Human Reliability Analysis for Design: Using Reliability Methods for Human Factors Issues

NPIC&HMIT 2010

Ronald L. Boring

November 2010

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint should not be cited or reproduced without permission of the author. This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this paper are not necessarily those of the United States Government or the sponsoring agency.
HUMAN RELIABILITY ANALYSIS FOR DESIGN: USING RELIABILITY METHODS FOR HUMAN FACTORS ISSUES

Ronald Laurids Boring
Idaho National Laboratory
Idaho Falls, Idaho 83415, USA
ronald.boring@inl.gov

ABSTRACT

This paper reviews the application of human reliability analysis methods to human factors design issues. An application framework is sketched in which aspects of modeling typically found in human reliability analysis are used in a complementary fashion to the existing human factors phases of design and testing. The paper provides best achievable practices for design, testing, and modeling. Such best achievable practices may be used to evaluate and human system interface in the context of design safety certifications.

Key Words: human factors engineering, human reliability analysis, design, certification

1 INTRODUCTION

Superficially, human factors and ergonomics (HFE) and human reliability analysis (HRA) appear to be—if not identical—at least complementary fields. HFE combines interdisciplinary elements of engineering, psychology, and computer science, among other fields, into a cohesive discipline [1]. Likewise, HRA features the cornerstones of engineering and psychology, coupled with elements of risk assessment. Despite these surface similarities, the two fields have markedly different core areas of focus. As seen in Fig. 1, whereas HFE has emerged as an integral part of design and engineering disciplines, HRA is an integral part of probabilistic risk assessment (PRA). Therein resides the key difference between HFE and HRA. HFE is heavily involved in the design of novel systems, whether for usability [2], enjoyment [3], or safety [4]. HRA is focused on verifying the safe performance of human actions, often in the context of the retrospective analysis of incidents, events, or accidents [5].

Figure 1. The intersection of human factors engineering (HFE), probabilistic risk assessment (PRA), and human reliability analysis (HRA). The black area denotes the area covered in this paper.
The line between HFE and HRA is blurred when considering the design of novel safety-critical systems that must be human certified. This possibility becomes relevant as the next generation of nuclear power plant control rooms [6], aerospace systems [7], and air traffic control systems [8] are designed and deployed. Each of these fields sets a high bar for safety—safety that meets or exceeds current technology; at the same time, each of these fields demands innovative human-machine interfaces that enable the human to accomplish more in a simpler fashion.

In some cases, the integration of HRA into HFE is regulated. For example, NASA Procedural Requirement (NPR) 8705.2A, *Human-Rating Requirements for Space Systems* [7], identifies the process by which a hardware or software system for space use may become Human-Rating certified. The Human-Rating Requirements apply to any hardware or software space system that is developed and/or operated by or for NASA and that supports humans or interacts with another system that supports humans. The purpose of the Human-Rating Requirements is to ensure that no single system (i.e., single-point) failure and no two inadvertent actions cause death or permanent disability to public, crew, passengers, or ground personnel. Similarly, within the US nuclear industry, NUREG-0711, *Human Factors Engineering Program Review Model*, [9] provides guidance on the use of HRA in the HFE process. HFE for nuclear applications serves not only the direct goal to minimize the plant’s safety impact on humans but also the goals of maintaining plant integrity and mitigating potential environmental impacts of faults triggered by human interactions with the plant controls.

The present document provides guidance for HFE practitioners to work alongside risk analysts to meet safety goals and regulatory requirements in the development of novel systems. By design, this document does not rigidly specify the acceptance criteria for a system to be considered safe or certified, nor does it attempt to specify the exact process by which a system may be compliant with respective regulatory requirements. Rather, this document specifies a process under development that may be followed to ensure the best achievable safety for a novel system.

2 BASIC SAFETY DESIGN PROCESS

Development of a human-system interface (HSI) that meets safety and human reliability goals involves a phased process from conception to implementation. Safety is demonstrated through three successive phases that should be treated with independent milestones and objectives. Phase I, which consists of the conceptual or specification phase of system development, should outline not only desirable system features but also planned compliance to applicable safety standards throughout the lifecycle of the system. This phase may include setting safety objectives in terms of HRA such as, for example, the maximum acceptable human error probability of 1E-2 (0.01) for any single action. Phase II, which is the preliminary design or prototype phase, is most closely associated with HFE, in that initial designs are prototyped and tested prior to product implementation. In this phase, HRA may be used to produce evidence that the safety objectives have been met. During Phase II, the HFE engineer also identifies and reviews critical functions for system operation and personnel safety. Phase III corresponds to the actual implementation of the HSI. During this phase, the HFE engineer compiles a description of the critical function performance criteria through analysis, testing, inspection, and documentation.

3 ACHIEVING CERTIFICATION

As noted previously, some HRA-infused HFE serves specific regulatory requirements. At what point has the HSI reached the acceptable, safe level of human reliability? Regulatory approval or certification may occur at any or all of the three phases. The guidance documents overviewed in the certification process (e.g., the NASA Human-Rating Requirements [7] or NUREG-0711 [9]) typically provide proven methods to model, design, test, and validate safety-critical HSI. Because of the diversity of systems and applications, it is also beyond the scope of the requirements to specify the point at which
any given system may be certified. It is for this reason that a safety process, as prescribed here, can help ensure safety considerations have been adequately addressed in the HFE process.

In some cases, where safety considerations are not practicable, waivers or deviations may be granted. These waivers or deviations may only be granted if best achievable safety levels have been met and there is a strong basis for the waiver or deviation such as technical infeasibility or reasonable cost limitations of the system. Importantly, a waiver or deviation does not obviate the need to meet best achievable safety levels. A waiver or deviation, in fact, certifies that every feasible and reasonable step has been taken to ensure the safety of those humans who come in contact with the HSI.

Neither infusing HRA into the HFE process nor achieving certification guarantees that a system is actually safe in all cases. A carefully designed and reviewed system may fail to consider all possible scenarios that could contribute to human error or unsafe interaction with a system. Safety literature is rife with examples of incidents, events, and accidents that resulted from otherwise well designed systems but that failed to consider the full spectrum of possible safety-degrading scenarios with which the users of those systems would be confronted [10]. The inability to predict such scenarios is at the heart of resilience engineering [11]. Resilience in this sense embarks upon the task of anticipating risks, even in the face of unpredictable and dynamic circumstances. One key to this approach is to avoid using predefined sets of risks (e.g., risk cutsets as used in PRAs) in designing and certifying a safe system. Rather, the goal of a resilient safety process is to understand the human response in the face of risks. The process proposed in this paper is congruent with resilience engineering in that it proposes an integrative and iterative merger of design, testing, and modeling. This approach can be used to address specific predefined risks according to regulatory guidelines. It can, however, also be used to develop a conceptual understanding of how humans using a particular system respond to off-normal or suboptimal scenarios. Such insights extend beyond addressing predefined risks; rather, they provide a catalog of human actions and inactions—both safe and unsafe—and a basis for mitigating unsafe actions and enhancing safe actions.

Table I. The System Development Safety Triptych (SDS3) of design, testing, and modeling.

<table>
<thead>
<tr>
<th>Design (Including hardware and software engineering)</th>
<th>Testing (Including equipment and human subject testing)</th>
<th>Modeling (Including PRA, HRA, and simulations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Compliance with applicable standards and best practices documents</td>
<td>• Controlled studies that avoid confounds or experimental artifacts</td>
<td>• Compliance with applicable standards and best practices documents</td>
</tr>
<tr>
<td>• Consideration of system usability and human factors</td>
<td>• Use of maximally realistic and representative scenarios, users, and/or conditions</td>
<td>• Use of established modeling techniques</td>
</tr>
<tr>
<td>• Iterative design-test-redesign-retest cycle</td>
<td>• Use of human-in-the-loop testing</td>
<td>• Validation of models to available operational data</td>
</tr>
<tr>
<td>• Tractability of design decisions</td>
<td>• Use of valid metrics such as statistically significant results for acceptance criteria</td>
<td>• Completeness of modeling scenarios at the correct level of granularity</td>
</tr>
<tr>
<td>• Verified reliability of design solutions</td>
<td>• Documented test design, hypothesis, manipulations, metrics, and acceptance criteria</td>
<td>• Realistic model end states</td>
</tr>
</tbody>
</table>
4 BEST ACHIEVABLE PRACTICES

In this section, I outline steps that may be used to guide the best achievable practices in safety-critical HFE. These steps may also help achieve safety goals and acceptance criteria for certification. The factors that determine the best achievable safety practices include HFE design, testing, and modeling, and together comprise the System Development Safety Triptych (SDS3) in Table I. Note that design and testing are largely the domain of traditional HFE, while modeling adds HRA considerations. It is the union of human factors design and testing with human reliability modeling that can help realize best achievable safety in the product development process. Note that these considerations are not prescriptive of a normative model of design for safety. They serve merely as suggestions gleaned from the author’s observations in integrating HFE and HRA.

4.1 Best Achievable Practices for Design

The following practices, including hardware and software engineering, may facilitate safety-critical design.

- **Compliance with applicable standards and best practices documents.** Applicable standards will vary according to the specific system that is being designed. Where applicable, ANSI, ASME, IEEE, ISO, or other discipline-specific standards and best practices should be followed carefully. Where deviation is necessary due to the unique nature of particular systems, these deviations should be clearly documented and justified.

- **Consideration of system usability and human factors.** If the system that is being designed will be used by a human, it should be designed according to usability and human factors standards such as NASA-STD-3000, MIL-STD-1472, NUREG-0700, and ISO 9241. The system should be ergonomically designed to facilitate the user’s natural physical interaction with the system. Where applicable, this consideration includes unique environmental considerations such as human-system interaction in extreme environments, whether microgravity for spaceflight or design basis accidents for nuclear systems. The system should be designed to be maximally usable in terms of the quality of the software or hardware interface. Best practices regarding the use of display, interface, and control design should be followed and documented. In terms of safety-critical certification, the primary emphasis of usability and human factors is on ensuring that the use of a system does not disrupt critical functions or compromise the safety of the user or other humans. Systems that are not directly used by humans but that may interact with human-occupied systems (HOS) should ensure that the non HOS will not change or disrupt the normal human-system interaction of the HOS.

- **Iterative design-test-redesign-retest cycle.** The complement of good design is testing the first-effort design and applying lessons learned in the refinement of the design. Where feasible, system design should be tested to identify potential issues in terms of critical functions. Compliance with design standards does not guarantee a system optimized for human safety. Iterative testing and redesign of a system throughout the design lifecycle helps demonstrate safety in the design.

- **Tractability of design decisions.** Where decisions have been made that could affect the critical functions of the system, these decisions should be clearly documented. Design decisions that could adversely impact critical functions under any circumstances must be justified. As well, all safety considerations should be documented (e.g., the system component may fail under unusual circumstances; however, a different system component ensures the viability of the personnel while repairs can be made). This design rationale may serve as the basis for waivers or deviations.
from certification. Documentation of design decisions that enhance critical functions serves to facilitate the safety goals and certification process.

- **Verified reliability of design solutions.** The reliability of systems should be documented through vendor data, cross-reference to the operational history of similar existing systems, and/or test results. A system’s reliability may be modeled through a composite of sub-component reliability data, but whole-system testing is generally preferable. Acceptable reliability levels should be identified and agreed upon early in the design process. It is especially important to project system reliability throughout the system lifecycle, including considerations for maintenance once the system has been deployed. It is also important to incorporate the estimated mean time before failure into the estimated life of the system.

4.2 Best Achievable Practices for Testing

The following testing practices, including equipment and human subject testing, may facilitate the overall safety of the system.

- **Controlled studies that avoid confounds or experimental artifacts.** Testing of system designs should be accomplished using rigorous experimental methods specific to the application and system. Testing may include hardware reliability testing, HSI usability evaluation, and software debugging. Testing should avoid situations that could lead to ambiguous results, such as when alternate causal explanations (e.g., confounds) or an unrealistic experimental design (e.g., experimental artifacts) come into play.

- **Use of maximally realistic and representative scenarios, users, and/or conditions.** To the extent feasible, testing should involve a real-time, closed-loop test environment. The testing scenarios and conditions should reflect the range of actions the system will experience in actual use, including possible worst-case situations. Similarly, human subject testing should involve users who are representative of the actual system users under environmental factors and situations characteristic of the expected usage.

- **Use of human-in-the-loop testing.** A system that will be used by humans should always be tested by humans. Per the previous point, the human subjects should be representative of actual users. All human subject testing should carefully follow and document safety and ethics standards for treatment of human participants. Hazardous environments should be simulated to the extent feasible and safe for testing purposes. It is generally preferable to involve human participants prior to final integrated system validation studies.

- **Use of valid metrics such as statistically significant results for acceptance criteria.** Testing should be measured using methods appropriate to the discipline. Where feasible, the metrics should reflect system or user performance across the entire range of expected circumstances. In many cases, testing will involve use of a statistical sample evaluated against a pre-defined acceptance (e.g., alpha) level for “passing” the test. Inferential statistics are preferable to descriptive statistics. Inferential statistical analyses should clearly define the acceptance level (e.g., $\alpha \leq 0.001$). Care should be taken to ensure proper statistical power and to avoid Type I errors (i.e., false positives).

- **Documented test design, hypothesis, manipulations, metrics, and acceptance criteria.** A well documented test plan is crucial in the initial phases of the safety design process. This test plan should include the test design, hypothesis (or hypotheses), manipulations, metrics, and acceptance criteria. Subsequent testing should closely follow this test plan and document any required deviations from the test plan. In the event that a system fails to meet the identified acceptance
criteria during testing, a redesign and additional testing should be undertaken before proceeding with final implementation.

4.3 Best Achievable Practices for Modeling

The following modeling practices, including PRA, HRA, and simulations, may facilitate the overall safety of the system design.

- **Compliance with applicable standards and best practices documents.** Regulatory and standards agencies provide guidance across the domains of PRA—e.g., NASA NPR 8705.5, *Probabilistic Risk Assessment Procedures for NASA Programs and Projects* [12]—and HRA—e.g., US Nuclear Regulatory Commission NUREG-1792, *Good Practices for Implementing Human Reliability Analysis* [13]. Specific modeling techniques with established histories will typically have documentation to outline best practices. Where deviation is necessary due to the unique nature of particular systems, these deviations should be clearly documented and justified.

- **Use of established modeling techniques.** Within PRA, HRA, and simulation modeling, many established and novel techniques exist. For certification purposes, it is better to use an existing, vetted method than to make use of novel techniques and methods that have not been established within a particular industry. Modeling tools and techniques should be documented early in the safety design process to ensure concurrence by regulatory review agencies.

- **Validation of models to available operational data.** To ensure a realistic modeling representation, models must be baselined to data obtained from empirical testing or actual operational data. Such validation increases the veracity of model extrapolations to novel domains. For example, if a system component has been tested in a particular environment and a simulation model accurately reflects performance in that environment, it may be acceptable to extrapolate the model to a novel environment in which the component has never been tested but in which the performance parameters are predicted to follow a well understood pattern. Note that it is generally preferable to conduct an actual test on novel performance situations rather than to model that performance.

- **Completeness of modeling scenarios at the correct level of granularity.** Modeling scenarios should cover the complete range of operating scenarios with reasonable concession for the possibility of negative outcomes. A thorough task analysis, a review of relevant past operating experience, and a review by subject matter experts help to ensure the completeness of the model. The appropriate level of task decomposition or granularity should be determined according to the modeling method’s requirements, the fidelity required to model success and failure outcomes, specific requirements of the system that is being designed, and guidance provided by regulatory boards, as appropriate. Every step or action that can affect system success and personnel safety should be modeled. Where steps or actions are logically related, they may be clustered as a single step or action, provided this grouping does not mask opportunities for failure or recovery steps.

- **Realistic model end states.** A PRA or HRA model or simulation must provide a realistic set of situations to which it is modeled. The end states should reflect reasonable and realistic outcomes across the range of operating scenarios. These end states should reflect possible negative outcomes such as system failure. Negative outcomes should always ensure the opportunity for reasonable recovery of humans interacting with that system.
Table 2. Best achievable practices across the SDS3 phases.

<table>
<thead>
<tr>
<th>Best Achievable Practice</th>
<th>Phase I Conceptual or Functional Specification</th>
<th>Phase II System Design</th>
<th>Phase III System Implementation</th>
<th>Review Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance with applicable standards and best practices documents</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
<tr>
<td>Consideration of system usability and human factors</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
<tr>
<td>Iterative design-test-redesign-repeat cycle</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
<tr>
<td>Tractability of design decisions</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
<tr>
<td>Verified reliability of design solutions</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
<tr>
<td>Controlled studies that avoid confounds or experimental artifacts</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
<tr>
<td>Use of maximally realistic and representative scenarios, users, and/or conditions</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
<tr>
<td>Use of humans-in-the-loop testing</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
<tr>
<td>Use of valid metrics such as statistically significant results for acceptance criteria</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
<tr>
<td>Documented test design, hypothesis, manipulations, metrics, and acceptance criteria</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
<tr>
<td>Compliance with applicable standards and best practices documents</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
<tr>
<td>Use of established modeling techniques</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
<tr>
<td>Validation of models to available operational data</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
<tr>
<td>Completeness of modeling scenarios at the correct level of granularity</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
<tr>
<td>Realistic model end states</td>
<td>Planned Use</td>
<td>Actual Use</td>
<td>Product/Results</td>
<td></td>
</tr>
</tbody>
</table>

5 BEST ACHIEVABLE PRACTICES ACROSS SYSTEM DEVELOPMENT PHASES

Table 2 outlines how the best achievable practices for design, testing, and modeling found in the SDS3 may be implemented across the safety design process. In Phase I, the planned use or implementation of best achievable practices is documented. In Phase II, the actual use or implementation of these practices is documented. Finally, in Phase III, the results or products across design, testing, and modeling are documented. At each phase of the safety design process, the HFE design team should...
carefully review the progress in meeting the dual goals of best achievable safety practices and usable product design.

At the end of the safety design process, the HFE design team and/or a regulatory agency may review the quality of the overall design in terms of safety. The responsible parties should determine one of three possible outcomes for the system:

- **Unsafe.** If the system has failed to meet best achievable practices and the specific safety requirements set forth by the team or the regulator, the system should not be considered safe without redesign efforts.
- **Waiver or Deviation.** If the system has met best achievable practices but cannot reasonably or realistically meet the specific safety requirements set forth by the team or the regulator, the system may receive a waiver or deviation from the original safety plan or the certification process.
- **Safe.** If the system has met best achievable practices and the specific safety requirements set forth by the team or the regulator, the system may be considered safe within the specified safety parameters.

6 ADDITIONAL CONSIDERATIONS FOR HRA FOR DESIGN

While HRA mainly falls within the modeling phase of the HFE design process outlined in this paper, HRA may, in fact, be used in additional ways that directly complement the design and testing phases of HFE.

- **Comparison of competing designs.** HFE is often engaged in the comparison of alternative design concepts, either for finished HSIs (summative comparison) or for HSIs that are only prototyped or still in development (formative comparison). In addition to the standard metrics of usability, completing an HRA for each HSI allows the HFE evaluator to compare competing designs in terms of their safety. In particular, it is possible to use quantitative HRA, which provides human error probabilities (HEPs) to compare the safety of one design over another (see Fig. 2) [14].

```
Figure 2. Comparison of two designs (A and B) on the basis of human error probability (HEP) estimates.
```

- **Prioritization of design considerations.** In the design and testing phases of HFE, it is common for a number of issues with the design to be identified. A problem arises when there are a large number of issues identified with the design but not all of the issues are of equal consequence. For example, a relatively minor issue with the usability of particular visual annunciator alarms in a control room may coexist with a larger safety issue endemic with a particular status display of a computerized procedure. The question becomes how to determine and document which issue is of greater consequence, especially if deadlines constrict the available time to redesign the system. Using HRA as outlined in the previous bullet, it is possible to quantify the issues using HRA, thereby allowing the prioritization of the most important design fixes [14].
7 DISCUSSION

The SDS3 process outlined in this document is illustrative of the value of fusing HFE with HRA. Traditional HFE involvement in the development process encompasses design and testing. While these phases help ensure safe systems, they do not individually or collectively meet all the considerations of a safe system. When augmented with modeling considerations of HRA and PRA, however, they can more effectively meet safety goals and regulatory and certification requirements. Similarly, HRA and PRA, when omitting the design and testing contributions of HFE, can fail to provide the input essential to designing and validating a safe system. It is the interplay of both HFE and HRA that most effectively leads to safe, even certifiably safe, systems.

8 DISCLAIMER

This paper represents the author’s interpretation of a process that may address safety and design requirements. The author is not affiliated with US or international regulatory agencies and has neither implied nor explicit endorsement by such agencies for the work presented in this paper.

The opinions expressed in this paper are those of the author and not those of the author’s organization. This work of authorship was prepared as an account of work sponsored in part by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This research was carried out by Idaho National Laboratory (INL). INL is a multiprogram laboratory operated by Battelle Energy Alliance LLC, for the United States Department of Energy under Contract DE-AC07-05ID14517.

9 REFERENCES

