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Cultural characteristics: Description based on strain CBS 122538 
at 20 °C.

Colonies compact, felted, partially immersed in the agar, margin 
rather irregular, obverse and reverse black, clumped on MEA2 % 
and PDA, almost completely flat on OA; slow growth: diameter 
after two mos 15 mm on MEA2 % and OA, 17 mm on PDA, and 
5 mm on CzA. Mycelium composed of long, septate, branched, 
smooth, thin-walled, yellowish to pale brown hyphae, 3.5–5.3 µm 
wide, with anastomoses. Fertile hyphae more pigmented, thicker-
walled, at roughly right angle repeatedly branched, septate, at first 
smooth, then crenulate, forming by fragmentation numerous short 
segments, composed of one or more conidia, sometimes joined 
by connectives. Arthroconidia catenate, mostly bicellular, rarely 
aseptate, smooth or crenulate, cylindrical, with thickened and 
truncated ends due to schizolytic secession, slightly constricted at 

the septum, 12.5–16 × 3.5–5.3 µm. Intercalary chlamydospore-like 
cells, with thickened and brown wall, sometimes present. 

Teleomorph: Unknown.

Holotype: CBS H-20177, culture ex-type CBS 122538 = CCFEE 
5313, Kay Island (75°04’13.7’’S, 165°19’0.2.0’’E), Northern Victoria 
Land, Antarctica, isolated from lichen thallus (Usnea antarctica Du 
Rietz).Leg. L. Zucconi, 30 Jan. 2004. 

Strains examined: CBS 122538; CBS 122539; CBS 122540;  
Da-004-06; CCFEE 5474.

Notes: The conidium ontogeny is holoarthric, involving an irregular 
basipetal maturation of cells and fragmentation of fertile hyphae. 
Often short portions of fertile hyphae are released by fragmentation 

Fig. 6. Elasticomyces elasticus. A. Vegetative hyphae. B, C. Branched fertile hyphae producing conidia by fragmentation. D. Disarticulating fertile hyphae where cells remain 
joint by connectives. E. Swelling hyphae. Scale bar = 20 µm.
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Fig. 7. Elasticomyces elasticus, CCFEE 5313. A. Strain grown on different media after 1.5 mo of incubation at 15 °C. B–D. Vegetative and fertile hyphae. E–H. High magnification 
of fertile hyphae; anastomoses in the vegetative hyphae (black arrows in E). I–O. Uncompleted disarticulation of artic conidia and hyphal fragments remaining joint by connectives 
(white arrows). P. High magnification of conidia remaining joint after disarticulation. Q, R. 1- and 2-celled conidia produced after schyzolithic secession (white arrow). S–U. 
Enteroblastic elongation at the apexes (white arrows). Scale bars = 20 µm.
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Fig. 8. Acidomyces acidophilus. A. Strain CBS 899.87 grown on different media after 1 mo of incubation at 25 °C. B–D, G. Toruloid unbranched hyphae with melanised and 
thick-walled cells. E. Meristematic development of the hyphae. F. Fungus grown at pH 1 in liquid culture. H. Chain of 1- 2- and 3- celled conidia. I. Strain CBS 335.97 grown 
on different media after 1 mo of incubation at 25 °C. L, M. Filamentous hyphae with intercalary and terminal swelling cells (black arrows). N. Fungus grown at pH 1 in liquid 
culture. Scale bars = 20 µm.

of longer hyphae, functioning as propagules. Apical growth of fertile 
hyphae occurs concomitantly with holoarthric development. A 
circumscissile scar remains at both ends, after schizolytic secession 
of adjacent conidia; complete disarticulation is retarded by the 
presence of thin strands of wall material at the central convexity 
of septa. Sometimes conidial secession is not completed; new wall 
material is laid down in the existing septum, and adjacent cells 
remain connected by narrow and pale connectives. Connectives 
can eventually elongate to form new pale hyphae, sometimes 
evolving in new fertile hyphae.

Acidomyces B.J. Baker, M.A. Lutz, S.C. Dawson, P.L. Bond & J.F. 
Banfield ex Selbmann, de Hoog & De Leo, gen. nov. – MycoBank 
MB511298.

Ad fungos anamorphos, hyphomycetes pertinens. Coloniae lente crescentes, 
celerius in acido agaro, compactae, nigrae. Mycelium ex septatis, interdum ramosis, 
brunneis crassitunicatisque hyphis compositum, demum meristematice increscens. 
Conidia arthrice secedentia. Teleomorphosis ignota.

Anamorphic fungi, hyphomycetes. Colonies growing slowly, faster 
in acidic medium, compact, dark. Mycelium composed of septate, 
scarcely branched, brown and thick-walled hyphae, eventually 
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converting into a meristematic mycelium. Conidia produced by 
arthric disarticulation of hyphae. 

Teleomorph: Unknown; phylogenetic affinity to the ascomycete 
order Capnodiales.

Type species: Acidomyces acidophilus (Sigler & J.W. Carmich.) de 
Hoog & De Leo

Acidomyces acidophilus (Sigler & J.W. Carmich.) Selbmann, 
de Hoog & De Leo, comb. nov. – MycoBank MB511856, Fig. 8.

Basionym: Scytalidium acidophilum Sigler & J.W. Carmich., Canad. 
J. Microbiol. 20: 267, 1974.

≡ ‘Fungus D’, Starkey & Waksman, J. Bacteriol. 45: 512, 1943 (without 
description, without type).
≡ ‘Acidomyces richmondensis’ B.J. Baker, M.A. Lutz, S.C. Dawson, P.L. 
Bond & J.F. Banfield, Appl. Environm. Microbiol. 70: 6270, 2004 (nom. 
inval., Arts 36.1, 37.1 ICBN).

Type: UAMH 3460, from field soil, adjacent to elementary sulphur 
stockpile from natural gas purification plant, Bowden, Alberta, 
Canada [as Scytalidium acidophilum]. 

Ex-type strain: CBS 270.74 (= ATCC 26772 = IMI 183518 = UAMH 
3460). 

Additional strains examined: See Table 2.

DISCUSSION

Melanised rock-inhabiting fungi are phylogenetically quite 
heterogeneous and have been grouped at least in four different 
fungal orders: Capnodiales, Dothideales, Chaetothyriales and 
Pleosporales (Sterflinger et al. 1997, Selbmann et al. 2005, Ruibal 
et al. 2008). Now that suitable isolation and identification techniques 
have been developed for these fungi (Wollenzien et al. 1995, Ruibal 
et al. 2005), they appear to be very common in arid climates, from 
Polar Regions to the subtropics. Stringent environmental conditions 
include high solar radiation (Urzì et al. 1995), strongly fluctuating 
temperatures (Nienow & Friedmann 1993), repeated freezing and 
thawing cycles (Selbmann et al. 2002), low water activity (Sterflinger 
1998, Zalar et al. 1999), acidity (Price 2000), and nutrient deficiency 
(Sterflinger et al. 1999). 

The physiological studies indicated that all the strains 
studied were well adapted to the particular stressing conditions 
characterising their natural environments. For instance, the strains 
belonging to the newly validated genus Acidomyces, all isolated 
from very acidic environments (see Table 1), showed an acidophilic 
profile being able to grow very well at pH 1 and with optimum well 
below the neutral value (pH 3–5). This means that most probably 
they are scarcely competitive in other environments and remain 
trapped in the extremely acidic ones where they have been isolated. 
Furthermore, they showed only a moderate tolerance to salinity. 
Similar data have been already reported for other acidophilic fungi 
phylogenetically distant from Acidomyces strains; for instance, 
Hortaea acidophila, was reported to be very sensitive to osmotic 
stresses being unable to grow at NaCl concentration above 2 % 
(Hölker et al. 2004). These data suggest that the adaptation to 
acidic environments does not require a concomitant tolerance 
to osmotic stresses. The situation seems to be different for fungi 
colonising rocks; Sterflinger (1998) observed a certain degree of 

halotolerance for some fungal strains in a selected, phylogenetically 
heterogeneous, group of rock fungi. Halotolerance has been 
proven to be particularly pronounced in some fungi isolated from 
the exposed rocks of the Antarctic desert (Onofri et al. 2007), 
among the driest terrestrial ice-free areas on Earth; there, the high 
evaporation leads also to salt accumulation on rock surfaces and 
fungi adapted to that environment have to cope with both water 
deficiency and salinity (Ruisi et al. 2007). 

All Antarctic strains studied can also be referred to as 
psychrophilic according to criteria outlined by van Uden (1984) and 
Vishniac (1987), having an optimum at 15 °C and being unable to 
grow at temperatures above 20–25 °C. This result confirms what 
has been recently published for other strains isolated from Antarctic 
rocks (Selbmann et al. 2005). Remarkable is the finding that strains 
belonging to the genus Elasticomyces here described, isolated from 
Antarctic lichens, showed a wider temperature range for growth with 
respect to the Antarctic cryptoendolithic strain of Recurvomyces 
mirabilis Selbmann & de Hoog. Their ability to grow at 0 as well 
as at 25 °C can be an adaptive strategy to withstand not only the 
very low temperatures characterising their natural environment but 
also the very wide thermal fluctuations, much more marked in the 
epilithic rather than in the endolithic environment.

Common features enhancing survival are high degrees of 
melanisation and thick cell walls (Figueras et al. 1996), slow, 
isodiametric growth, isodiametric expansion ensuring an optimal 
surface/volume ratio (Wollenzien et al. 1995), ability to change 
cellular polarity (Yoshida et al. 1996), and hence little differentiation 
although with great polymorphism. These characters seem to 
favour a marked degree of convergent evolution.

In the SSU phylogeny (Fig. 1) a clade is recognisable, containing 
a large number of melanised fungi that can be isolated from bare 
rocks, among which there is Pseudotaeniolina globosa isolated 
from rock surfaces in Sicily (De Leo et al. 2003). The clade also 
contains some Teratosphaeria species inhabiting leathery plant 
leaves, mostly in semi-arid climates (Crous et al. 2004); this genus 
was re-established as separate from Mycosphaerella because of 
this ecology and because of its phylogenetic position (Crous et al. 
2007). The phylogenetic relationship to numerous extremotolerant 
species is remarkable. Most plant-associated fungi are known 
with their teleomorph, while for the epi- and endolithic species no 
teleomorphs are known. Teratosphaeria microspora can be found 
both on rock and plant leaves, suggesting that adaptation to a life at 
the extreme starts with dispersal under semi-arid conditions. 

In general the ITS tree shows excellent resolution of species. 
Recognised entities were ecologically consistent (Fig. 2), such 
as the halophilic species Hortaea werneckii and the acidophilic 
Acidomyces acidophilus.

Trimmatostroma Corda, with the generic type species T. 
salicis Corda, was recently treated as a genus of Leotiales, while 
the capnodialean species were reclassified in Catenulostroma 
Crous & U. Braun (Crous et al. 2007). Teleomorph connections 
of Catenulostroma are in Teratosphaeria. Crous et al. (2007) 
mentioned differences in ecology and geography, as Teratosphaeria 
microspora would be an endemic species of Protea in South Africa, 
while other taxa within the T. microspora complex were observed on 
conifer needles and rocks in the Northern Hemisphere. Members of 
the complex are commonly observed on rocks and other relatively 
inert surfaces in temperate climates, but on conifer needles they 
produce well-defined acervuli (Butin et al. 1996). This suggests that 
superficial rock-colonising strains of this group may have originated 
from leathery plant leaves; we did not find any match between 
observed ITS polymorphisms and geography or ecology (Table 
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1). Crous et al. (2007) distinguished two additional anamorph 
species in the complex of T. microspora, viz. Catenulostroma 
abietis and C. germanicum. ITS sequences of these species are 
nearly identical (Fig. 2). At reduced water activity, C. abietis adapts 
with a meristematic form (Figueras et al. 1996). Catenulostroma 
germanicum was claimed to be different from C. abietis in having 
occasional oblique conidial septa, in contrast to the remaining 
species. In addition, in C. abietis the transformation to meristematic 
morphology reported above can be reproduced in vitro when 
reaching the stationary phase (Figueras et al. 1996, Yoshida et al. 
1996), leading to the formation of septa in all directions, as in C. 
germanicum. 

The genus Friedmanniomyces consists merely of species 
occurring cryptendolithically in rocks in the Antarctic, suggesting 
a further degree of extremotolerant specialisation (Selbmann et 
al. 2005). The strains belonging to the new genus and species 
here described, Elasticomyces elasticus, are located as a sister 
group of Friedmanniomyces. They have been firstly isolated from 
Antarctic lichens, but later on also from Antarctic lichen-dominated 
cryptoendolithic communities, i.e. microorganisms living inside 
rocks in the airspaces between crystals (Friedmann & Ocampo 
1976; Friedmann 1982), as well as from Andean rocks (4885 a.s.l.) 
colonised by epilithic lichens. In this respect lichens seem to be a 
recurrent element in the environments where these strains have 
been found. Therefore, Elasticomyces seems to be particularly 
sensitive to the oligotrophic conditions of rocks and the epi- or 
endolithic lichens could play a pivotal role as nutrient suppliers. The 
peculiar ability to produce connectives seems a distinctive feature 
of the genus, being observed both in strains from the Antarctic and 
the Andes.

The Antarctic strain CBS 119434 is at some distance from 
Friedmanniomyces. The group to which the strain belongs is 
described as Recurvomyces mirabilis, a further cryptoendolithic 
member of the Capnodiales. The ex-type strain and the strain 
CCFEE 5480 were both isolated from inside sandstone as 
a member of an Antarctic lichen-dominated cryptoendolithic 
community. Additional, sterile strains with a nearly identical ITS 
sequence, CBS 117957 (TRN 491) and CCFEE 5391, were isolated 
from Spanish rocks (Ruibal 2004) and the Alps (unpublished data) 
respectively. Recurvomyces mirabilis thus is an example of a rock-
inhabiting fungus with a distribution spanning both hemispheres. 
Antarctic and Mediterranean environments have very different 
temperature regimens, but share high solar radiation and water 
deficiency at least during part of the yr, suggesting that tolerance 
to such stresses is promoted by the same set of morphological 
and physiological factors (Ruisi et al. 2007). No cryptoendolithic 
behaviour is known for Mediterranean rock-colonisers, but their 
prevalent mode of action is superficial biopitting (Sterflinger et al. 
1997). Their phylogenetic affinity could be related to the production 
of easily air-dispersed propagules. Particularly the catenate conidia 
of R. mirabilis resemble Cladosporium, which is abundantly present 
in Antarctic air (Marshall 1997). Otherwise air-dispersed conidia are 
uncommon among black rock-inhabiting fungi.

Hortaea werneckii was found in derived position in the tree 
(Fig. 2). The species is one of the most pronounced halophilic 
fungi known to date (Sterflinger 1998, Zalar et al. 1999). It has a 
growth optimum at 17 % salt and still shows good growth near the 
saturation point of NaCl (Plemenitaš & Gunde-Cimerman 2005). Its 
natural niche is in waters of solar salterns worldwide, reaching its 
optimum distribution during the hot summer period. 

Hortaea acidophila is a further related species with a very 

peculiar ecology. It was isolated from a lignite extract at pH 0.6, 
using humic and fulvic acids as carbon sources. It was placed in 
the monotypic genus Hortaea which only included the halophilic 
species H. werneckii, in the order Dothideales, based on SSU 
rDNA sequences (Hölker et al. 2004).

The outgroup of the tree is composed of the genus Acidomyces 
which includes a single acidophilic species. The name Acidomyces 
was invalidly introduced (Baker et al. 2004) for a fungus, named 
“Acidomyces richmondensis”, isolated from warm (35 to 57 °C) 
pyrite ore mine drainage at pH between 0.5 and 0.9. A fungus 
with identical properties is Scytalidium acidophilum (Sigler & 
Carmichael 1974), which was invariably isolated from extremely 
acidic environments (Table 1). Sequencing reference and additional 
strains of this species, we noticed that “Acidomyces richmondensis” 
is indeed identical to S. acidophilum. The phylogenetic position of 
the latter fungus is far away from that of the generic type species 
of Scytalidium, S. lignicola Pesante. The ex-type strain of that 
fungus, CBS 233.57 = UAMH 1502, was recently proven to belong 
to the subclass Leotiomycetidae (Hambleton & Sigler 2005), while 
the present study highlighted that S. acidophilum phylogenetically 
belongs to the Dothideomycetidae, order Capnodiales. This result 
justifies the validation of the genus Acidomyces and the synonymy 
of A. richmondensis with S. acidophilum.

Acidomyces acidophilus has a remarkable ecology. Starkey 
& Waksman (1943) first found it in extremely acidic, sulphate-
containing industrial water. Gould et al. (1974) reported the species 
as the only organism isolated from a sulphur-containing soil at a 
pH of 1.1, where it occurred at high CFU counts. Harrison et al. 
(1966) found it in uranium mine drain water and Gimmler et al. 
(2001) on an acidophilic moss species. Ivarsson & Morita (1982) 
showed that acidity is a crucial factor in the ecology of this fungus, 
obtaining good growth when adjusting the pH to 0.5 with HCl. In 
pre-molecular times strains of this fungal species – defined by 
slow-growing cultures producing arthric conidia – frequently were 
not recognised, because strains tend to convert to meristematic 
growth, reluctantly disarticulating clumps of cells being produced, or 
remain entirely hyphal, without conidiation. ITS-sequencing proved 
the strict identity of all these strains. All positively identified strains 
originated from environments with pH of 2.0 or below (Table 1). 

All the fungi described above are highly melanised. Melanin 
is frequently viewed as a virulence factor playing a role in fungal 
pathogenicity to humans (Wheeler & Stipanovic 1985, Schnitzler 
et al. 1999, Paolo et al. 2006). Increasing amounts of melanin 
made Madurella mycetomatis (Laveran) Brumpt more virulent, 
apparently scavenging oxygen radicals (van de Sande et al. 
2006). Meristematic growth also is a known virulence factor 
(Matsumoto et al. 1984). Nevertheless, members of the subclass 
Dothideomycetidae are only exceptionally encountered as agents of 
infection (Clark et al. 1995, Caporale et al. 1996, Kurzai et al. 2003). 
In contrast, a large number of agents of severe mycoses is known 
in black yeasts belonging to the subclass Chaetothyriomycetidae, 
order Chaetothyriales (de Hoog et al. 2001). All factors discussed 
above of melanisation, meristematic morphology, growth at low 
water activity and at high/low temperature, and acid tolerance, 
are encountered in Dothideales as well as in Chaetothyriales, in 
varying combinations, but only in Chaetothyriales they play a role 
in infection. For example, meristematic morphology, particularly 
expressed at low pH (Mendoza et al. 1993), determines the 
invasive form in humans with the black yeast-specific skin disease 
chromoblastomycosis. The natural habitat of one of the agents of 
this disease, Cladophialophora carrionii (Trejos) de Hoog et al., 
was found to be in cactus debris in semi-arid climates (de Hoog et 
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al. 2007), where the same morphology is expressed as prevalent in 
human skin. This suggests that in C. carrionii the extremotolerant 
morphology directly enhances human invasion. Nevertheless, de 
Hoog et al. (2005) noticed that human pathogenicity is associated 
with a stress-factor like osmotolerance at the order level, but the 
two factors are nearly mutually exclusive at the species level. This 
means that extremotolerance may facilitate pathogenic evolution, 
but this has to be additive to other factors, such as, in the case 
of Chaetothyriales, oligotrophy with the ability to assimilate 
monoaromates (Prenafeta-Boldύ et al. 2006). We therefore 
consider the characters listed above as primarily suited for growth 
on exposed surfaces under harsh climatic conditions, rather than 
for the capacity to evade immune cells.

In summary, we determined a group with pronounced 
extremotolerance among semi-arid plant-associated fungi. It is 
probable that all these fungi share elaborate complexes of factors, 
as an adaptive response to these extreme conditions (Plemenitaš 
& Gunde-Cimerman 2005). Having acquired a basic set of vitality 
factors, a shift to a different habitat with a comparable degree 
of stress seems to be allowed. Phylogeny thus is predictive for 
ecology in that overall tendencies within a single clade are similar; 
the shifts to other extreme conditions may be possible provided 
that they fit the same framework of extremotolerance. In this group 
of fungi, the winning strategy consists in escaping competitors by 
colonising selective niches.
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