Linear Decomposition of Index Generation Functions

Tsutomu Sasao
Kyushu Institute of Technology
Iizuka 820-8502, Japan

Abstract—This paper shows a heuristic method to reduce the number of variables to represent incompletely specified index generation functions using linear decompositions. To find good linear transformations, two measures are introduced: the imbalance measure and the ambiguity measure. Experimental results using m-out-of-n code to binary converters, randomly generated functions, IP address tables, and lists of English words show the usefulness of the approach.

I. INTRODUCTION

Let n be the number of the variables, then the size of lookup table (LUT) to implement the function is proportional to 2^n. When n is large, a realization of the function by a single LUT is, in many cases, impractical. Functional decomposition [1, 3] is a technique to realize a given function using smaller LUTs by the circuit shown in Fig. 1. Since the advent of FPGAs in 1985, the decomposition technique has been improved: Efficient methods to find decompositions have been developed [2, 6, 10]. However, the basic scheme remains unchanged.

Linear decomposition shown in Fig. 2 is a different type of decomposition. In this case, L realizes a linear function, while G realizes a general (often non-linear) function. Nechiporuk [8] first presented this scheme in 1958. Later Lechner [7] enhanced the theory, and Varma-Trachtenberg [18] proposed a method to find a linear transformation using autocorrelation functions. Unfortunately, the effect of linear decompositions is not so impressive for general functions.

In this paper, we use linear decompositions to realize functions for which only k combinations of inputs are defined. For this class of functions, the circuit sizes can be reduced drastically with linear decompositions. To implement the linear part, we use a special programmable circuit that consists of registers, multiplexers, and EXOR gates (details are shown in Section IV). To implement the general part, we use an LUT. Thus, Fig. 2 can be a reconfigurable circuit.

This scheme is useful for communication applications where frequent changes are necessary [14, 15, 16], but cannot be treated by a conventional functional decomposition. Given an incompletely specified function, the problem of the linear decomposition is to obtain a linear transformation that minimizes the number of variables p for the general part. When a given function is defined for only k input combinations, the number of variables can be reduced to $2\lceil \log_2 k \rceil - 3$, in many cases, and by this, the size of the LUT is reduced drastically.

The rest of the paper is organized as follows: Section 2 defines index generation functions and shows their properties; Section 3 shows a method to minimize the number of variables to represent incompletely specified functions; Section 4 shows a method to reduce the number of variables to represent index generation function using linear transformations; Section 5 introduces m-out-of-n to binary code converters; Section 6 shows experimental results; and Section 7 concludes the paper.

II. INDEX GENERATION FUNCTION

Definition 1 [13, 17] Consider a set of k different vectors of n bits. These vectors are registered vectors. For each registered vector, assign a unique integer from 1 to k. A registered vector table shows an index for each reg-

Fig. 1. Conventional Functional Decomposition

Fig. 2. Linear Decomposition
registered vector. An incompletely specified index generation function produces a corresponding index when the input vector matches a registered vector. Otherwise, the value of the function is undefined (don't care). In this case, \(k \) is the weight of the function. The incompletely specified index generation function represents a mapping \(D \rightarrow \{1, 2, \ldots, k\} \), where \(D \subseteq B^n \) denotes the set of registered vectors.

Example 1 Consider the registered vectors shown in Table 1. These vectors show an index generation function with weight \(k = 7 \).

Index generation functions are useful for address tables for the internet, terminal access controller of local area networks, database, memory patch circuits, text compression, password tables, and code converters.

Table 2 shows the average number of variables \(p \) to represent random incompletely specified index generation functions of \(n \) variables with weight \(k \). From this, we have the following [16]:

Conjecture 1 When the number of the input variables is sufficiently large, most incompletely specified index generation functions with weight \(k \geq 7 \) can be represented by \(p = 2 \lceil \log_2 (k + 1) \rceil - 3 \) variables.

To derive Table 2, we minimized 30,000 random functions in total. Among them, only 233 functions required one more variables than the bound given by Conjecture 1. In other words, the exceptions that do not satisfy the conjecture are only 0.77 percents. For most functions, the necessary number of variables \(p \) depends on only \(k \), and is independent of \(n \), the number of variables in the original functions. For example, most index generation functions with weight \(k = 7 \) can be represented by three variables. Of course, there exist exceptions. An example of the exceptions that do not satisfy Conjecture 1 is as follows:

Example 2 Consider the registered vectors shown in Table 1. It shows an index generation function with weight \(k = 7 \). To distinguish these seven vectors, 6 variables are necessary.

However, for such functions, as shown in the next section, by linear transformations, the number of variables can be reduced. Thus, when we use linear transformations, almost all functions can be realized with the number of variables given by Conjecture 1.

As for the lower bound on the number of variables, we have the following:

Theorem 1 To represent any incompletely specified index generation function \(f \) with weight \(k \), at least \(q = \lceil \log_2 k \rceil \) variables are necessary.

(Proof) The number of different vectors specified with \(q - 1 \) variables is at most \(2^{2^{q-1}} < k \). Thus, at least \(q \) variables are necessary to represent an index generation function with weight \(k \).

III. A Method to Minimize the Number of Variables

To make the paper self-contained, in this section, we review a method to represent an incompletely specified index generation function by using the minimum number of variables [4, 5, 12]. The idea is illustrated by the following:

Example 3 Let us minimize the number of variables to represent the index generation function whose Karnaugh map is shown in Fig. 3. In the map, blank cells denote don't cares.

1. Let the four vectors be \(\bar{a}_1 = (1, 0, 0, 1) \), \(\bar{a}_2 = (1, 1, 1, 1) \), \(\bar{a}_3 = (0, 1, 0, 1) \), and \(\bar{a}_4 = (1, 1, 0, 0) \).
2. To distinguish \(\bar{a}_1 \) and \(\bar{a}_2 \), either \(x_2 \) or \(x_3 \) is necessary. From this, we have the condition \(x_2 \vee x_3 = 1 \), where \(x_i = 1 \) shows that \(x_i \) appears in the expression. In other words, \(x_2 \vee x_3 = 1 \) shows that either \(x_2 \) or \(x_3 \) is necessary. Similarly, to distinguish \(\bar{a}_1 \) and \(\bar{a}_3 \), the condition \(x_1 \vee x_2 = 1 \) is necessary; to distinguish

TABLE 1

<table>
<thead>
<tr>
<th>Vector</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_7)</td>
<td>(x_6)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

TABLE 2

<table>
<thead>
<tr>
<th>(k)</th>
<th>(n = 16)</th>
<th>(n = 20)</th>
<th>(n = 24)</th>
<th>UB</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3.052</td>
<td>3.018</td>
<td>3.003</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>4.980</td>
<td>4.947</td>
<td>4.878</td>
<td>5</td>
</tr>
<tr>
<td>31</td>
<td>6.447</td>
<td>6.115</td>
<td>6.003</td>
<td>7</td>
</tr>
<tr>
<td>63</td>
<td>8.257</td>
<td>8.007</td>
<td>8.000</td>
<td>9</td>
</tr>
<tr>
<td>127</td>
<td>10.304</td>
<td>10.000</td>
<td>9.963</td>
<td>11</td>
</tr>
<tr>
<td>255</td>
<td>12.589</td>
<td>11.996</td>
<td>11.896</td>
<td>13</td>
</tr>
<tr>
<td>511</td>
<td>14.890</td>
<td>14.019</td>
<td>13.787</td>
<td>15</td>
</tr>
<tr>
<td>1023</td>
<td>15.991</td>
<td>16.293</td>
<td>15.874</td>
<td>17</td>
</tr>
<tr>
<td>2047</td>
<td>16.000</td>
<td>18.758</td>
<td>17.965</td>
<td>19</td>
</tr>
<tr>
<td>4095</td>
<td>16.000</td>
<td>19.992</td>
<td>20.093</td>
<td>21</td>
</tr>
</tbody>
</table>

UB = 2 \lceil \log_2 (k + 1) \rceil - 3.
3. To distinguish all the vectors, all the conditions must hold at the same time. This is represented as R = 1, where
\[
R = (x_2 \lor x_3)(x_1 \lor x_2)(x_2 \lor x_4)(x_1 \lor x_3)(x_3 \lor x_4)(x_1 \lor x_4).
\]
4. To R, apply the distributive and the absorption laws, and obtain the following relation:
\[
R = x_1x_2x_4 \lor x_1x_2x_3 \lor x_2x_3x_4 \lor x_1x_3x_4.
\]
5. Since each product consists of three literals, each corresponds a minimum solution. Thus, f can be represented with three variables. Since no variable appears in all products, no variable is essential.

6. The expression for the original function is
\[
f = 1 \cdot x_1 \bar{x}_2 \bar{x}_3 x_4 \lor 2 \cdot x_1 x_2 x_3 x_4 \lor 3 \cdot \bar{x}_1 \bar{x}_2 x_3 x_4 \lor 4 \cdot x_1 x_2 \bar{x}_3 x_4.
\]

In principle, the number of variables to represent an incompletely specified index generation function can be minimized by using the following [14, 16]:

Algorithm 1 (Minimization of Variables)

1. Let D be the set of vectors \(\vec{a}_i \), such that \(f(\vec{a}_i) = i \), where \(i = 1, 2, \ldots, k \).
2. For each pair of vectors \(\vec{a}_i = (a_1, a_2, \ldots, a_n) \in D \) and \(\vec{b}_j = (b_1, b_2, \ldots, b_n) \in D \), associate a sum defined by \(s(i, j) = \bigvee_{r=1}^{n} y_r \), where \(y_r = 0 \) if \(a_r = b_r \) and \(y_r = x_r \) if \(a_r \neq b_r \), where \(r = 1, 2, \ldots, n \). Note that there are \(k(k - 1)/2 \) pairs.
3. Define a covering function \(R = \bigwedge_{i<j} s(i, j) \).
4. Represent R by a minimum sum-of-products expression.
5. The product with the fewest literals corresponds to the minimum solution.
6. Derive an expression with the minimum number of variables.

In Algorithm 1, Steps 4, 5 and 6 compute a minimum covering. By first detecting the essential variables, we can reduce the computational time to derive the covering function.

IV. REDUCTION OF THE NUMBER OF VARIABLES BY LINEAR TRANSFORMATIONS

In the previous section, we showed a standard method to reduce the number of variables for incompletely specified functions. Unfortunately, the minimization ability of such method is limited. In this section, we show that more variables can be reduced by using linear transformations.

Example 4 By Algorithm 1, the number of variables for the function in Table 1 can be reduced to six: Any one variable can be removed. If we remove \(x_7 \), then we have:
\[
f = 1 \cdot x_1 \bar{x}_2 \bar{x}_3 x_4 \bar{x}_5 \bar{x}_6 \lor 2 \cdot x_1 x_2 \bar{x}_3 \bar{x}_4 \bar{x}_5 \bar{x}_6 \lor 3 \cdot \bar{x}_1 \bar{x}_2 x_3 \bar{x}_4 \bar{x}_5 \bar{x}_6 \lor 4 \cdot \bar{x}_1 \bar{x}_2 \bar{x}_3 x_4 \bar{x}_5 \bar{x}_6 \lor 6 \cdot \bar{x}_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 x_5 \bar{x}_6 \lor 7 \cdot \bar{x}_1 \bar{x}_2 \bar{x}_3 \bar{x}_4 \bar{x}_5 \bar{x}_6.
\]

Definition 2 A compound variable has a form \(y = c_1 x_1 \oplus c_2 x_2 \oplus \cdots \oplus c_n x_n \), where \(c_i \in \{0, 1\} \). The compound degree of \(y \) is \(\sum_{i=1}^{n} c_i \), where \(c_i \) is viewed as an integer and \(\sum \) denotes an ordinary integer addition. A primitive variable is one with compound degree one.

Fig. 4 shows a circuit to generate compound variables with degree two. It performs a linear transformation \(y_i = x_i \oplus x_j \) or \(y_i = x_i \), where \(i \neq j \). It uses a pair of multiplexers for each variable \(y_i \). The upper multiplexers have the inputs \(x_1, x_2, \ldots, x_n \). The register with \(\lceil \log_2 n \rceil \) bits specifies which variable to select by the multiplexer. The lower multiplexers have the inputs \(x_1, x_2, \ldots, x_n \), except for \(x_i \). For the \(i \)-th input, the constant input 0 is connected instead of \(x_i \). By setting \(y_i = x_i \oplus 0 \), we can implement \(y_i = x_i \).

We can easily design a circuit for compound variables with a higher degree. A circuit for degree \(t \) consists of \(t \) modules of \(\lceil \log_2 n \rceil \)-bit registers, \(t \) modules of \(n \)-input multiplexers, and a \(t \)-input EXOR gate. The cost of the circuit is \(O(tn \log n) \). When we fix the value of \(t \), the cost of the linear part is \(O(m \log n) \).
Definition 3 Given an incompletely specified index generation function, a linear transformation that minimizes the number of variables is optimum.

By Theorem 1, if the linear transformation reduce the number of variables to \(q = \lceil \log_2 k \rceil \) variables, then it is an optimum. A brute force way to find an optimum transformation is first to construct the compound variables whose degrees are \(t \) or less than \(t \). The number of such variables is \(\sum_{i=1}^{l} \binom{n}{i} \). Then, apply the method shown in Section III. However, such method takes too much computation time, and is impractical.

Example 5 To represent the function in Table 1 with fewer variables, consider the linear transformation:

\[
\begin{align*}
y_1 &= x_1 \oplus x_3 \oplus x_5 \oplus x_7, \\
y_2 &= x_2 \oplus x_3 \oplus x_6 \oplus x_7, \\
y_3 &= x_4 \oplus x_5 \oplus x_6 \oplus x_7.
\end{align*}
\]

We have the registered vectors shown in Table 3. In this case, three variables \((y_3, y_2, y_1)\) distinguish 7 vectors.

As shown in this example, with a linear transformation, we can often reduce the number of variables to represent the function. Why does this linear transformation reduce the number of variables? Fig. 5 shows the decision tree for the function in Table 1, while Fig. 6 shows the decision tree for the function in Table 3. To distinguish 7 vectors, the tree in Fig. 5 requires 6 variables, while the tree in Fig. 6 requires only three variables. In other words, a more balanced decision tree produces an expression with fewer variables.

To obtain the linear transformation that produces a more balanced decision tree, we define a measure showing the imbalance of the tree.

Definition 4 In the registered vector table, let \(\nu(x_i,0) \) be the number of vectors with \(x_i = 0 \), and let \(\nu(x_i,1) \) be the number of vectors with \(x_i = 1 \). The imbalance measure of the function with respect to \(x_i \) is defined as

\[
\omega(x_i) = \nu(x_i,0)^2 + \nu(x_i,1)^2.
\]

In the variable \(x_i \), when the numbers of occurrences of 0’s and 1’s are the same, \(\omega(x_i) \) takes its minimum. The larger the difference of the occurrences of 0’s and 1’s, the larger the imbalance measure. Let \(k \) be the number of registered vectors. Then, \(\nu(x_i,0) + \nu(x_i,1) = k \).

Example 6 In Table 1, since, for all \(x_i \), \(\nu(x_i,0) = 6 \) and \(\nu(x_i,1) = 1 \), we have

\[
\omega(x_i) = \nu(x_i,0)^2 + \nu(x_i,1)^2 = 6^2 + 1^2 = 37.
\]

In Table 3, since \(\nu(x_i,0) = 3 \) and \(\nu(x_i,1) = 4 \), we have

\[
\omega(x_i) = \nu(x_i,0)^2 + \nu(x_i,1)^2 = 3^2 + 4^2 = 25.
\]

In other words, the linear transformation in Example 5 reduces the imbalance measure, and improves the balance of the decision tree.
When the imbalance measure is large, the reduction of variables tends to be difficult. However, if a linear transformation reduces the imbalance measure, then we may reduce more variables.

Definition 5 Let \(f(x_1, x_2, \ldots, x_n) \) be an incompletely specified index generation function with weight \(|f|\). Let \(\vec{x} = (x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(n)}) \) be a vector consisting of a subset of the variables \(\{x_1, x_2, \ldots, x_n\} \), where \(\pi \) denotes a permutation of \(\{1, 2, \ldots, n\} \). Let \(N(f, \vec{x}, \vec{a}) \) be the number of registered vectors of \(f \) that takes non-zero values, when the values of \(\vec{x} \) are set to \(\vec{a} = (a_1, a_2, \ldots, a_n) \), \(a_i \in \{0, 1\} \).

The ambiguity of \(f \) with respect to \(\vec{x} \) is defined as

\[
AMB(\vec{x}) = -|f| + \sum_{\vec{a} \in B^n} N(f, \vec{x}, \vec{a})^2.
\]

Example 7 Consider the index generation function shown in Table 4. Assume that the values of \((x_1, x_2, x_3) \) are changed as \((0, 0, 0),(0, 0, 1),(0, 1, 0),(0, 1, 1),(1, 0, 0),(1, 0, 1),(1, 1, 0),(1, 1, 1)\), in this order. Then, the values of \(f \) change as follows:

\[
[1], [d], [2], [3], [5], [6], [d], [4], [7],
\]

where \(d \) denotes undefined or don’t care. In this case, the ambiguity with respect to \((x_1, x_2, x_3) \) is

\[
AMB(x_1, x_2, x_3) = -7 + (1^2 + 0^2 + 1^2 + 1^2 + 2^2 + 0^2 + 2^2) = 2
\]

When \((x_1, x_2, x_3) = (0, 0, 1) \), the value of \(f \) is undefined, while when \((x_1, x_2, x_3) = (1, 1, 1) \), the value of \(f \) is ambiguous, since \(f \) can be either 4 or 7.

Next, let the variable set be \((x_1, x_3, x_5) \). Similarly, the values of \(f \) change as follows:

\[
[1, 2], [d], [3], [d], [d], [5], [4], [6], [7],
\]

In this case, the ambiguity with respect to \((x_1, x_3, x_5) \) is

\[
AMB(x_1, x_3, x_5) = -7 + (2^2 + 0^2 + 1^2 + 0^2 + 2^2 + 1^2 + 2^2) = 4
\]

When \((x_1, x_3, x_5) = (0, 0, 0) \) and \((1, 1, 1) \), the values of \(f \) are ambiguous.

Finally, let the variable set be \((x_3, x_4, x_5) \). Similarly, the values of \(f \) change as follows:

\[
[1], [d], [2], [5], [4], [7], [3], [6].
\]

In this case, the ambiguity with respect to \((x_3, x_4, x_5) \) is

\[
AMB(x_3, x_4, x_5) = -7 + (1^2 + 0^2 + 2^2 + 1^2 + 1^2 + 2^2 + 1^2 + 2^2) = 0.
\]

Note that \(f \) can be represented with only \((x_3, x_4, x_5)\). □

Theorem 2 \(AMB(\vec{x}) = 0 \) iff \(\vec{x} \) can represent \(f \).

(Proof) Let \(D \) be the set of registered vectors for \(f \) and let \(\tilde{D} \) be the set of vectors consisting of the variables for \(\vec{x} \).

\((\Rightarrow) \) We prove this by contradiction. Assume that \(\vec{x} \) cannot represent \(f \). Two cases are possible:

1. \(f \) is undefined for some \(\vec{a} \in \tilde{D} \). In this case, \(N(f, \vec{x}, \vec{a}) = 0 \). However, this cannot happen, since \(\vec{a} \) is a subset of a registered vector.

2. \(f \) is ambiguous for some \(\vec{a} \in \tilde{D} \). In this case, \(N(f, \vec{x}, \vec{a}) \geq 2 \). Since \(\sum N(f, \vec{x}, \vec{a})^2 > |f| \), we have \(AMB(\vec{a}) > 0 \).

From these, for each \(\vec{a} \in \tilde{D} \), the value of \(f \) is uniquely defined or undefined for any \(\vec{a} \in B^n \). Thus, \(f \) can be represented with \(\vec{x} \).

\((\Leftarrow) \) Assume that \(f \) is represented with \(\vec{x} \). In this case, the value of \(f \) is uniquely defined or undefined. This implies that \(N(f, \vec{x}, \vec{a}) = 1 \) for all \(\vec{a} \in \tilde{D} \). From this, we have \(AMB(\vec{x}) = -|f| + \sum_{\vec{a} \in \tilde{D}} 1^2 = 0 \), since, \(|f| = \sum_{\vec{a} \in \tilde{D}} 1 \).

By using these two measures, we have a heuristic algorithm to reduce the number of variables. In this algorithm, the imbalance measure is used to guide the linear transformation. The compound variable is chosen to minimize the imbalance measure in a greedy manner. Then the ambiguity measure (AMB) is tested. When the AMB is greater than 0, more resolution is required to include more compound variables. This process stops when the function resolution is high enough to make AMB=0.

Algorithm 2 (Heuristic Method to Find a Good Linear Transformation)

1. Let the input variables be \(x_1, x_2, \ldots, x_n \). Let \(t \geq 2 \) be the maximal compound degree.

2. Generate the compound variables \(y_t \), whose compound degrees are \(t \) or less than \(t \). The number of such compound variables is \(\sum_{i=1}^{t} \binom{n}{i} \). Let \(T \) be the set of compound variables.

3. Let \(y_1 \) be the variable with the smallest imbalance measure. Let \(\tilde{Y} \leftarrow (y_1) \), \(T \leftarrow T - y_1 \).
This algorithm constructs a table with $O(n^t)$ columns and k rows. So, it is impractical when $t > 5$. For small t, this algorithm obtains fairly good solutions in a short time.

V. Code Converters

Here, we consider a class of code converters that can be implemented as index generation functions.

Definition 6 An m-out-of-n code consists of all $k = \binom{n}{m}$ binary code words whose weights are m.

Definition 7 An m-out-of-n code to binary converter realizes the index generation function with weight $k = \binom{n}{m}$. It has n inputs and $\lceil \log_2 \binom{n}{m} + 1 \rceil$ outputs. An m-out-of-n code is produced in increasing order of binary numbers. That is, the minimum number is denoted by $(0, 0, \ldots, 0, 1, 1, \ldots, 1)$, while the maximum number is denoted by $(1, 1, \ldots, 1, 0, 0, \ldots, 0)$.

m-out-of-n codes are used in asynchronous logic circuits.

Example 8 Table 1 shows the 1-out-of-7 code to binary converter.

Example 9 Consider the 2-out-of-6 code to binary converter shown in Table 5. Let us reduce the number of variables by using a linear transformation. The imbalance measure of the variable x_i is $10^2 + 5^2 = 125$, for all

4. While $AMB(\vec{Y}) > 0$, find the variable y_j in T that minimizes the value of $AMB(\vec{Y}, y_j)$. Let $\vec{Y} \leftarrow (\vec{Y}, y_j)$, $T \leftarrow T - y_j$.

5. Stop.

This algorithm constructs a table with $O(n^t)$ columns and k rows. So, it is impractical when $t > 5$. For small t, this algorithm obtains fairly good solutions in a short time.

VI. Experimental Results

We used two different algorithms according to the value t of the compound degree of the linear transformation. For the realization using primitive variables only, i.e., $t = 1$, we used Algorithm 1. For the realization with $2 \leq t \leq 6$, we used Algorithm 2.

A. m-out-of-n code

The number of variables to represent an m-out-of-20 code to binary number converter is investigated for different values of t, and for different values of m. Note that the number of registered vectors is $k = \binom{20}{m}$, and by Theorem 1, the function requires at least $q = \lceil \log_2 k \rceil$ variables. Table 6 shows the results of the experiment. When the compound degree is one, all converters required 19 variables. For $m = 1$, $m = 2$ and $m = 3$, with the increase of the compound degree t, the necessary number of variables decreased. For $m = 4$, up to the compound degree three, the necessary number of variables decreased. However, after that, the number of variables could not be reduced. The figure shown in bold face denotes an optimum solution.

B. Random Index Generation Functions

For $n = 24$ and $k = 1023$, we generated 1000 random index generation functions. Fig. 7 shows the results. The vertical axis denotes the number of variables after linear
transformations. The horizontal axis denotes s, the difference of occurrences of 0’s and 1’s:

$$s = \frac{\nu(x, 0) - \nu(x, 1)}{64}.$$

Also, t denotes the maximum compound degree of the variables. For $s = 0$, the necessary number of variables to represent function is reduced to 16 when $t = 1$ and $t = 2$. However, for $s = 10$, the necessary number of variables to represent function is 24 when $t = 1$, while it is reduced to 20 when $t = 2$, and it is further reduced to 16 when $t = 3$. Thus, the linear transformations with larger t are more effective when the imbalance measures are large.

C. IP Address Tables

In this experiment, we used distinct IP addresses of computers that accessed our web site over a period of a month. We considered four lists of different values of k. Table 7 shows the results. Note that the original number of variables is 32. The first column shows the number of registered vectors: k. The second column shows the number of variables to represent the function, when only the primitive variables are used (i.e. $t = 1$). The third column shows the number of variables to represent the function, when the variables with compound degrees up to two are used. Other columns show the numbers of variables for different values of t. As shown in Table 7, the LUT size can be reduced when we use compound variables with $t = 3$ or $t = 4$.

D. Lists of English Words

To compress English text, we can use a list of frequently used words [9]. We made three lists of English words: List A, List B, and List C. The maximum number of characters in the word lists is 13, but we only consider the first 8 characters. For English words consisting of fewer than 8 letters, we append blanks to make the length of words 8. We represent each alphabetic character by 5 bits. So, in the lists, all the words are represented by 40 bits. The numbers of words in the lists are 1730, 3366, and 4705, respectively. Within each word list, each English word has a unique index, an integer from 1 to k, where $k = 1730$ or 3360 or 4705. The numbers of bits for the indices are 11, 12, and 13, respectively. Table 8 shows the numbers of variables to represent the lists. For these data, imbalance measures are large, and we could reduce many variables by using compound variables with large t.

E. Computation Time

We used a PC with INTEL Core i3, 2.4 MHz, and Windows 7 Professional with 64-bit Operating System. As for the minimization of primitive variables, we used the program of [14], that obtains exact minimum solutions. As for the linear transformations, we used Algorithm 2 that obtains near minimal solutions. For randomly generated functions with $n = 20$ and $k = 127$, the minimization of primitive variables took, on the average, 270 m sec. For the reduction of variables using compound variables, it took, 31, 93, 655, 2839, 12433 m sec, when the maximum compound degrees were $t = 2, 3, 4, 5$, and 6, respectively.

For the 2-out-of-20 code to binary converter, the minimization of primitive variables took 15 ms. For the reduction of variables using compound variables, the CPU times were 46, 202, 873, 3307, 10873 m sec, when the maximum compound degrees were $t = 2, 3, 4, 5$, and 6, respectively.
VII. Concluding Remarks

In this paper, we considered linear decompositions of index generation functions. To find good linear transformations, we introduced two measures: the imbalance measure and the ambiguity measure. We showed a heuristic method to find a linear transformation that reduces the number of variables to represent a given function. When the imbalance measures are large, many variables are necessary to represent the function. However, with linear transformations that reduce imbalance measures of the original variables, we can represent the functions with fewer variables.

As for applications, we showed code converters, random functions, IP address tables, and lists of English words. Most index generation functions are undecomposable by the conventional methods. However, they are decomposed by linear functions to produce efficient memory-based implementations.

The presented design method is useful only for index generation functions whose weights are small. Unfortunately, MCNC benchmark functions do not include such functions. So, the comparison with other method [18] is difficult. Index generation functions are related short-life data such as address tables, password lists, which require frequently updates. Such functions are often implemented by software. However, reconfigurable hardware/ firmware implementations will make them much faster.

Acknowledgments

This research is partly supported by the MEXT Regional Innovation Cluster Program (Global Type, 2nd Stage), and by a Grant in Aid for Scientific Research of the JSPS. The author thanks Prof. Jon T. Butler for discussion and Mr. M. Matsuura for experiments. Comments of reviewers were quite useful to improve the quality of the paper.

References

