
Improving Robot Behavior Optimization by Combining User Preferences

Anton Bernatskiy1 , Gregory S. Hornby2,3, Josh C. Bongard1

1 University of Vermont, Burlington, VT 05401
2 University of California Santa Cruz, Santa Cruz, CA 95064
3 NASA Ames Research Center, Mountain View, CA 94035

abernats@uvm.edu

Abstract

Recently it has been demonstrated that collaboration between
automated algorithms and human users can be especially ef-
fective in robot behavior optimization tasks. In particular, we
recently introduced a Fitness-based Search with Preference-
based Policy Learning (FS-PPL) approach, in which the algo-
rithm models the user based on her preferences and then uses
the model, along with the fitness function, to guide search.
However, so far only interaction between a single human user
and an evolutionary algorithm was considered. If multiple
users contribute preferences, the algorithm must determine
whether to model them separately or jointly. In this paper we
describe an algorithm in which one evolutionary algorithm in-
teracts with two users and determines the best way to model
them automatically. We test the algorithm with automated
substitutes for human users and show that it performs better
for two users working together than for the same users work-
ing separately, thus demonstrating the potential for crowd-
sourcing robot behavior optimization.

Introduction

Historically, interactive evolutionary algorithms are typi-

cally used to solve search problems in which automatic eval-

uation of a solution candidate is impractical for some reason

– for example, artistic tasks. In this case the duty of so-

lution evaluation is fully entrusted to the user. Many suc-

cessful algorithms were designed using this approach, in-

cluding those which allow multiple users to collaborate on

the same problem (Secretan et al. (2008); Szumlanski et al.

(2006); Kuzma et al. (2009)). Much less is known, however,

about the algorithms which distribute the burden of solution

candidates evaluation between the users and the computer.

In this work we employ this latter approach to address

an important issue arising in traditional fitness-based evolu-

tionary algorithms – namely, the phenomenon of premature

convergence, i.e. convergence to a local optimum with a

large basin of attraction rather than to the global optimum

with a much narrower basin.1 One approach used to combat

this problem is to use multiple objectives instead of just a

single fitness value to evaluate solutions. Some objectives

1Fitness landscapes with such optima are said to be deceptive.

shown to be effective are age (Schmidt and Lipson (2011))

and novelty (Mouret (2011)). However, depending on a task,

even multiobjective algorithms can become trapped on local

optima.

For some tasks this problem can be greatly reduced by

adding human preference as an optimization objective. This

is particularly true for robot behavior optimization, be-

cause humans have good intuition about legged locomotion

and are able to visually determine that search has become

trapped on a local optimum (Bongard et al. (2012)). The

major problem with these methods, however, is the quan-

tity of preferences required from the user, which is often so

demanding that it makes the algorithm too labor-intensive to

be practical.

This problem can be approached in several ways. One

way is to use a machine learning algorithm to build a

model of the user and then use the model to supply

preferences on the human user’s behalf as behavior op-

timization continues (Takagi (2001); Schmidt and Lipson

(2006); Akrour et al. (2011); Bongard and Hornby (2013)).

In (Bongard and Hornby (2013)) we investigated the effi-

ciency of this approach in a robot behavior optimization

task with a deceptive fitness landscape. Using an algo-

rithm based on Age-Fitness Pareto Optimization (AFPO)

(Schmidt and Lipson (2011)) with an additional user pref-

erence objective and a neural network-based user model, we

showed that a user model and fitness function together can

guide the search to convergence more rapidly (in terms of

wall-clock time) than either of them on its own.

Another way to cope with the labor intensity of interac-

tive evolution is to utilize evaluations coming from multi-

ple users. This approach has been investigated theoretically

to some extent (Szumlanski et al. (2006)) and successfully

applied to artistic tasks (Secretan et al. (2008); Kuzma et al.

(2009)).

Our hypothesis is that it is possible to make the optimiza-

tion of robot behavior faster by collecting evaluations simul-

taneously generated by multiple users into one common evo-

lutionary algorithm. Consider an algorithm which attempts

to learn preferences supplied by multiple users based on

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

blriley
Typewritten Text
DOI: http://dx.doi.org/10.7551/978-0-262-32621-6-ch158

their evaluations. If n users simultaneously indicate prefer-

ences and if their preferences agree, then the machine learn-

ing algorithm can train on these preferences as if they were

indicated by a single user. Therefore, it will have up to n
times more training data, which will allow it to build an ac-

curate user model faster.

If user preferences disagree, the algorithm will have to

model users separately using their respective preference sets.

In this case the speed of learning of each user model is re-

duced back to the level of the single user case, and addi-

tional computational costs associated with training multiple

user models can impact the performance of the behavior op-

timization method (see the Experiments section). However,

disagreement in users’ preferences is likely to indicate that

more than one global optimum – or several similar (in terms

of fitness) local optima – have been intuited by the users and

are present in the fitness landscape. In the latter case it is

possible to exploit the disagreement to explore both of the

user-favored optima, evaluate them and determine if one of

the user-favored optima is better than the other in terms of

fitness.

To test these suppositions we have developed an interac-

tive, user-modeling algorithm which can simultaneously ac-

cept preferences from one or two users. We measure its per-

formance with two users working together and compare it to

the combined performance of two users working separately,

each with her own evolutionary algorithm and user model.

Test Problem

We use the test problem from (Bongard and Hornby (2013)).

The goal is to navigate a simple quadrupedal robot around

the wall to a target object on the far side (Fig. 1a). The

robot is composed of a square plate and four rigid vertical

legs, each attached to the plate by an actuated joint with one

degree of freedom (Fig. 1b).

Each body part has one light sensor and one touch sen-

sor. Signals from the photosensors are real values from [0, 1]
varying linearly depending on their euclidean distance from

the light source. 2. Touch sensors produce 1 if the body part

touches the ground or collides with the wall and −1 other-

wise. Additionally, the robot is equipped with a compass

sensor which gives the current robot’s orientation relative to

the Y axis, normalized to be in [0, 1].
The robot is controlled by a feedforward neural network

without hidden nodes. A total of 11 sensors connect to four

actuators, which yields a total of 44 synaptic weights. Here-

after we will refer to a particular set of synaptic weights as

a controller.

Methods

The algorithm uses a client-server computational architec-

ture. The client here is an interactive program which takes

2The sensors saturate to 0 for distances about 5 times greater
than the maximum distance any robot traveled in our experiments.

a pair of controllers as input, simulates3 two copies of the

robot with controllers from the pair and shows the resulting

behaviors to the user (Fig. 2). The user is forced to prefer

one – she cannot skip a pair. After the preference is pro-

vided, the client sends it to the server.

The server performs the following functions:

• it supplies controllers to and receives preferences from

multiple clients via asynchronous communication;

• it optimizes the robot’s behavior with an evolutionary al-

gorithm;

• it generates the controller pairs to be evaluated by users

and maintains the users’ preference tables;

• it trains the user models based on users’ preferences;

• it employs predictions from the user models along with

the fitness function to guide the evolutionary algorithm.

A user model is defined as a mapping from a pair of robot

behaviors to a prediction of the user’s preference for this

pair. The mapping is learned by an artificial neural network4

with a hidden layer using backpropagation. For details, see

the User Models section below.

If only one user has supplied preferences so far, only one

user model is maintained. If two users supply preferences,

the program must find an optimal way to utilize these. For

this purpose our program maintains three separate user mod-

els – one individual model for each user and one collective

model, which is trained on the combined preferences of both

users. For details see the Coordinated Score Generation sec-

tion below.

Evolutionary Algorithm

For robot behavior optimization the server uses Age-Fitness

Pareto Optimization (Schmidt and Lipson (2011)), an evolu-

tionary algorithm with two explicit objectives – fitness and

age. In all experiments described below the algorithm starts

with a population of 30 controllers, initialized with random

synaptic weights in [−1, 1]. The server simulates controllers

sequentially and records the full time series of the resulting

sensor values. When all controllers in the population have

been simulated, the algorithm calculates their fitness values

and constructs the Pareto front, taking the time controllers

have spent in the population – their age – into account. The

next generation is composed of

• one new, completely random controller,

3All physics simulations use Open Dynamics Engine,
http://www.ode.org.

4This network is not to be confused with the robot’s controller
(see the Test Problem section), which is another artificial neural
network employed in the program. Unlike the one described here
that one has no hidden neurons.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

Figure 1: Test problem. (a) Side and top views of the robot and its environment at the beginning of the simulation. The small

square to the left denotes the light source; spheres on the robot’s body are light sensors. The target position that the robot should

reach is depicted with dotted lines. Yb denotes the Y coordinate of the barrier. (b) Joint between the robot’s main body (square

plate) and a limb, top view. The dotted line denotes the axis of rotation. The angle of the limb’s rotation relative to its default

position (as in (a)) can take values in [−45◦, 45◦]. A video of the robot with a successfully evolved controller can be viewed at

http://youtu.be/ByDfAcDBsHI .

• nondominated controllers from the previous population

and

• their mutated copies, in a quantity sufficient to restore the

initial size of the population.

The fitness function is

f = fuσ, (1)

where fu is the unscaled fitness (Bongard and Hornby

(2013)):

fu =
1

1 +
(

∑5
i=1

∑T

t=1 ‖s
(t)
i − s

(r)
i ‖

)

/5T
. (2)

T = 1000 here is the number of time steps during which

behavior is simulated, s
(t)
i is a value of ith light sensor at

time step t, and s
(r)
i is the value of the ith light sensor at the

goal position (see Fig. 1a).

σ is the coordinated score: a number in [0, 1] which rep-

resents a combined prediction from all of the user models

about how much the user (or users) would like this con-

troller. In particular, σ near 1 indicates that at least one of

the two user models tended to prefer this controller when

it was presented multiple times, while a score near 0 indi-

cates that the user models predict that both users will greatly

dislike this controller. In the beginning of the program’s op-

eration, when no users’ preferences have been provided yet,

it is equal to 0.5 for all controllers. For details on σ see

Coordinated Score Generation section below.

In the current implementation, the second generation

commences only after the first pair of controllers has been

evaluated by a user. This ensures that the coordinated score

σ affects evolution from the outset. However, in practice,

this should have little impact on evolution, because the user

models learn more slowly than the evolutionary algorithm

improves the robot’s behavior: it takes many before the user

models’ predictions deviate significantly from 0.5.

User Preference Gathering

After evaluating the first generation, the server ranks the

controllers from the Pareto front by fitness and requests the

evaluation of the four best controllers from the users. The

first user must compare the first and the second controller,

and the second user compares the third controller to the

fourth. The program waits for either user to evaluate her pair

and then enters the evolutionary loop of reproduction and se-

lection (see the section above). The server never pauses to

wait for any user action after the indication of this first pref-

erence.

Every time the program evaluates all unscaled fitness val-

ues fu of the controllers from the current generation, it

checks whether any of its previous requests for user pref-

erences were granted. If that is not the case, the program

continues with the next iteration of the evolutionary loop.

Otherwise, it stores the obtained preference into a table of

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

http://youtu.be/ByDfAcDBsHI

Figure 2: Screenshot of two clients running on the same

computer. The user can select a behavior she likes by cy-

cling through the robots. The selected robot is highlighted

and the other one is made translucent. The preference is sent

to the server as soon as the user confirms the selection. For

example, in the left window the user is about to confirm her

preference towards the highlighted robot to the right of the

other contestant.

preferences, selects a new pair of controllers for user evalu-

ation, sends it to the client and, if appropriate, retrains some

user models on the expanded set of preferences.

All controllers sent to the client for user evaluation are

stored, along with their respective sensor time series, in an

archive. The obtained user preferences are stored in the pref-

erence table P , such that P [i, j] = 1 if the ith controller

of the archive was preferred to the jth, -1 if the jth con-

troller was preferred to the ith, and 0 if the preference is

neutral (in the current implementation that is possible only

for P [i, i]) or not yet known (Bongard and Hornby (2013),

Akrour et al. (2011)).

To accelerate the filling of the preference table we as-

sume that user preferences are transitive. Consider a situ-

ation when the user has seen n controllers c1, c2, · · · , cn so

far, and for every i < j she preferred cj to ci. The program

assumes then that if a new controller c′ is preferred over cj
for some j ≤ n, then all controllers ci (for which i ≤ j) are

assumed to not be preferred over c′. Similarly, if c′ is not

preferred over cj , then all controllers from the upper part of

the ranking, ci (with i ≥ j) are assumed to be preferred over

c′.
To determine how a new controller fares against con-

trollers previously shown to a user, the program uses a ver-

sion of binary search adapted for our purposes. First, for

each controller already shown it produces a score: the num-

ber of times this particular controller was preferred to its

peers minus the number of times it was not preferred. If a

new controller c′ is preferred over some previously shown

controller ci, then it is assumed that c′ is preferred over all

previously shown controllers with a score less than or equal

to the score of ci, and the corresponding entries of P [i, j]
are stored. Similarly, if some previously shown controller ci
is preferred to the new one, the algorithm assumes that all

controllers with the score higher than that of ci are preferred

to the new controller.

The old controllers are shown to the user (paired with the

new controller) in the following order: the controller with

the highest score is shown first, then the one with the lowest

score and then – repeatedly – the closest one to the middle

of the current interval of possible values of the score for the

new controller. The algorithm terminates when all of the

relationships between the new controller and the previously

known ones are established. In the worst case this happens

after the user has indicated 2 + log2 n preferences; in the

best case one preference is sufficient.

When the binary search described above terminates, two

events occur. First, a new controller is selected among the

current evolutionary population to be evaluated by the user.

In the experiments described here, the algorithm selected the

most fit controller among those which have not been seen by

any user yet. The server sends the pair, as dictated by the

first step of the bisection algorithm described above, to the

user.

Second, two user models are retrained: the individual

model corresponding to the newly gathered preference’s au-

thor and the collective user model. The models are trained

on the fully evaluated subsets of users’ archives, i.e. on

those subsets for which the preference is known for each

pair of controllers in the subset. The individual model is re-

trained on the preference table of the user who indicated the

last preference; the collective model uses the tables of both

users.

This process of robot behavior optimization, preference

gathering, and user modeling is repeated indefinitely, or until

the server process is terminated.

Note that with the pair selection strategy described above

a user never gets to evaluate a controller which has already

been seen by her peer. The motivation for this is twofold.

First, this approach maximizes the diversity of controllers

available to the collective user model, which in turn maxi-

mizes its potential for accurate prediction. Second, it facili-

tates the detection of situations when the learned user mod-

els tend to overfit the user data (see the Discussion section).

User Models

A user model is a mapping between the robot’s behavior and

an assessment of its quality by the user. In this particular

algorithm we employ a mapping which takes as input two

robot behaviors compressed into feature vectors and maps

them onto a value from [−1, 1], approximating the record of

the preference table P (see the User Preference Gathering

section).

In all experiments described here we use the values from

six sensors (five light sensors and one compass sensor) of

the robot recorded at the middle (t = T/2) of the simu-

lation as the feature vector (Bongard and Hornby (2013)).

This kind of compressed representation simplifies the prob-

lem of learning the user model. Designing a general way in

which such a vector can be generated to facilitate learning is

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

a nontrivial problem and it is not considered in this work.

The mapping is learned by an artificial neural network

with 12 inputs – six for each feature vector of the two con-

trollers which the model is supposed to compare. These neu-

rons are connected to the only output of the network through

a single hidden layer containing 12 neurons.

For convenience, the output neuron is trained to reproduce

not the P [i, j] itself, but its linear transformation to [0, 1]:

target(i, j) ≡
P [i, j] + 1

2
. (3)

The network is trained using error backpropagation

(Rumelhart et al. (1986), Bongard and Hornby (2013)). The

algorithm iterates through all entries of the preference table

P [i, j] and backpropagates the network’s errors associated

with each entry once. If the network being trained is the

collective user model, the same procedure is applied to the

other user’s preference table as well. Then it iterates through

all of the entries again and compares the sign of the model’s

prediction to the sign of the original entry. If the signs coin-

cide for all entries, the network is considered to be success-

fully trained. Otherwise, the procedure is repeated, but no

more than 104(m/2−n) times, where m is the total number

of table entries and n is the total number of controllers. If

this number is reached, the learning process is considered to

have failed.

Depending on the outcome of the learning procedure, the

algorithm assigns model errors to each generated user model

as follows:

• 10 if the learning failed;

• 2 if the learning was attempted on one preference table

and succeeded;

• 1 if the learning was attempted on two preference tables

and succeeded.

This value is used to determine the optimal way to utilize

the three user models. As we will see in the next section, the

behavior of the algorithm we use to accomplish that does

not depend on the particular values we chose to represent

the models errors, but rather on the relative position of these

values on the real axis with respect to each other.

Coordinated Score Generation

To generate coordinated scores σ (see the

Evolutionary Algorithm section above) for the newly-

evolved controllers, the server starts by producing

scores based on each one of the user models present

(Bongard and Hornby (2013)).

To determine these scores for an evolutionary population

of size 30, each user model fills a 30× 30 table P [i, j] with

its preference approximations (from [0, 1]). The score is then

calculated as

σk(j) =
1

30

30
∑

i=1

Pk[i, j], (4)

where k ∈ {0, 1, C} is the index of the user model: 0 and

1 correspond to the first and second individual user models

respectively and C corresponds to the collective model5.

Denoting the errors of the models (defined in the previous

section) as ǫ0, ǫ1 and ǫC , the coordinated score σ can be

computed as follows:

1. If there is only one user model, use its score;

2. If ǫC < ǫ0 and ǫC < ǫ1, use σC ;

3. Otherwise, use max(σ0, σ1).

The first rule describes the trivial behavior the algorithm ex-

hibits when only one user supplies preferences. The second

corresponds to the condition under which the score from the

collective user model should be used. With model error de-

fined as we did in the previous section, this decision is al-

ways made when the backpropagation algorithm was able

to train the collective user model successfully. The basis

for this decision is the assumption that if it is possible to

successfully train the collective user model on the data pro-

vided by two independent users, then these users are likely

to be “allied”, i.e., they are guiding the evolutionary search

towards the same optimum.

The third rule describes the case when users are likely to

have different opinions regarding which optimum is a global

one. In that case the max function helps to retain controllers

which are favored by one of the two users. This allows us to

take both users’ opinions into account and subject behaviors

favored by each one of them to direct competition in the

evolutionary algorithm.

We do not consider users who make errors or change their

opinion over time in this work.

Experiments

To reduce the amount of effort required to test the algorithm

and increase the experiments’ reproducibility, we employed

surrogate users in place of humans (Bongard and Hornby

(2013)). A surrogate user is a version of the client program

which emulates the behavior of a human user with particu-

lar preferences. In our experiments surrogate users preferred

robots that attempt to circumnavigate around the right edge

of the barrier, which is detected by measuring which one

of the two controllers yields the largest X coordinate of the

robot (Fig. 1) at the mid-point of the simulation (t = T/2)

5A similar metric was defined in the User Preference Gathering
section to rank controllers by the degree to which a user likes or
dislikes them. The value we generate here serves a similar purpose,
but is computed using a different set of controllers.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

(a) (b)

Figure 3: Time series for some parameters of the server over the course of typical allied simulations: (a) an unsuccessful

simulation and (b) a successful simulation. The three topmost graphs represent the unscaled fitness fu, age and the coordinated

score σ of the current best controller in the evolutionary population (computed using the product fuσ). The red dotted line

in the fitness graph (top) shows a rough estimate of the maximal value of fu which the robot not going around the barrier

can have (0.88). The fourth graph from the top shows how the way in which the server modeled users changed over the

course of the simulation: “coll”, “u0” and “u1” indicate the usage of the collective user model and the individual models

of the first and the second user, correspondingly; “indiv” corresponds to the two users being modeled separately. See the

Coordinated Score Generation section for details. The graph at the bottom gives the logical value “No robots above the barrier”:

false if there are any controllers in the current population which make robot travel beyond the barrier (i.e., have Y ≥ Yb at some

point of the behavior simulation) and true otherwise.

(henceforth we will say that such a surrogate user prefers

“rightmost” behavior). For emulating users with different

strategies, we also made a version of the surrogate user who

prefers behaviors with the lowest X coordinate at the same

point of the evaluation period (i.e. a user who prefers “left-

most” behaviors).

Also, the surrogate user stopped supplying preferences

and terminated the client if it encountered a controller which

is able to guide the robot around the barrier, i.e., to have

some points in its trajectory with Y greater than the coordi-

nate Yb where the barrier is located (see Fig. 1).

Results

In each run discussed below the server ran for 30 minutes of

wall clock time. One or two clients controlled by the sur-

rogate users were run on the same computer as parallel pro-

cesses (Fig. 2). Once every 60 seconds the clients supplied

preferences to the server.

Three types of simulation were performed:

• single user simulations with one surrogate user preferring

“rightmost” behaviors;

• allied simulations with two surrogate users preferring

“rightmost” behaviors;

• opposing simulations with one surrogate user preferring

“rightmost” behaviors and one surrogate user preferring

“leftmost” behaviors.

We considered a simulation to have succeeded if during

the last 20 generations it had at least one controller in the

server’s evolutionary population which was able to guide the

robot around the barrier (defined as above).

Figure 3 demonstrates how some parameters of the server

change over the course of two typical allied simulations. Pe-

riodically, the age of the most fit controller stays constant

for short time periods (“plateaus” on the age graphs). This

occurs when the server is busy with model training for a

significant portion of time and indicates the presence of a

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

of generations spent

Simulation # of wins/ Rate # of generations per run using the collective model/

type # of runs of success Average±std. deviation Total # of generations

Single user 53/300 0.177 (3.12± 0.13)× 102 0/937443 (0%)

Allied users 86/300 0.287 (2.59± 0.28)× 102 538610/777250 (69%)

Opposing users 25/300 0.083 (2.48± 0.20)× 102 397220/744647 (53%)

Table 1: Experimental results

significant computational overhead related to training of the

user models.

The graphs for the opposing simulations are very similar.

Graphs for single user simulations differ from Figure 3 in

two respects. First, there is no switching between usage of

individual and collective user models to guide evolution: the

algorithm has only one user model. Second, the amount of

time the server spends training the user model is substan-

tially lower.

We performed 300 runs of each of simulation type with

the servers configured as described above. The results are

presented in Table 1.

We used the one-tailed Z-test to compare the success rates

(LeBlanc (2004)). The rate of success for allied simulations

was found to be significantly higher than the success rate

of the single user simulations (p ≤ 7 × 10−4), despite the

significantly lower (p < 10−4 by the standard t-test) average

number of evolutionary generations per run.

The success rate for the opposing simulations was found

to be significantly lower (p ≤ 7×10−4) than the success rate

of the single user simulations. The average number of gener-

ations per run is about the same as for the allied simulations,

and is significantly less than the number of generations for

the single user simulations (p < 10−4).

The ratio between the number of generations which the

server spent using the collective model and the total num-

ber of generations was found to be significantly higher (p <
10−5) in the allied simulations than in the opposing simula-

tions.

Out of all 25 opposing simulations which succeeded, at

least 10 did so by taking the robot around the right side of

the barrier and at least 9 used the left side of the barrier6.

Discussion

If a simulation involves two users, on average it iterates

through fewer generations of the evolutionary algorithm

than a simulation with only one user. This is explained as

follows: in single user simulations the server maintains only

one user model, which reduces the computational expense

required for model training compared to the two user case

in which three user models must be continually trained and

6For the remaining six runs the wall was circumvented late into
the simulation, which prevented the winning controller from being
recorded.

re-trained. This reduced computational burden is exploited

by the evolutionary algorithm, which is now able to perform

more generations.

The results also indicate that in allied simulations the pro-

gram performs better than in the single user simulations. We

explain this as follows: increased rate at which the com-

mon user model receives user preferences, coupled with the

consistency of these preferences, causes the increase in the

model’s learning speed, yielding an accurate user model

quicker (compared to the single user case). This result con-

firms our hypothesis that it is possible to accelerate robot

behavior optimization by utilizing preferences from multi-

ple users, despite the additional cost incurred by having to

train individual and collective user models.

We hypothesize that the inferior performance of the pro-

gram when it hosts opposing users is due to the three follow-

ing factors:

1. When the coordinated score is generated as a maximum

of scores by the individual user models, the evolutionary

population is effectively divided into two subpopulations,

each of which consists of controllers favored by the corre-

sponding individual user model. This leads to a growth of

the Pareto front and ultimately slows down search. We hy-

pothesize that this problem may be remedied by utilizing

an evolutionary algorithm which treats the Pareto front in

a different way and/or employs a larger population.

2. In the experiments presented here, during a substantial

fraction of generations (53%) opposing simulations em-

ployed the collective user model to guide search. The

collective user model “successfully” learned a data set

which has implicit internal inconsistencies. That is, the

model must learn to take two similar inputs yet output two

very different predictions: for example, the first user very

much liked the first behavior, but the second user greatly

disliked the second, similar behavior. This suggests that

the model has overfit the data and its usage can negatively

impact the algorithm’s search ability.

Notice that if there were at least two controllers which

both users has seen, it would become impossible to “suc-

cessfully” train the collective user model. This can con-

ceal the problem of overfitting. That’s why, although

such overlap would help the algorithm to recognize the

situation when it is better to model users separately, it

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

is not allowed in the experiments reported here. This

was one of the reasons why we decided to query the

users on completely disjoint sets of controllers (see the

User Preference Gathering.

This problem might be solved by using a different metric

for the user model’s learning efficiency.

3. The additional computational overhead mentioned above

in the context of allied simulations already places this

simulation at a computational disadvantage compared to

the single user simulation.

Despite the general failure to accommodate opposing

users, the algorithm still managed to solve the task in a sub-

stantial fraction of runs. These runs succeeded by discover-

ing both user-favored optima, which indirectly confirms our

second hypothesis about the possibility of finding and com-

paring multiple user-favored optima in the fitness landscape.

Conclusions

Our findings confirm that in robot behavior optimization

tasks it is possible to increase the performance of fitness-

based, user-assisted evolutionary algorithms by utilizing

preferences from multiple users. This constitutes a step to-

wards fitness-based, crowd-assisted algorithms which may

potentially solve problems too deceptive to be solved by

purely automated algorithms.

We demonstrated that employing more than one user can

help solve robot behavior optimization tasks in at least two

ways. First, if users approach the task with the same strat-

egy, this approach allows the optimizer to recognize and em-

ploy the strategy more rapidly. Second, if the users employ

different strategies, it is possible to find all optima recog-

nized by the users and choose the best one among them.

However, the task of designing such algorithms is far from

trivial. Here we would like to highlight some difficulties par-

ticular to search algorithms guided by multiple users, which

employ user modeling. A good algorithm of this type must

1. be able to distinguish between different user strategies and

model each appropriately;

2. employ user modeling algorithms flexible enough to adapt

to any or almost any benign user strategy, yet not overfit

user input and thus retain good extrapolation properties;

and

3. employ a search algorithm which is able to retain good

performance while utilizing user models that change in

number and quality.

Every one of these tasks constitutes a nontrivial design prob-

lem in its own right. However, we believe that all of these

challenges can be addressed by a suitable combination of

machine learning techniques. Possible future work may in-

clude utilizing clustering to solve the first subproblem listed

above (pioneered in (Kuzma et al. (2009))), evolving user

models of varying accuracy and complexity to address the

second one and designing evolutionary algorithms with bet-

ter scaling properties to handle the last one.

Acknowledgments

This work was supported by DARPA M3 grant W911NF-1-

11-076.

References
Akrour, R., Schoenauer, M., and Sebag, M. (2011). Preference-

based policy learning. In Machine Learning and Knowledge
Discovery in Databases, pages 12–27. Springer.

Bongard, J. C., Beliveau, P., and Hornby, G. S. (2012). Avoid-
ing local optima with interactive evolutionary robotics. In
Proceeding of the fourteenth annual conference on Genetic
and evolutionary computation conference, pages 1405–1406.
ACM.

Bongard, J. C. and Hornby, G. S. (2013). Combining fitness-based
search and user modeling in evolutionary robotics. In Pro-
ceeding of the fifteenth annual conference on Genetic and
evolutionary computation conference, pages 159–166. ACM.

Kuzma, M., Jaksa, R., and Sincak, P. (2009). Clustering of users
inputs in multi-user interactive evolutionary font design. In
Applied Computational Intelligence and Informatics, 2009.
SACI ’09. 5th International Symposium on, pages 41–46.

LeBlanc, D. C. (2004). Statistics: concepts and applications for
science, volume 2. Jones & Bartlett Learning.

Mouret, J.-B. (2011). Novelty-based multiobjectivization. In New
Horizons in Evolutionary Robotics, pages 139–154. Springer.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning representations by back-propagating errors. Nature,
323(6088):533–536.

Schmidt, M. and Lipson, H. (2011). Age-fitness pareto optimiza-
tion. In Genetic Programming Theory and Practice VIII,
pages 129–146. Springer.

Schmidt, M. D. and Lipson, H. (2006). Actively probing and mod-
eling users in interactive coevolution. In Proceeding of the
eighth annual conference on Genetic and evolutionary com-
putation conference, pages 385–386. ACM.

Secretan, J., Beato, N., D’Ambrosio, D. B., Rodriguez, A., Camp-
bell, A., and Stanley, K. O. (2008). Picbreeder: evolving pic-
tures collaboratively online. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages
1759–1768. ACM.

Szumlanski, S. R., Wu, A. S., and Hughes, C. E. (2006). Con-
flict resolution and a framework for collaborative interactive
evolution. In AAAI, pages 512–517. AAAI Press.

Takagi, H. (2001). Interactive evolutionary computation: fusion
of the capabilities of ec optimization and human evaluation.
Proceedings of the IEEE, 89(9):1275–1296.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

	Introduction
	Test Problem
	Methods
	Evolutionary Algorithm
	User Preference Gathering
	User Models
	Coordinated Score Generation

	Experiments
	Results

	Discussion
	Conclusions
	Acknowledgments

