Monk [Mo96]. Roslanowski Shelah [RoSh 534] deals with specific inv and with more on kinds of cardinal invariants and their relationship with ultraproducts. Monk [Mo90a], [Mo96], in his list of open problems raises the question for the central cardinal invariants, most of them have been solved by now; see Magidor Shelah [MgSh 433], Peterson [Pe97], Shelah [Sh 345], [Sh 462], [Sh 479], [Sh 589, §4], [Sh 620], [Sh 641], [Sh 703], Shelah and Spinas [ShSi 677].

We here throw some light on problem 12 of [Mo96], pg.287 and will be continued in [Sh:F683]. We thank the referee for many helpful comments.

0.1 Definition. For a Boolean Algebra B let

(a) $\text{Depth}(B) = \sup\{\theta: \text{ in } B \text{ there is an increasing sequence of length } \theta\}$

(b) $\text{Depth}^+(B) = \sup\{\theta^+: \text{ in } B \text{ there is an increasing sequence of length } \theta\}$.

0.2 Remark. So $\text{Depth}^+(B) = \lambda^+ \Rightarrow \text{Depth}(B) = \lambda$ and if $\text{Depth}^+(B)$ is a limit cardinal then $\text{Depth}^+(B) = \text{Depth}(B)$.
§1 Above a compact cardinal

The following claim gives severe restrictions on any try to build a ZFC example for \(\text{Depth}(\prod_{\varepsilon < \kappa} B_{\varepsilon})/D > \prod_{\varepsilon < \kappa} \text{Depth}(B_{\varepsilon})/D\) if \(V\) is near \(L\), see [Sh 652] for complementary to §1.

1.1 Claim. 1) Assume

(a) \(\kappa < \mu \leq \lambda\)
(b) \(\mu\) is a compact cardinal
(c) \(D\) is an ultrafilter on \(\kappa\)
(d) \(\lambda = \text{cf}(\lambda)\) such that \((\forall \alpha < \lambda)(|\alpha|^\kappa < \lambda)\)
(e) \(B_i (i < \kappa)\) is a Boolean Algebra with \(\text{Depth}^+(B_i) \leq \lambda\)
(f) \(B = \prod_{i<\kappa} B_i/D\).

Then \(\text{Depth}^+(B) \leq \lambda\).

2) Instead \((\forall \alpha < \lambda)(|\alpha|^\kappa < \lambda)\) it suffices that \((\forall \alpha < \lambda)(|\alpha|^\kappa/D < \lambda = \text{cf}(\lambda))\).

3) We can weaken clause (e) (for parts (1) and (2)) to

(g) \(\{i < \kappa : B_i\text{ is a Boolean Algebra with }\text{Depth}^+(B_i) \leq \lambda\} \in D\).

Proof. 1) Toward contradiction assume that \(\langle a_\alpha : \alpha < \lambda \rangle\) is an increasing sequence in \(B\). So let \(a_\alpha = \langle a_\alpha^i : i < \kappa \rangle/D\), so for \(\alpha < \beta, A_{\alpha, \beta} =: \{i < \kappa : B_i \models a_\alpha^i < a_\beta^i\} \in D\).

Let \(E\) be a \(\mu\)-complete uniform ultrafilter on \(\lambda\).

For each \(\alpha < \lambda\) let \(A_\alpha\) be such that the set \(\{\beta : \alpha < \beta < \lambda \text{ and } A_{\alpha, \beta} = A_\alpha\}\) is a member of \(E\) so an unbounded subset of \(\lambda\) (exist as \(\lambda = \text{cf}(\lambda) \geq \mu > 2^\kappa\)).

We choose \(C\) as follows

\[
C =: \{\delta < \lambda : \delta \text{ is a limit ordinal and if } u \subseteq \delta \\
\text{is bounded of cardinality } \leq \kappa \text{ then } \delta = \sup(S_u \cap \delta)\}
\]

where

\[
S_u =: \{\beta < \lambda : \beta > \sup(u) \text{ and } (\forall \alpha \in u)(A_{\alpha, \beta} = A_\alpha)\}.
\]
As \(\lambda = \text{cf}(\lambda) > 2^\kappa = |D| \), for some \(A_* \in D \) the set \(S =: \{ \alpha < \lambda : \text{cf}(\alpha) > \kappa \text{ and } A_\alpha = A_* \} \) is a stationary subset of \(\lambda \).

As we have assumed \(\lambda = \text{cf}(\lambda) \) and \((\forall \alpha < \lambda)[|\alpha|^\kappa \leq \lambda] \), clearly \(C \) is a club of \(\lambda \).

Let \(\{ \delta_\varepsilon : \varepsilon < \lambda \} \subseteq C, \delta_\varepsilon \) increases continuous with \(\varepsilon \) and \(\delta_{\varepsilon + 1} \in S \). For each \(\varepsilon < \lambda \) the family \(\mathfrak{A}_\varepsilon = \{ S_u \cap \delta_{\varepsilon + 1} \setminus \delta_\varepsilon : u \in [\delta_{\varepsilon + 1}]^{\leq \kappa} \} \) is a downward \(\kappa^+ \)-directed family of non-empty subsets of \([\delta_\varepsilon, \delta_{\varepsilon + 1}] \) hence there is a \(\kappa^+ \)-complete filter \(E_\varepsilon \) on \([\delta_\varepsilon, \delta_{\varepsilon + 1}] \) extending \(\mathfrak{A}_\varepsilon \).

For \(\varepsilon < \lambda \) and \(i < \kappa \) let \(W_{\varepsilon, i} =: \{ \beta : \delta_\varepsilon \leq \beta < \delta_{\varepsilon + 1} \text{ and } i \in A_{\beta, \delta_{\varepsilon + 1}} \} \) and let

\[
B_\varepsilon =: \{ i < \kappa : W_{\varepsilon, i} \in E_\varepsilon^+ \}.
\]

As \(E_\varepsilon \) is \(\kappa^+ \)-complete clearly \(W_\varepsilon =: \bigcap \{ [\delta_\varepsilon, \delta_{\varepsilon + 1}] \setminus W_{\varepsilon, i} : i \in \kappa \setminus B_\varepsilon \} \in E_\varepsilon \) hence there is \(\beta \in W_\varepsilon \); if \(i \in A_{\beta, \delta_{\varepsilon + 1}} \) then \(\{ \gamma : \delta_\varepsilon \leq \gamma < \delta_{\varepsilon + 1} \text{ and } i \in A_{\gamma, \delta_{\varepsilon + 1}} \} \in E_\varepsilon^+ \), so \(A_{\beta, \delta_{\varepsilon + 1}} \) is a subset of \(B_\varepsilon \) and belongs to \(D \) hence \(B_\varepsilon \in D \).

So for each \(\varepsilon \) for some \(i_{\delta_{\varepsilon + 1}} \in A_* \) we have

\[
\{ \beta : \delta_\varepsilon \leq \beta < \delta_{\varepsilon + 1} \text{ and } i_{\delta_{\varepsilon + 1}} \in A_{\beta, \delta_{\varepsilon + 1}} \} \in E_\varepsilon^+.
\]

We can find \(i_* \in A_* \) such that

\[
Y = \{ \varepsilon < \lambda : \varepsilon \text{ is an even ordinal and } i_{\delta_{\varepsilon + 1}} = i_* \}
\]

has cardinality \(\lambda \), and let \(Z = \{ \delta_{\varepsilon + 1} : \varepsilon \in Y \} \) so \(Z \in [\lambda]^\lambda \). Now

\[(*)_0 \quad \varepsilon \in Y \Rightarrow A_{\delta_{\varepsilon + 1}} = A_* \quad \text{[why? as } \delta_{\varepsilon + 1} \in S] \]

\[(*)_1 \quad i_* \in A_* \in D \quad \text{[trivial; note if } \forall \alpha < \lambda, |\alpha|^{2^\kappa} < \lambda \text{ we can have } E_\varepsilon \text{ is } (2^\kappa)^+ \text{-complete filter so we have } B_{\delta_{\varepsilon + 1}} \text{ instead of } i_{\delta_\varepsilon} \text{ so we can weaken } \text{“} D \text{ ultrafilter” to: } D \subseteq \mathcal{P}(\kappa) \text{ upward closed and the intersection of any two non-empty}] \]

\[(*)_2 \quad \text{if } \alpha < \beta \text{ are from } Z \text{ then } i_* \in A_{\alpha, \beta} \quad \text{[why? let } \alpha = \delta_{\varepsilon + 1}, \beta = \delta_{\zeta + 1} \text{ so } \varepsilon < \zeta; \text{ let } \]

\[
\mathcal{U}_1 := \{ \gamma : \delta_\zeta < \gamma < \delta_{\zeta + 1}, A_{\alpha, \gamma} = A_\alpha (= A_{\delta_{\varepsilon + 1}}) \}
\]

so

\[
\mathcal{U}_1 = S_{(\delta_{\varepsilon + 1})} \cap [\delta_\zeta, \delta_{\zeta + 1}] \in \mathfrak{A}_\zeta \subseteq E_\zeta
\]

and let

\[
\mathcal{U}_2 := \{ \gamma : \delta_\zeta \leq \gamma < \delta_{\zeta + 1}, i_* \in A_{\gamma, \delta_{\zeta + 1}} \} \in E_\zeta^+.
\]
[Why? As this is how \(i_{\delta_{\xi+1}} \) is defined.]

So for any \(\alpha < \beta \) from \(Z \) as \(\mathcal{U}_1 \in E_\alpha \) and \(\mathcal{U}_2 \in E_\beta^+ \) clearly there is \(\gamma \in \mathcal{U}_1 \cap \mathcal{U}_2 \) hence \((\alpha = \delta_{\xi+1} < \delta_\xi \leq \gamma < \delta_{\xi+1} = \beta \) and) for \(i = i_* \) we have \(B_i \models a_i^{\delta_{\xi+1}} < a_i^{\gamma} \) (because \(\gamma \in \mathcal{U}_1 \)) and \(B_i \models a_i^{\gamma} < a_i^{\delta_{\xi+1}} \) (because \(\gamma \in \mathcal{U}_2 \)) so together \(B_i \models a_i^{\delta_{\xi+1}} < a_i^{\delta_{\xi+1}} \) but \(\alpha = \delta_{\xi+1}, \beta = \delta_{\xi+1} \) so we have gotten \(B_i \models a_i^\alpha < a_i^\beta \) so we are done.

2) We change the choice of the club \(C \). By the assumption, for each \(\alpha < \lambda \) let \(\langle f_\alpha^\gamma/D : \gamma < \gamma_\alpha \rangle \) be a list of the members of \(\alpha^\kappa/D \) without repetitions, so \(\gamma_\alpha < \lambda \).

Let

\[
C = \{ \delta : (i) \; \delta < \lambda \text{ is a limit ordinal} \\
(ii) \text{ if } \alpha < \delta \text{ then } \gamma_\alpha < \delta \\
(iii) \text{ if } \alpha < \delta \text{ and } \gamma < \gamma_\alpha \text{ and} \\
\quad \bar{A} = \langle A_i : i < \kappa \rangle \in \kappa D \text{ and there is } \xi \in [\delta, \lambda] \text{ such that} \\
\quad i < \kappa \Rightarrow A_{f_\gamma^\alpha(i), \xi} = A_i \text{ then there is} \\
\quad \xi \in (\alpha, \delta) \text{ such that } i < \kappa \Rightarrow A_{f_\gamma^\alpha(i), \xi} = A_i \}
\]

Clearly \(C \) is a club of \(\lambda \). The only additional point in the proof is

\((*) \) if \(\delta_1 < \delta_2 \) are from \(C \) and \(A_{\delta_2} = A_* \) then there is \(i_* \in A_* \) such that: for every \(\alpha \in S \cap \delta_1 \) there is \(\beta \in [\delta_1, \delta_2) \) satisfying \(A_{\alpha, \beta} = A_s \land i_* \in A_{\alpha, \beta} \).

[Why \((*) \) holds? If not, then for every \(i \in A_* \) there is \(\alpha_i \in S \cap \delta_1 \) satisfying \(\beta \in [\delta_1, \delta_2) \land A_{\alpha_i, \beta} = A_* \Rightarrow i \notin A_{\beta, \delta_2} \). Let \(f \in \kappa \alpha \) be defined by: \(f(i) = \alpha_i \), if \(i \in A_* \), \(f(i) = 0 \) otherwise, so for some \(\gamma < \gamma_\delta_1 \) we have \(f = f_{\gamma_1}^\delta \) mod \(D \) hence \(A = \{ i \in A_* : f(i) = f_{\gamma_1}^\delta(i) \} \in D \). As \(\kappa < \mu \) and \(D \) is \(\mu \)-complete there is \(\xi_1 \in (\delta_2, \lambda) \) such that \(i < \kappa \Rightarrow A_{f_{\gamma_1}^\delta(i), \xi_1} = A_{f_{\gamma_1}^\delta(i)} \) hence by the choice of \(C \) there is \(\xi_2 \in (\delta_1, \delta_2) \) such that \(i < \kappa \Rightarrow A_{f_{\gamma_1}^\delta(i), \xi_2} = A_{f_{\gamma_1}^\delta(i), \xi_1} = A_{f_{\gamma_1}^\delta(i)} \). But \(i \in A \Rightarrow f_{\gamma_1}^\delta(i) = f(i) = \alpha_i \in S \Rightarrow A_{\alpha_i, \xi_2} = A_{f_{\gamma_1}^\delta(i), \xi_2} = A_{f_{\gamma_1}^\delta(i)} = A_* \) so \(i \in A \Rightarrow A_{\alpha_i, \xi_2} = A_* \). Now \(A_{\xi_2, \delta_2} \in D \) hence there is \(i_* \in A_s \cap A_{\xi_2, \delta_2} \) and for it we get contradiction.]

Of course, the set of such \(i_* \)'s belongs to \(D \).

3) Obvious.

1.2 Conclusion: Let \(\mu \) be a compact cardinal. If \(\kappa < \mu \) and \(D \) is an ultrafilter on \(\kappa \), \(B_i \) is a Boolean Algebra for \(i < \kappa \) then

\((*) \) \((a) \) if \(D \) is a regular ultrafilter then \(\text{Depth}(\prod_{i<\kappa} B_i/D) \leq \mu + \prod_{i<\kappa} \text{Depth}(B_i)/D \)

\((b) \) this holds if \(\kappa = \aleph_0 \).
Proof. If this fails, let \(\lambda = (\mu + \prod_{i<\kappa} \text{Depth}(B_i)/D)^+ \), so \(\lambda \) is a regular cardinal > \(\mu \) and \((\forall \alpha<\lambda)[|\alpha^\kappa/D| < \lambda]\) - see below and \(\lambda \leq \text{Depth}(\prod_{i<\kappa} B_i/D) \), so by 1.1 we get a contradiction.

1.3 Remark. 1) Actually we prove that if \(\mu \) is a compact cardinal, \(\kappa < \mu \leq \lambda = \text{cf}(\lambda) \) and \((\forall \alpha<\lambda)[|\alpha^\kappa/D| < \lambda]\), then we can find an increasing sequence \(\langle \alpha_{\varepsilon}, \gamma \rangle \) of ordinals < \(\lambda \) and \(\text{cf}(\lambda) \) such that for every \(\varepsilon < \zeta < \lambda \) for some \(\gamma \) satisfying \(\alpha_{\varepsilon} < \gamma < \alpha_{\zeta} \) we have \(\text{c}\{\alpha_{\varepsilon}, \gamma\} = i, \text{c}\{\gamma, \alpha_{\zeta}\} = j \) (the result follows using \(\text{c}[\lambda]^2 \to D \)).

2) We use \(i_* \) rather than some \(B \in D \) in order to help clarify what we need.

3) Note that if \(D \) is a normal ultrafilter on \(\kappa > \aleph_0 \) and \(\langle \lambda_i : i < \kappa \rangle \) is increasing continuous with limit \(\lambda \), then \(\prod_{j\leq i} \lambda_j < \lambda_{i+1} \) then \(\lambda = \prod_{i<\kappa} \lambda_i/D \) but \(\lambda^\kappa/D > \lambda \). This is essentially the only reason for the undesirable extra assumption “\(D \) is regular” in 1.2.

Note

1.4 Claim. 1) In 1.1 instead “\(\mu \in (\kappa, \lambda) \) is a compact cardinal” it suffices to demand: \(\oplus_{\kappa+1,2\kappa,\lambda} \) where

\[\oplus_{\sigma, \theta, \lambda} \text{ if } c : [\lambda]^2 \to \theta \text{ then we can find a stationary } S \subseteq \lambda \text{ and } \gamma < \theta \text{ such that for every } u \in [S]^{<\sigma} \text{ the set } S_u = \{ \beta < \lambda : (\forall \alpha \in u)[c(\alpha, \beta) = \gamma] \} \text{ is unbounded in } \lambda. \]

2) If \(\mu \) is supercompact \(\sigma < \theta = \text{cf}(\theta) < \mu < \lambda = \text{cf}(\lambda) \) and \(Q = \text{adding } \mu \text{ Cohen subsets of } \theta \text{ in } V \), \(\oplus_{\sigma, \mu, \lambda} \) holds (even \(\oplus_{\sigma, \mu, \lambda} \) if \(\mu_{<\sigma} < \lambda \) in \(V \)).

In 1.4 we cannot get such results for \(\kappa > \mu \) because for \(\mu \) supercompact Laver indestructible and regular \(\lambda > \kappa > \mu \) we can force \{\delta < \lambda : \text{cf}(\delta) > \mu\} \) to have a square preserving the supercompactness.

1.5 Claim. Assume \(\lambda = \text{cf}(\lambda) > \kappa^+ \) and \(\kappa = \text{cf}(\kappa) \), and there is a square on \(S = \{ \delta < \lambda : \text{cf}(\delta) \geq \kappa \} \) (see 1.6 below). Then

(a) there is a sequence \(\langle B_i : i < \kappa \rangle \) of Boolean Algebras such that

(\(\alpha \)) \(\text{Depth}^+(B_i) \leq \lambda \)

(\(\beta \)) for any uniform ultrafilter \(D \) on \(\kappa \), \(\text{Depth}^+(\prod_{i<\kappa} B_i/D) > \lambda \)
(b) the proof of [Sh 652, 5.1] can be carried.

Where

1.6 Definition. For \(\lambda = \text{cf}(\lambda) > \aleph_0, S \subseteq \lambda = \text{sup}(S) \) we say that \(S \) has a square when we can find \(S^+ \) and \(\langle C_\alpha : \alpha \in S^+ \rangle \) such that

(a) \(S \setminus S^+ \) is not a stationary subset of \(\lambda \)
(b) \(C_\alpha \) is a closed subset of \(\alpha \)
(c) \(\beta \in C_\alpha \Rightarrow \beta \in S \cap C_\beta = C_\alpha \cap \beta \)
(d) we stipulate \(C_\alpha = \{\emptyset\} \) for \(\alpha \notin S^+ \).

Proof of 1.5. As in [Sh 652, 5.1] using \(\bar{C} = \langle C_\alpha : \alpha \in S^+ \rangle \) from 1.6 instead \(\langle \text{acc}(C_\alpha) : \alpha < \lambda^+ \rangle \). The only change being that in the proof of [Sh 652, Fact 5.3] in case 3 we have just \(\text{cf}(\alpha) \leq \kappa \) and let \(\langle \beta_\xi : \xi < \text{cf}(\alpha) \rangle \) be increasing continuous with limit \(\alpha \). If \(\text{cf}(\alpha) < \kappa \) we can find \(\varepsilon(*) < \kappa \) such that \(\zeta_1 < \zeta_2 < \kappa \Rightarrow \beta_{\zeta_1} \in A_{\beta_{\zeta_2},\varepsilon(*)} \) and let \(A_{\alpha,\varepsilon} = \emptyset \) if \(\varepsilon < \varepsilon(*) \) and \(A_{\alpha,\varepsilon} = \cup \{ A_{\beta_\zeta,\varepsilon} : \zeta < \text{cf}(\kappa) \} \) if \(\varepsilon \in [\varepsilon(*), \kappa) \). \(\square_{1.6} \)
REFERENCES.

