Weighted Sum Rate Maximizing Transceiver Design in MIMO Interference Channel

Joonwoo Shin* and Jaekyun Moon†

*Electronics and Telecommunication Research Institute (ETRI), Daejon, Korea
†School of EECS, Korea Advanced Institute of Science and Technology (KAIST), Daejon, Korea
Email: joonoos@etri.re.kr, jmoon@kaist.edu

Abstract—This paper is concerned with transmit and receive filter optimization for the K-user MIMO interference channel. Specifically, linear transmit and receive filter sets are designed which maximize the weighted sum rate while allowing each transmitter to utilize only the local channel state information. Our approach is based on extending the existing method of minimizing the weighted mean squared error (MSE) for the MIMO broadcast channel to the K-user interference channel at hand. For the case of the individual transmitter power constraint, however, a straightforward generalization of the existing method does not reveal a viable solution. It is in fact shown that there exists no closed-form solution for the transmit filter but simple one-dimensional parameter search yields the desired solution. Compared to the direct filter optimization using gradient-based search, our solution requires considerably less computational complexity and a smaller amount of feedback resources while achieving essentially the same level of weighted sum rate.

I. INTRODUCTION

To achieve high spectral efficiency, much effort is focused on improving the achievable rate of multiple input multiple output (MIMO) interference channels [1]–[3]. One of the most notable schemes in this area, the interference alignment (IA) technique of [4] confines all undesired interferences from other communication links into a pre-define subspace and achieves maximum capacity scaling. However, IA can only offer a suboptimal sum rate at finite SNRs [3].

In this paper, we aim at maximizing the sum rate in the K-user MIMO interference channel. We consider two linear transceiver design methods. One is for the sum power usage limited network and the other applies to the per-transmit-node power usage limited network. In both designs, to maximize the weighted sum rate (WSR), we pursue minimization of the weighted mean squared error (WMSE). The idea of maximizing WSR via receiver-side WMSE minimization was originally developed for the multi-user MIMO broadcast channel [5]. Our sum-power-constrained method could be seen as a generalization of the approach of [5] to cover the K-user MIMO interference channel and can be obtained as a relatively straightforward extension of the method in [5]. However, our individual-power-constrained method is not a direct generalization of the method of [5] due to multiple power constraints. In fact, unlike in the case of the broadcast channel, we show that there is no close-from solution for the minimum WMSE transmit filter, although a simple one-dimensional search for the power-adjusting parameter leads to the desired solution. Using simulation results and analysis, we verify that both proposed schemes achieve the maximum WSR with lower computational complexity than the gradient-based optimization of the transmit and receive filters [2]. Also, unlike in [2], [4], [6], our schemes require only the local channel state information (CSI) (i.e., each transmitter needs to know only the CSI of the links originating from itself whereas the MIMO interference channel precoder designs in [2], [4], [6] require the CSI for all links).

Related ideas for the MIMO interference channel can also be found in [3], [6]–[9]. In [3], [8], the minimum MSE (MMSE) transceiver is designed without considering different weights for the MSEs at multiple receivers. In [6] suboptimal MSE weights are used. In contrast, our weighted MMSE transceiver design relies on a set of MSE weights that provides a direct link between the weighted MMSE (WMMSE) and WSR criteria. The WMMSE-based weighted utility maximization is also considered in [7], but there only a single data stream is assumed between a given user pair. A very similar idea on maximizing WSR via WMSE minimization under the individual power constraint has been discussed in [9]. But, unlike in our approach, the inter-dependency between the transmit-power-adjusting Lagrange multiplier and the precoding matrix has not been considered in [9]. In our individual-power-constrained transceiver design, this inter-dependency is handled by introducing one-dimensional search for the Lagrange multiplier.

The following notations are used. We employ upper case boldface letters for matrices and lower case boldface for vectors. For any general matrix, \(X \), \(X^T \), \(X^* \), \(X^H \), \(\text{Tr}(X) \), \(\det(X) \), \(\text{vec}(X) \), \(\text{SVD}(X) \) denote the transpose, the conjugate, the Hermitian transpose, the trace, the determinant, the stack columns, and the singular value decomposition of \(X \), respectively. The symbol \(||\cdot||^2 \) indicates the 2-norm of a vector. \(I_n \) denotes an identity matrix of size \(n \).

II. SYSTEM MODEL

We consider the MIMO interference channel where precoding can only be done over one transmission slot. As
shown in Fig. 1, K source nodes simultaneously transmit independent data streams to their desired destination nodes and generate co-channel interference to all other undesired nodes. In this system each source node $\{S_k\}$ is equipped with M antennas and each destination node $\{D_k\}$ has N antennas ($k \in \{1 \sim K\}$). The MIMO channels from S_k to D_j are modelled by $H_{ji} \in \mathbb{C}^{N \times M}$ ($i, j \in \{1 \sim K\}$) whose coefficients are independent and identically distributed (i.i.d) complex Gaussian random variables with $\mathcal{CN}(0,\sigma_i^2)$. We assume that the channel information is only locally available, i.e., each node knows only the coefficients for the channel link originating from itself. Note that the precoder designs of [2], [4], [6] are based on the availability of the global channel information. Let $s_k \in \mathbb{C}^{M \times 1}$ denote the symbol vector from S_k with $E[s_k s^H_k] = I_d$ where d is the number of data streams for D_k, $d \leq M, N$ and the value of d is chosen to meet the feasibility of degree of freedom [10]. Also $V_k \in \mathbb{C}^{M \times d}$ denotes the precoding matrix for S_k. Then $N \times 1$ received signal vector at D_k is represented as

$$y_k = H_{kk}V_k s_k + \sum_{i \neq k} H_{ki} V_i s_i + n_k,$$

where n_k denotes the i.i.d complex Gaussian noise vector at D_k with $\mathcal{CN}(0,\sigma_n^2 I_N)$. Then D_k combines its received signal with $U_k \in \mathbb{C}^{d \times N}$ to decode the desired signals:

$$\hat{s}_k = U_k y_k = U_k H_{kk} V_k s_k + U_k \sum_{i \neq k} H_{ki} V_i s_i + U_k n_k. \quad (2)$$

Our goal is to find $\{V_k\}$ and $\{U_k\}$ that maximize the WSR under the sum power constraint and also the individual power constraint. We assume a unit noise variance ($\sigma_n^2 = 1$) without losing generality.

III. Weighted Sum Rate Maximization

First consider finding $\{V_k\}$ that maximizes

$$\sum_{k=1}^K \mu_k R_k$$

subject to $\sum_k \text{Tr}(V_k V^H_k) \leq P_T$ or $\text{Tr}(V_k V^H_k) \leq P_k \forall k$ subject to $\sum_k \text{Tr}(V_k V^H_k) \leq P_T$ or $\text{Tr}(V_k V^H_k) \leq P_k \forall k$

where the subscript k points the source node and its intended destination node, μ_k denotes the weight, R_k is the achievable rate, P_T represents the maximum sum power allowed for all transmitters and P_k is the k-th node’s maximum transmit power. With Gaussian signaling, the achievable rate takes the well-known form:

$$R_k = \log \left\{ \text{det} \left(I_N + \Phi_k^{-1} H_{kk} V_k V^H_k H^H_{kk} \right) \right\}, \quad (4)$$

where $\Phi_k = I_N + \sum_{i \neq k} H_{ki} V_i V^H_i H^H_{ki}$. We attempt to solve this WSR maximization problem by minimizing the weighted receiver MSE, as has been done for the MIMO broadcast channel [5]. This approach was also attempted for the K-user MIMO interference channel in [9] assuming the individual power constraint, but our solution is different as elaborated below.

A. Relationship between achievable rate and error covariance matrix

To understand the link between the WSR maximization problem and the WMSE minimization problem in the K-user MIMO interference channel, we need to clarify the relationship between the achievable rate and the error covariance matrix. This argument is parallel to one given in [5] for the MIMO broadcast channel. For the MMSE receive filter at D_k, we write

$$U_k^{(MMSE)} = \arg \min \mathbb{E}[\|U_k y_k - s_k\|^2]$$

$$= V_k^H H_{kk} \left(\sum_{i=1}^K H_{ki} V_i V^H_i H^H_{ki} + I_N \right)^{-1}, \quad (5)$$

and the error matrix for D_k is given by

$$E_k = \mathbb{E}\left\{ (U_k^{(MMSE)} y_k - s_k) (U_k^{(MMSE)} y_k - s_k)^H \right\}$$

$$= (I_N + \Phi_k^{-1} H_{kk} V_k V^H_k H^H_{kk})^{-1}. \quad (6)$$

Comparing (4) and (6), the relationship between the achievable rate and the error covariance matrix is established as:

$$R_k = \log \left\{ \text{det}(E_k^{-1}) \right\}$$

which, not surprisingly, is identical to the relationship between the rate and the error covariance matrix for the case of the MIMO broadcast channel [5]. Apparently, though, the error covariance matrix E_k here is different from that of the broadcast channel due to the presence of multiple sources. Note that this relationship between the achievable rate and the error covariance matrix holds for any $\{V_k\}$, implying that (7) is true with either transmit power constraint.

B. MSE weight design

Now consider finding $\{V_k\}$ that solves the following WMMSE problem:

$$\min \sum_{k=1}^K \text{Tr}(W_k E_k) \quad (8)$$

subject to $\sum_k \text{Tr}(V_k V^H_k) \leq P_T$ or $\text{Tr}(V_k V^H_k) \leq P_k \forall k$ subject to $\sum_k \text{Tr}(V_k V^H_k) \leq P_T$ or $\text{Tr}(V_k V^H_k) \leq P_k \forall k$
where $\mathbf{W}_k \in \mathbb{C}^{d \times d}$ represents the MSE weight. Again following the argument of [5], the MSE weights can be chosen so that both WSR and WMMSE problems have a common solution. For this, set up the Lagrangians for (3) and (8):

$$L_{WSR} = -\sum_{k=1}^{K} \mu_k R_k + \theta \lambda \left(\sum_{k=1}^{K} \text{Tr}(\mathbf{V}_k \mathbf{V}_k^H) - P_T \right)$$

$$+ (1 - \theta) \left(\sum_{k=1}^{K} \lambda_k (\text{Tr}(\mathbf{V}_k \mathbf{V}_k^H) - P_k) \right)$$

and

$$L_{WMMSE} = \sum_{k=1}^{K} \text{Tr} (\mathbf{W}_k \mathbf{E}_k) + \theta \lambda \left(\sum_{k=1}^{K} \text{Tr}(\mathbf{V}_k \mathbf{V}_k^H) - P_T \right)$$

$$+ (1 - \theta) \left(\sum_{k=1}^{K} \lambda_k (\text{Tr}(\mathbf{V}_k \mathbf{V}_k^H) - P_k) \right)$$

respectively, where θ selects the desired power constraint ($\theta = 1'$ for the sum power constraint and $\theta = 0'$ for the individual power constraint), λ and $\{\lambda_k\}$ denote the Lagrange multipliers for the two transmit power constraints. Next, equate their gradients obtained via the matrix derivative formulas:

where

$$d \{\ln (\det (\mathbf{X}))\} = \text{Tr} (\mathbf{X}^{-1} d(\mathbf{X})) \quad \text{d} \{\text{vec}(\mathbf{X})\} = \text{Tr}(d(\mathbf{X}^T \mathbf{Y})) = \text{vec}(\mathbf{X}^T) \text{vec}(\mathbf{Y}).$$

Subsequently, the resulting MSE weight can be found as

$$\mathbf{W}_k = \frac{\mu_k}{\ln (2)} \mathbf{E}_k^{-1}. \quad (9)$$

Note that the choice of the MSE weights $\{\mathbf{W}_k\}$ is irrelevant to the transmit power constraint, which makes sense as $\{\mathbf{W}_k\}$ are receiver side design parameters.

C. Sum power constrained precoder design

We are now ready to find the transmit precoding matrix that minimizes the WMSE under the sum power constraint, i.e., find $\{\mathbf{V}_k\}$ that minimizes

$$\sum_{k=1}^{K} \mathbb{E} [\text{Tr} (\mathbf{W}_k (\mathbf{s}_k - \beta^{-1} \hat{\mathbf{s}}_k) (\mathbf{s}_k - \beta^{-1} \hat{\mathbf{s}}_k)^H)] \quad (10)$$

subject to $\sum_{k=1}^{K} \text{Tr}(\mathbf{V}_k \mathbf{V}_k^H) \leq P_T$

where $\{\mathbf{W}_k\}$ is set according to (9) and β is a scaling parameter. With matrix derivative formulas, the WMMSE transmit filter that satisfies (10) can be shown to be

$$\mathbf{V}_k = \frac{\beta \mathbf{V}_k}{\text{Tr}(\mathbf{V}_k \mathbf{V}_k^H)}, \quad (11)$$

where $\mathbf{V}_k = \left(\mathbf{\Psi}_k + \sum_{i=1}^{K} \text{Tr}(\mathbf{W}_i \mathbf{U}_i \mathbf{U}_i^H) \mathbf{I}_M \right)^{-1} \mathbf{H}_k^H \mathbf{U}_k \mathbf{W}_k,$

$$\mathbf{\Psi}_k = \sum_{i=1}^{K} \mathbf{H}_k^H \mathbf{U}_i^H \mathbf{W}_i \mathbf{U}_i \mathbf{H}_k,$$

and $\beta = \sqrt{\frac{\sum_{k=1}^{K} \text{Tr}(\mathbf{V}_k \mathbf{V}_k^H)^2}{\sum_{k=1}^{K} \text{Tr}(\mathbf{V}_k \mathbf{V}_k^H)}}.$

This result is a rather straightforward generalization of the WMMSE precoder in the broadcast channel. It can indeed be seen that setting $\mathbf{H}_k = \mathbf{H}_{ki}$ for all i, our solutions (5), (9), and (11) reduce to the respective receive filter, MSE weight and transmit filter solutions obtained for the multi-user MIMO broadcast channels through WMSE minimization [5].

D. Individual power constrained transceiver design

Now let us consider the individual-power-constrained network. We proceed to find the transmit filter that minimizes the weighted MSE:

$$\sum_{k=1}^{K} \mathbb{E} [\text{Tr} (\mathbf{W}_k (\mathbf{s}_k - \hat{\mathbf{s}}_k) (\mathbf{s}_k - \hat{\mathbf{s}}_k)^H)] \quad (12)$$

subject to $\text{Tr}(\mathbf{V}_k \mathbf{V}_k^H) \leq P_k \ \forall k$

Again equating the gradients of the Lagrangians corresponding to the WMMSE and WSR maximization procedures and using the matrix derivative formulas, the WMMSE transmit filter at \mathbf{S}_k is found as:

$$\mathbf{V}_k = \left(\mathbf{\Psi}_k + \lambda_k \mathbf{I}_M \right)^{-1} \mathbf{H}_k^H \mathbf{U}_k \mathbf{W}_k \quad (13)$$

where λ_k is set to satisfy the transmit power constraint at \mathbf{S}_k and again $\{\mathbf{W}_k\}$ are as given in (9). Unlike the sum-power-constrained WMMSE precoders of (11), for which the power control parameters are found in closed form, here we resort to a numerical method to find λ_k, due to the inter-dependency between \mathbf{V}_k and λ_k in (13). Fortunately, based on the following lemma, λ_k can be found with simple one-dimensional (1-D) numerical search.

Lemma 1: The per-node transmit power, $\text{Tr}(\mathbf{V}_k (\mathbf{\lambda}_k) \mathbf{V}_k (\mathbf{\lambda}_k)^H)$, is a monotonically decreasing function of λ_k.

Proof: Let $\text{SVD}(\mathbf{\Psi}_k) = \mathbf{Q}_k \mathbf{\Sigma}_k \mathbf{Q}_k^H$. Then, the transmit power at \mathbf{S}_k is given by

$$\text{Tr}(\mathbf{V}_k (\mathbf{\lambda}_k) \mathbf{V}_k (\mathbf{\lambda}_k)^H) = \sum_{i=1}^{K} \left(\frac{\mathbf{\Sigma}_k[i,i]}{(\sigma_{k,i} + \lambda_k)^2} \right)^2$$

where $\mathbf{\Pi}_k = \mathbf{Q}_k^H \mathbf{H}_k^H \mathbf{U}_k^H \mathbf{W}_k \mathbf{U}_k \mathbf{H}_k \mathbf{Q}_k$, $[\mathbf{\Pi}_k][i,i]$ is the i-th element of $\mathbf{\Pi}_k$, and $\sigma_{k,i}$ is the i-th element of $\mathbf{\Sigma}_k$. Because $\lambda_k \geq 0$, $\text{Tr}(\mathbf{V}_k (\mathbf{\lambda}_k) \mathbf{V}_k (\mathbf{\lambda}_k)^H)$ is monotonically decreasing with λ_k.

Note that the proper set of MSE weights for the K-user MIMO interference channel has already been derived in [9] in the process of establishing a connection between the WMMSE problem and the WSR maximization problem. However, our transceiver filter design is different from that of [9] in that our scheme clearly recognizes the inter-dependency between λ_k and \mathbf{V}_k, i.e., in our setting we cannot express λ_k as a closed form solution involving the channel matrix and transmit/receive filters as has been attempted in [9].

E. Iterative algorithm to maximize the weighted sum rate

In the previous sections, we found the MSE weights and then subsequently WMMSE receive and transmit filters with both the sum power constraint and the individual power constraint. Each of three sets of parameters - MSE weights, transmit filters and receive filters - is derived assuming the other sets are given. In practice, to find optimum WSR solutions, the inter-dependencies between the parameters are handled with the following iterative or alternating optimization algorithm.
Algorithm 1 Obtaining the optimal WSR transceivers via the WMMSE criterion

Initialize \(l = 0 \) and \(\{V_k^{(0)}\} \), calculate \(R_{sum}^{(0)} \).
repeat
\(l := l + 1 \)
Step 1: Calculate \(U_k^{(l)} \) \(|V_k^{(l-1)}| \) for all \(k \) using (5).
Step 2: Calculate \(W_k^{(l)} \) \(|V_k^{(l-1)}| \) for all \(k \) using (9).
Step 3: Calculate \(V_k^{(l)} \) \(|U_i^{(l)}|, \{W_i^{(l)}\} \) for all \(k \) using (11) for the sum power constrained case or (13) for the individual power constrained case.
until \(|R_{sum}^{(l)} - R_{sum}^{(l-1)}| < \epsilon \), where \(\epsilon \) is some arbitrarily small value and \(R_{sum} = \sum_k \mu_k R_k \).

The algorithm is common to both the sum power constrained design and the individual power constrained design. This algorithm is provably convergent to a local optimum; this can be shown by proving monotonic convergence of an equivalent optimization problem based on expanding the WSR maximization problem of (3) to add the MMSE weights and receive filters as optimization variables, as has been done for the MIMO broadcast channel in [5]. We note, however, that this algorithm does not guarantee the global optimum solution, since the WMMSE minimization (8) is not jointly convex over all input variables. To reasonably approach the optimal solution one must resort to repeated runs of the algorithm using different initial settings, or, for computationally efficient initialization, choose \(\{V_k^{(0)}\} \) in Step 1 from the right singular matrices of \(\{H_{kk}\} \) or from random matrices generated according to the normal distribution with zero mean and unit variance [8].

IV. DISCUSSION: COMPUTATIONAL COMPLEXITY, CHANNEL STATE INFORMATION

In this section, we analyze computational complexity and required feedback resources. For comparison, we also analyze those of the gradient descent method [2].

A. Computational complexity

We consider the number of complex multiplications as a complexity measure. The number of complex multiplications is proportional to the number of iterations. The proposed method with the sum power constraint which has a single iteration loop is computationally the most efficient. Whereas both the proposed method with the individual power constraint and the gradient descent method require double iteration loops, i.e., the outer loop for updating the sum rate and the inner loop for adjusting the Lagrange multiplier (in the case of the proposed method) or for updating the step size (in the case of the gradient-based method). Calculating the gradient and adjusting the step size require more computational resources. According to simulation, it is sufficient to use 10 iterations for updating the sum rate, i.e., \(J = 10 \), 10 iterations for updating the step size in gradient descent method and 20 iterations for 1-D search with the bisection method search. Fig. 2 shows comparison when \(M = N = 4 \) and \(d = 2 \). As expected, for the same WSR values the proposed method with the sum power constraint has the least complexity while the gradient descent algorithm is the most computationally complex.

B. The amount of required feedback information

To find the optimized transmit precoders, each transmit node requires feedback information. As illustrated in Table I, feedback information is composed of CSI and coefficients for filter updating. For a given transmission slot, CSI feedback is required once, but the filter coefficients are updated several times due to the iterative optimization algorithm. Although the proposed method requires a larger amount of feedback information for the iteratively updated coefficients such as MSE weights \(\{W_k\} \) and receive filter coefficients \(\{U_k\} \) than the gradient descent method does, the amount of CSI feedback for the proposed method is smaller than for the gradient descent method. This is because, unlike the global CSI requirement of the gradient-based method, the proposed methods need only local CSI. From Table I, we observe that as the network size grows (i.e., \(K \) increases) the required feedback resources for local CSI and coefficient updating increase linearly, but those for global CSI increases quadratically. Note that, for the transmit power adjustment, the sum-power-constrained method additionally requires iterative update of the scalar parameter \(\text{Tr}\{\sum_{i \neq k} V_i V_i^H\} \), but the size of this parameter is negligible compared to other matrix parameters.

V. NUMERICAL RESULTS

In this section, we provide the numerical results related to the weighted sum rate performances. The signal to noise ratio for the sum power constrained network, \(\text{SNR} = \frac{P_T \sigma^2}{N \sum_k \sigma_k^2} \), and that for the individual power constrained network, \(\text{SNR}_k = \frac{P_k \sigma_k^2}{N \sum_{i \neq k} \sigma_i^2} \), \(\forall k \) are derived assuming \(P_T = K, P_k = 1, \forall k \) and \(\sigma_n^2 = 1 \), i.e., \(\text{SNR} = \text{SNR}_k = \sigma_k^2 \). The results are averaged over 1000 independent trials. Fig. 3 shows the average weighted sum rate performance of the proposed methods for \(K = 4, 5 \), \(M = N = 4 \), \(d = 2 \), and \(\mu_k = 1, \forall k \). For fairness,
Prop. method
5
5
{Md}, \{\mathbf{W}_i\}, \{\mathbf{U}_i\} (Ind. pwr.)
5
\{\mathbf{H}_{ik}\}, \{\mathbf{W}_i\} (Ind. pwr.)

Local CSI
Updating coefficients
6
5
{Md}, \{\mathbf{W}_i\}, \sum_{i\neq k} \text{Tr}(\mathbf{V}_i\mathbf{V}_i^H) \quad \text{(Sum pwr.)}
5
\{\mathbf{H}_{ik}\} \quad \text{(Ind. pwr.)}

Feedback information
\{\mathbf{H}_{ij}\}, (i \neq k)

Matrix size
\min(\sum_{i=1}^{K} d_i (K-1))

Feedback resource amount
\min(\sum_{i=1}^{K} d_i (K-1)) + \max(\sum_{i=1}^{K} d_i (K-1))

<table>
<thead>
<tr>
<th>Grad. descent method</th>
<th>Prop. method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global CSI {\mathbf{H}_{ij}}</td>
<td>{\mathbf{H}_{ik}}</td>
</tr>
<tr>
<td>Updating coefficients {\mathbf{W}_i}, (i \neq k)</td>
<td>Updating coefficients {\mathbf{W}_i}, {\mathbf{U}_i} (Ind. pwr.)</td>
</tr>
</tbody>
</table>

TABLE I
SUMMARY OF REQUIRED FEEDBACK INFORMATION AT THE \textit{k}-TH TRANSMIT NODE, \textbf{S}_k, i, j = 1 \sim K

all schemes are initialized with the right singular matrices of the intended channels. The weighted sum rate performance of both proposed schemes and that of the conventional gradient descent method are nearly identical. Note that, as explained in section IV, the proposed methods achieve these performances with less computational complexity and a smaller amount of feedback resources than the gradient descent method. Compared to the performance of the MMSE transceiver without the MSE weights [3], [8] (curves labelled "Simple MMSE"), the advantage of designed MSE weights is clearly shown as SNR grows.

VI. CONCLUSION

In this paper, we have studied a linear transceiver design method for the K-user MIMO interference channel. To maximize the weighted sum rate with less computational complexity and a smaller amount of feedback resources, the proposed transceivers are designed in the weighted MMSE sense with suitably chosen MSE weights. Also, the proposed transceiver design considers both the sum power usage constraint and the individual power constraint. Through numerical simulation, we have demonstrated that the weighed sum rate performances of the proposed schemes approach that of the existing gradient descent method. The proposed methods have clear advantage in terms of processing requirements as well as feedback resources over the gradient-based technique.

REFERENCES

