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Abstract 
 
Using phosphate fertilizers and wastewater as a source of irrigation and residuals from industries have 

considerably increased the level of cadmium (Cd) in soil which severely reduced the growth and yield of crop. 
L-glutamic acid (L-Glu), an amino acid, plays key roles in plant stress tolerance. Hence, the current study was 
conducted to determine the potential role of L-Glu pre-treatment in alleviating Cd-induced toxicity in lentil 
(Lens culinaris Medik.). Lentil seedlings were exposed to two doses of Cd (1 and 2 mM CdCl2) with or without 
10 mM L-Glu pre-treatment. The results suggested that a high dose of Cd negatively affected the shoot dry 
weight, root dry weight, and photosynthetic pigments (chlorophylls and carotenoids). Furthermore, Cd stress 
induced severe oxidative damage, a reduction in catalase (CAT) activity and ascorbate (AsA) content, and 
accumulation of Cd in both the roots and shoots. Adding L-Glu protected the photosynthetic pigments of the 
lentil seedlings and thus improved the growth of the seedlings. In addition, L-Glu pre-treatment enhanced the 
ascorbate (AsA) content; increased the activity of enzymes such as catalase, ascorbate peroxidase, 
monodehydroascorbate reductase, and glutathione peroxidase. L-Glu was also reduced Cd uptake and 
translocation, which in turn alleviated the oxidative damage in the Cd-stressed seedlings indicated the potential 
role of this chemical. Results suggest that pre-treatment with L-Glu reduces Cd toxicity in lentil seedlings by 
inhibiting Cd accumulation and by reducing oxidative damage. 
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Introduction 
 
Cadmium (Cd) has been considered as a highly toxic pollutant amongst other toxic metals that 

contaminate soil through injudicious use of phosphate fertilizers and pesticides, and disposal of sewage sludge 
into the environment (He et al., 2016; Khan et al., 2017). Cadmium serves no biological function in plants, so 
the growth and productivity of plants growing in Cd-contaminated soil are severely affected. Even at low 
concentrations (5-10 µg g−1 dry weight), Cd disrupts the physiological and biochemical processes of plants 
(Tran and Popova, 2013; Qadir et al., 2014; Khan et al., 2017). The noticeable damage caused by toxic Cd in 
plants includes growth reduction, photosynthesis and respiration restriction, and leaf chlorosis (Bayçu et al., 
2018; Rizwan et al., 2018; Yotsova et al., 2018; Song et al., 2019; Xin et al., 2019). Furthermore, Cd can easily 
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be transported to other edible portions of plants, which poses a great risk to human health (Ismael et al., 2019; 
Mishra et al., 2019). 

Overproduction of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide 
radical (O2

.−), singlet oxygen (1O2), and hydroxyl radical (OH.) is the well-established response of plants under 
abiotic stress conditions including Cd stress (Kapoor et al., 2019). Plants have an innate capacity to balance 
ROS homeostasis by maintaining the antioxidant defense system composed of non-enzymatic antioxidants 
such as ascorbate (AsA) and reduced glutathione (GSH) and enzymatic antioxidants including ascorbate 
peroxidase (APX), catalase (CAT), glutathione peroxidase (GPX), monodehydroascorbate reductase 
(MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione S-transferase 
(GST) (Shanying et al., 2017; Li et al., 2019; Małecka et al., 2019). Increased ROS caused by an increasing level 
of toxic Cd leads to oxidative stress (Muneer et al., 2014; Latef et al., 2018). To scavenge the overproduced 
ROS in plants under Cd stress, inducing the antioxidant defense system could be an effective approach 
compared with other approaches such as remediating Cd-contaminated soil and developing Cd stress-tolerant 
varieties, which are expensive and time consuming (Huybrechts et al., 2019; Shah et al., 2019). Therefore, 
researchers are looking for eco-friendly and cost-effective approaches to handle Cd toxicity in plants. Several 
reports indicate that using a variety of chemicals could be a feasible way of attenuating the deleterious effect of 
abiotic stress including Cd stress in plants (Savvides et al., 2016; Kaya et al., 2020). For example, exogenous 
application of chemicals such as auxin, ethylene, salicylic acid, and silicon reduce Cd toxicity in barley, mustard, 
maize, and wheat (Krantev et al., 2008; Bočová et al., 2013; Asgher et al., 2014; Wu et al., 2019). Along with 
those chemicals priming with amino acids have also provided signalling effect in reducing biotic and abiotic 
stresses in different crops (Nephali et al., 2020). Among them, previous results suggested that an amino acid, 
glutamate (Glu) acts as a signalling molecule to induce many plants physiological processes including seed 
germination (Kong et al., 2015) and root architecture (Forde, 2014). In addition, L-glutamic acid (L-Glu) can 
modulate the defense mechanism of plants to withstand the injurious effects of salinity (Sh Sadak et al.,2015; 
Fardus et al., 2021) and drought stress (La et al., 2020). Therefore, L-Glu is also considered as the eco-friendly 
chemical because it remains as the precursor of the synthesis of different polypeptides and proteins, which 
seems very essential for plant cell growth simulation (Qiu et al., 2020). As L-glutamic acid is an amino acid it 
can be easily metabolized by living organisms in the soil and also by the plants (Kan et al., 2017). However, the 
role of L-Glu in mitigating Cd toxicity has not yet been investigated in lentil. 

Lentil is a principal crop among other pulse crops cultivated in many countries including Bangladesh, 
India, and Canada. It is a beneficial crop because of its high protein content and N2-fixing ability (Andrews and 
Andrews, 2017; Foti et al., 2019). However, compared with rice, wheat, and maize, limited research has focused 
on the Cd stress-tolerance mechanism in lentil. 

Therefore, the aims of our current study were (1) to examine the L-Glu-induced effects on the 
physiological and biochemical parameters of lentil seedlings, (2) to determine whether L-Glu alleviates Cd-
caused oxidative stress and growth reduction, and (3) to investigate whether L-Glu upregulates the antioxidant 
systems. Accordingly, we investigated different growth attributes, oxidative damage markers, the response of 
the antioxidant defense system, and the uptake of Cd in the roots, shoots, and leaves of lentil seedlings. To the 
best of our knowledge, this report is the first showing a positive role of L-Glu in mitigating Cd toxicity in lentil 
seedlings.  

 
Materials and Methods 
 
Plant materials, growth conditions, and treatments 
Healthy lentil (Lens culinaris Medik cv. ‘BARI Masur-7’) seeds were surface sterilized by soaking them 

in 70% ethanol for 5 min. The disinfected seeds were then washed and soaked in distilled water for 24 h. The 
next day, the soaked seeds were washed again with distilled water and kept in a dark condition for 72 h for 
gemination in Petri dishes containing six layers of wetted paper towels. Forty germinated seedlings were kept 
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in each Petri dish and placed in a cultivation chamber under continuous illumination at 350 μmol m−2 s−1 
photon flux density and 25 ± 1 °C. Hyponex (Tokyo, Japan) nutrient solution with the concentration of 0.2 
mL L−1 was supplied to the seedlings with or without 10 mM l-Glu on the following day and left for another 
48 h. The dose of L-Glu was selected based on the previous reports of Fardus et al. (2021) and Kan et al. (2017). 
The seedlings from four sets of Petri dishes with or without L-Glu were then exposed to 1- and 2-mM cadmium 
chloride (CdCl2). The doses of Cd were chosen based on a preliminary trial testing a series of Cd concentrations 
(0.3-3 mM) (Supplementary Figure 1a-c). Stress treatments were continued for five days and changed on 
alternate days. The 9-day-old seedlings were then used to determine the physiological and biochemical 
attributes. Three replications were used for each treatment. 

 
Growth parameters and water content determination 
The shoots and roots of randomly selected lentil seedlings were separated, and their shoot fresh weight 

(SFW) and root fresh weight (RFW) were measured by removing additional moisture with paper towels. The 
detached portion of the seedlings were then dried at 80 °C in a dryer until a stable weight was obtained. The 
dried samples were then weighed to determine the dry weight of the shoots (SDW) and roots (RDW). The 
formula [WC (%) = {(FW − DW) ∕ DW} × 100] was used to calculate the water content (WC). 

  
Chlorophyll and carotenoid content measurement 
The contents of chlorophyll (Chls) and carotenoid (Car) were extracted from the leaf tissue (0.1 g) of 

individual samples by heating with 10 mL DMSO (Dimethylsulfoxide, a useful extractant of chlorophyll in 
plants which extract chlorophyll without any hydration) in a water bath for 1 h at 65 °C. The absorbance of 
those supernatants was then measured at 645 and 663 nm wavelength to analyse the Chls content according to 
the formula of Wellburn (1994) and expressed as mg g−1 FW. The amount of Car was analysed from the 
outcome of the absorbance at 470 nm wavelength and expressed as mg g−1 FW (Wellburn, 1994). 

  
Electrolyte leakage and proline content determination 
Electrolyte leakage (EL) was measured according to Dionisio-Sese and Tobita (1998). Proline content 

(Pro) was measured following the method of Bates et al. (1973). 
 
Malondialdehyde, other aldehyde, and hydrogen peroxide estimation 
Lentil shoots (0.5 g) from each sample were homogenized and centrifuged with 3 mL of 5% TCA at 

11500×g for 15 min. Supernatants (1 mL) were then heated in a water bath for 30 min after mixing with 4 mL 
TBA (thiobarbituric acid) and centrifuged again. Then the supernatant taken from that centrifugation was 
used to determine malondialdehyde (MDA) and other aldehyde at 532, 600, and 455 nm absorbance according 
to Heath and Packer (1968) and Keramat et al. (2010). To calculate MDA and other aldehyde, we used 155 
mM−1 cm−1 and 0.457×105 M−1 cm−1 coefficients, respectively. The method of Yang et al. (2007) was used to 
measure hydrogen peroxide (H2O2) at 390 nm absorbance. 

 
Reduced ascorbate, reduced glutathione, and oxidized glutathione content estimation 
Lentil shoots (0.5 g) were homogenized in 5% TCA (3 mL). Reduced ascorbate (AsA), total glutathione 

(TG), and oxidized glutathione (GSSG) were determined from the supernatant after centrifugation according 
to Noctor et al. (2016).  

 
Soluble protein estimation 
Bovine serum albumin (BSA) was used as a protein standard to measure the total soluble protein 

concentration (Bradford, 1976). 
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Enzyme activity determination 
A mortar and pestle were used to homogenize the lentil shoots along with 50 mL buffer solution 

containing ascorbic acid (1 mM), KCl (100 mM), β-mercaptoethanol (5 mM), and glycerol (10% w/v). The 
homogenate sample was then centrifuged at 11500×g for 12 min. The collected supernatant from the 
centrifuged sample was then used to determine the concentration of the soluble protein and activities of the 
different enzymes. 

The method of Noctor et al. (2016) was used to assay catalase (CAT, EC:1.11.1.6) activity and expressed 
as µmol min−1 g−1 protein. In following this method, extracted enzyme was placed in a cuvette and absorbance 
was measured at 240 nm. The absorbance was calculated by using an extinction coefficient of 40 mM−1 cm−1. 

Ascorbate peroxide (APX, EC:1.11.1.11) activity was determined according to the method of Noctor 
et al. (2016) with absorbance measured at 290 nm using 50 mM K-P buffer (pH 7.0), 0.5 mM AsA, 0.1 mM 
H2O2, 0.1 mM EDTA, and enzyme. 

Monodehydroascorbate reductase (MDHAR, EC:1.6.5.4) activity was assayed by measuring absorbance 
at 290 nm using Tris-HCl buffer at pH 7.5 (50 mM), AsA (2.5 mM), NADPH (0.2 mM), and enzyme, and 
expressed as nmol min−1 mg−1 protein (Noctor et al., 2016). 

Dehydroascorbate reductase (DHAR, EC:1.8.5.1) was determined following the method of Noctor et 
al. (2016): 50 mM K-P buffer (pH 7.0), 2.5 mM GSH, and DHA with enzyme in a cuvette were used to 
measure the absorbance of DHAR from that extracted enzyme. 

Glutathione reductase (GR, EC:1.6.4.2) activity was determined by using K-P buffer (pH 7.0), EDTA, 
GSSG, and NADPH with extracted enzyme, and measuring spectrophotometry absorbance at 340 nm (Noctor 
et al., 2016). 

The activity of glutathione S-transferase (GST, EC:2.5.1.18) at 340 nm absorbance was determined 
according to the method of Nahar et al. (2016) by using 250 mM K-P buffer (pH 6.5), 1.5 mM GSH, 1 mM 
1-chloro-2,4-dinitrobenzene (CDNB), and extracted enzyme. 

The activity of glutathione peroxidase (GPX, EC:1.11.1.9) was assayed by following the method of 
Noctor et al. (2016) and expressed as nmol min−1 mg−1 protein. 

 
Statistical analysis 
Statistical analysis was performed using analysis of variance (ANOVA) of three replications and 

XLSTAT v.2020 software. Fisher’s least significant difference (LSD) with a probability of 5% was used to assay 
the mean difference of those replications. 

 
 
Results 
 
Involvement of L-Glu in improving the phenotypic appearance of lentil seedlings under the influence 

of Cd toxicity 
Exposing the lentil seedlings to the liquid solution of Cd (1 and 2 mM CdCl2) clearly affected the 

phenotypic appearance of the seedlings, including growth reduction and leaf chlorosis, compared with the 0.3–
0.7 mM CdCl2-treated seedlings (Figure 1; Supplementary Figure 1a–c). Conversely, compared with the Cd-
stressed plants, exogenous pre-treatment with 10 mM L-Glu reversed the phytotoxic effects of Cd by reviving 
the leaves and improving the phenotypic appearance of the lentil seedlings (Figure 1). Furthermore, the 
seedlings under Cd stress also exhibited better phenotypic appearance with pre-treatment by 10 mM L-Glu 
compared with other amino acids such as L-glutamine, L-glycine, L-aspartic acid, L-phenylalanine, L-
methionine, and L-cysteine at the same concentration (10 mM) (Supplementary Figure 2a–d). 

 

https://www.notulaebotanicae.ro/index.php/nbha/article/view/12485/9271
https://www.notulaebotanicae.ro/index.php/nbha/article/view/12485/9271
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Figure 1. Effect of L-glutamic acid on the phenotypic appearance of the lentil seedlings under Cd stress 
The treatments were control (C), 1 mM CdCl2 (Cd1), 10 mM L-glutamic acid + 1 mM CdCl2 (L-Glu+Cd1), 2 mM 
CdCl2 (Cd2), and 10 mM L-glutamic acid + 2 mM CdCl2 (L-Glu+Cd2).  

 
  L-Glu alleviated Cd-induced inhibition of plant growth and proline content and improved water 

content in the lentil seedlings 
The growth of the lentil seedlings was dramatically reduced by the Cd treatments. The results indicated 

that, in comparison with control, the fresh weight of the Cd (1 and 2 mM) treated shoots declined by 42% and 
63% (Table 1). Fresh weight of Cd treated roots also decreased by 9 and 19%, compared to control seedlings 
under toxic Cd condition (1 and 2 mM) (Table 1). Similarly, the dry weight of the shoots and roots was also 
significantly reduced by 10 and 18%, and 20 and 48%, with increasing toxic Cd concentration, respectively, 
compared with control (Table 1). However, L-Glu pre-treatment diminished the negative effect of toxic Cd (1 
and 2 mM) on the fresh weight of the shoots and roots by 41 and 61%, and 40 and 19%, respectively (Table 1). 
Adding L-Glu also increased the dry weight of the shoots (10 and 19%) and roots (20 and 48%) significantly 
in response to both levels of Cd compared with the Cd-stressed seedlings (Table 1). Furthermore, under Cd 
stress, L-Glu supplementation increased the water content (5 and 9%) and reduced the proline content (20 
and 25%) in comparison with the Cd-treated seedlings (1 and 2 mM) (Table 1). The decline in water content 
(6 and 13%) and increase in proline content (169 and 286%) occurred with the treatment of 1 and 2 mM 
CdCl2 compared with control (Table 1). 

 
Table 1. Effect of L-glutamic acid on shoot fresh weight (SFW), shoot dry weight (SDW), root fresh 
weight (RFW), root dry weight (RDW), water content (WC), and proline content (Pro) of the lentil 
seedlings under Cd stress 

Treatment 
SFW 

(mg shoot−1) 
SDW 

(mg shoot−1) 
RFW 

(mg root−1) 
RDW 

(mg root−1) 
WC (%) 

Pro (µmol 
g−1 DW) 

C 67.7±1.2a 9.2±0.1a 46.2±1.9a 3.5±0.1a 86.4±0.3a 113.4±7.4d 

Cd1 39.1±2.1c 7.4±0.3c 22.2±0.5c 1.8±0.1c 80.7±0.5b 304.6±8.8b 

L-Glu+Cd1 55.2±0.9b 8.8±0.2b 30.4±0.6b 2.2±0.1b 85.2±0.2a 245.1±4.1c 

Cd2 25.1±1.5d 6.2±0.3d 17.8±0.3d 1.1±0.1d 75.3±0.3c 437.2±27a 

L-Glu+Cd2 40.3±0.7c 7.3±0.1c 21.3±0.1c 1.6±0.1c 81.8±0.6b 289.7±13b 
The means (±SE) were calculated from three replications. Values with different letters indicate statistically significant 
differences at P≤0.05 (Fisher’s LSD test). 

 
L-Glu pre-treatment relieved the chlorosis of the lentil leaves 
The lentil seedlings showed severe leaf chlorosis when treated with CdCl2, and the symptoms increased 

dramatically with increasing Cd concentration. The contents of chlorophyll a (Chl a, 34 and 71%), chlorophyll 
b (Chl b, 34 and 73%), chlorophyll (a+b) (Chls (a+b), 39 and 71%), and carotenoid (Car, 81 and 57%) 
decreased compared with control under Cd-stress conditions (Figure 2a–d). However, compared with both 
the Cd-alone treatments, L-Glu pre-treatment increased Chl a (52 and 218%), Chl b (29 and 158%), Chls 
(a+b) (48 and 146%), and Car (183 and 622%) in response to the 1 and 2 mM CdCl2 concentrations (Figure 
2a–d). 
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Figure 2. Effect of L-glutamic acid on the contents of the photosynthetic pigments a) chlorophyll a (Chl 
a), b) chlorophyll b (Chl b), c) chlorophyll (a+b) (Chls (a+b)), and d) carotenoid (Car) in the lentil 
seedlings under Cd stress 
The above means (±SE) were calculated from three replications. Values with different letters indicate statistically 
significant differences at P≤0.05 (Fisher’s LSD test). 

 
L-Glu alleviated the Cd-induced oxidative stress (malondialdehyde, hydrogen peroxide, and percentage 

of electrolyte leakage) 
The consequence of Cd stress and L-Glu pre-treatment on membrane lipid peroxidation was 

determined by measuring the amount of MDA and other aldehyde content in the lentil leaves. In comparison 
with control, a marked increase in MDA (63 and 106%) and other aldehyde (78 and 173%) was detected in 
the 1- and 2-mM Cd-stressed seedlings (Figure 3a, b). Conversely, L-Glu pre-treatment reduced the contents 
of MDA and other aldehyde by 37 and 29%, and 23 and 15%, respectively, compared with the Cd-stressed 
seedlings (Figure 3a, b). Moreover, our results also showed that the induction of ROS led to an increase in H2O2 
content and EL percentage under the same stresses. In our experiment, H2O2 content and EL percentage 
increased by 73 and 106%, and 58 and 221%, respectively, in comparison to control (Figure 3c, d). However, 
L-Glu supplementation lowered the H2O2 content (34 and 27%) and EL percentage (15, 42%) compared with 
the Cd-stressed lentil seedlings (Figure 3c, d). 

 

 
Figure 3. Effect of L-glutamic acid on a) malondialdehyde (MDA), b) other aldehyde, c) hydrogen 
peroxide (H2O2), and d) electrolyte leakage of the lentil seedlings under Cd stress 
The above means (±SD) were calculated from three replications. Values with different letters indicate statistically 
significant differences at P≤0.05 (Fisher’s LSD test). 
 

L-Glu application modulates the activities of non-enzymatic and enzymatic antioxidants in the lentil 
seedlings 

The key factor of the cellular system of plants is to scavenge the continuously produced excess ROS. To 
reduce the excess ROS, plants possess an antioxidant system comprising non-enzymatic antioxidants such as 
AsA, GSH, and GSSG, and enzymatic antioxidants such as CAT, APX, MDHAR, DHAR, GR, GST, and 
GPX (Figure 4a–k). Our results showed increased activities of a few of the above-mentioned enzymes in the 
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control and l-Glu-pre-treated seedlings (Figure 4a–k). In comparison with the CdCl2-treated seedlings, the 
level of AsA (140 and 218%) significantly increased with pre-treatment by L-Glu (Figure 4a), whereas the 
content of GSH (27 and 17%) and GSSG (33 and 24%) decreased with pre-treatment by L-Glu (Figure 4b,c). 
Furthermore, the GSH/GSSG ratio was significantly similar in the lentil seedlings with or without application 
of L-Glu under both levels of Cd stress (Figure 4d) The activities of the enzymes CAT, APX, MDHAR, and 
GPX also increased by 14 and 128%, 36 and 90%, 19 and 59%, and 28 and 62%, respectively, with the 
application of L-Glu when exposed to 1 and 2 mM Cd stress (Figure 4e–g,k). Supplementation with L-Glu 
reduced the activities of the other enzymes, DHAR, GR, and GST, by 24 and 28%, 28 and 33%, and 19 and 
35%, respectively, compared with the CdCl2-treated seedlings (1 and 2 mM) (Figure 4h–j). However, the Cd-
stressed seedlings exhibited decreasing levels of AsA (61 and 78%) and increasing levels of GSH (46 and 133%) 
and GSSG (122 and 130%) compared with control (Figure 4 a–c). Moreover, the activities of APX, MDHAR, 
DHAR, GR, GST, and GPX increased, and CAT activity decreased with the application of 1 and 2 mM CdCl2 
in comparison with control (Figure 4e–k).  

 

 
Figure 4. Effect of L-glutamic acid on the contents of the non-enzymatic antioxidants, a) ascorbate (AsA) 
b) reduced glutathione (GSH), c) oxidized glutathione (GSSG), and d) GSH/GSSG; and the activity of 
the enzymatic antioxidants, e) catalase (CAT), f) ascorbate peroxidase (APX), g) monodehydroascorbate 
reductase (MDHAR), h) dehydroascorbate reductase (DHAR), i) glutathione reductase (GR), j) 
glutathione peroxidase (GPX), and k) glutathione S-transferase (GST), in the lentil seedlings under Cd 
stress 
The above means (±SE) were calculated from three replications. Values with different letters indicate statistically 
significant differences at P≤0.05 (Fisher’s LSD test). 
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Involvement of L-Glu in inhibiting the accumulation of Cd under Cd stress 
No accumulation of Cd was recorded in the leaves, shoots, and roots of the control seedlings (Figure 

5a–c). In contrast, Cd accumulation in the roots increased by 159 and 326%, respectively, with the increasing 
concentration of Cd, which was then translocated to the aboveground part of the lentil seedlings, namely, the 
shoots (101 and 256%) and leaves (9 and 30%) (Figure 5a–c). Conversely, L-Glu pre-treatment reduced the 
accumulation of Cd in the roots (30 and 23%) and also impeded the translocation of Cd to the shoots (59 and 
38%) and leaves (89 and 60%) under 1 and 2 mM CdCl2 stress (Figure 5a–c). 

 

 
Figure 5. Effect of L-glutamic acid on the levels of a) leaf Cd, b) shoot Cd, and c) root Cd in the lentil 
seedlings under Cd stress 
The above means (±SE) were calculated from three replications. Values with different letters indicate statistically 
significant differences at P≤0.05 (Fisher’s LSD test). 

 
L-Glu application improved ion homeostasis of the lentil seedlings under Cd stress 
Upon exposure to 1 and 2 mM of CdCl2, the uptake of Ca2+ and Mg2+ through the roots dramatically 

decreased in comparison with control (Supplementary Figure 3). The leaves and shoots of the lentil seedlings 
also exhibited lower amounts of Ca2+ and Mg2+ under both levels of Cd stress (Supplementary Figure 3). 
However, the uptake and translocation of Ca2+ and Mg2+ increased in the L-Glu-pre-treated seedling roots (25 
and 93%, 123 and 151%), shoots (81 and 206%, 21 and 69%), and leaves (168 and 216%, 33 and 40%) in 
response to CdCl2 (1 and 2 mM) in comparison with the Cd-treated seedlings (Supplementary Figure 4). 
Furthermore, the uptake of K+ through the roots was 233 and 147 µmol g−1 DW under 1 and 2 mM CdCl2, 
respectively, and remained 41 and 63% lower than the control seedlings (Supplementary Figure 4). In response 
to the Cd stress, the seedlings also translocated reduced amounts of K+ to the shoots (50 and 13%) and leaves 
(34 and 60%) compared with control (Supplementary Figure 3). In comparing the seedlings exposed to both 
levels of Cd stress, adding L-Glu significantly increased the amount of K+ uptake by the roots of around 52 and 
100%, respectively (Supplementary Figure 3). Translocation of K+ from the roots to the shoots to leaves also 
increased with the application of L-Glu under both levels of Cd stress (Supplementary Figure 3). 

  
Correlation analysis 
Correlation analysis was performed to determine the actual relationship between different factors and 

application of Cd (1 and 2 mM) and L-Glu in the lentil seedlings (Supplementary Figure 4). Generation of the 
oxidative stress markers, MDA, H2O2, other aldehyde, and EL, correlated positively with both concentrations 
of Cd, while the growth parameters of biomass production and photosynthetic pigment contents. The ion 
accumulation (K+, Ca2+, and Mg2+) correlated negatively with Cd concentration (Supplementary Figure 4). 
Conversely, L-Glu concentration correlated positively with the growth attributes (biomass production, 
photosynthetic pigment contents) and ion accumulation (K+, Ca2+, and Mg2+), but correlated negatively with 

https://www.notulaebotanicae.ro/index.php/nbha/article/view/12485/9271
https://www.notulaebotanicae.ro/index.php/nbha/article/view/12485/9271
https://www.notulaebotanicae.ro/index.php/nbha/article/view/12485/9271
https://www.notulaebotanicae.ro/index.php/nbha/article/view/12485/9271
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the oxidative stress markers (MDA, H2O2, other aldehyde, and EL) according to 1 and 2 mM CdCl2 
concentration (Supplementary Figure 4). The antioxidant defense components, especially AsA, CAT, APX, 
and MDHAR, showed a negative correlation with the generation of the oxidative stress markers under both 
Cd concentrations (1 and 2 mM) with or without L-Glu supplementation (Supplementary Figure 4). 

 
 
Discussion 
 
Heavy metals, particularly Cd (a non-essential element), can easily enter plant cells and negatively 

interfere with plant physiological processes (Cuypers et al., 2010; Jia-Wen et al., 2013). As a result of excess Cd 
accumulation, plants suffer from oxidative damage due to ROS generation, which ultimately reduces the 
survivability of plants by restricting growth and biomass (Gill and Tuteja, 2010). Therefore, inhibiting Cd 
uptake and reducing Cd-induced toxicity in plants is an important objective for plant scientists. Recently, 
researchers have been trying to use effective and inexpensive technologies, including external application of 
chemical, to modulate ingression and accumulation of Cd in plants, especially those used as food for people 
(Corpas and Palma, 2020; Khan et al., 2020). Even though some chemicals have shown a promising protective 
role, scientists are still looking for inexpensive and eco-friendly chemicals. Evidence suggests that L-Glu is 
involved in plant growth and development, and also plays a role in protecting plants under different adverse 
conditions (La et al., 2020; Toyota et al., 2018; Zheng et al., 2018; Kong et al., 2015). Our results suggested a 
protective role of L-Glu in mitigating damage induced by Cd in lentil seedlings. 

To investigate the role of L-Glu in Cd-stress tolerance, we first tested the response of lentil seedlings 
under a series of Cd stresses from 0.3 to 3 mM Cd with or without 10 mM L-Glu. Severe phenotypic damage 
was observed at 2- and 3-mM Cd stress (Supplementary Figure 1a-c). We selected the doses 1- and 2-mM Cd 
for further investigation. The present study reveals that the Cd-stressed lentil seedlings showed reduced 
growth, reduced shoot and root fresh and dry weight, greyish leaves, and withered seedlings with increasing Cd 
concentration (Figure 1, Table 1). Similarly, arrested growth (reduction of shoot and root fresh and dry masses) 
of wheat (Hussain et al., 2018), Brassica juncea (Kapoor et al., 2019), and lentil (Feizi et al., 2020) has been 
observed under different levels of Cd stress. However, adding L-Glu to Cd-stressed lentil seedlings was found 
to improve the phenotypic appearance of the lentils by restoring the green to leaves, and recovering the growth 
and biomass of seedlings, suggesting that L-Glu treatment could mitigate the detrimental effect of Cd. L-Glu 
application promotes the growth of lentil and Brassica napus L. under drought- and salt-stress conditions (La 
et al., 2020; Fardus et al., 2021). In comparison with other amino acids (L-glutamine, L-glycine, L-aspartic acid, 
L-phenylalanine, L-methionine, and L-cysteine), L-Glu-pre-treated lentil seedlings were phenotypically 
healthier under a Cd-stress conditions, suggesting that L-Glu has a specific role in mitigating Cd toxicity in the 
lentil seedlings (Figure 1, Supplementary Figure 2a–d). 

Substantial water and nutrient uptake are required for maintaining the optimal growth of a plant (Nazar 
et al., 2012). In our current study, we found a decreasing percentage of WC in the Cd-stressed lentil seedlings, 
indicating that Cd in the growing media reduced the uptake of water (Table 1). Under abiotic stress conditions, 
the common physiological response of plants to overcome water deficiency is accumulating different osmo-
protectants including Pro (Kaur and Asthir, 2015). Therefore, in our investigation, the Cd-stressed seedlings 
accumulated a higher amount of Pro to adjust the osmotic condition in the cells (Table 1). Conversely, L-Glu 
pre-treatment restored the percentage of WC in the lentil seedlings, and thus Pro accumulation was lower 
under Cd stress compared with the Cd alone-stressed seedlings (Table 1). Our result is similar to that of Kaya 
et al. (2019), who observed that exogenous application of sodium nitroprusside and sodium hydrogen sulfide 
resulted in a lower level of Pro because there was a higher relative water content in the Cd-stressed wheat 
seedlings. 

A higher concentration of Cd in the growing media negatively affects plant photosynthesis by distorting 
chloroplasts, damaging photosynthetic pigments, and deactivating the enzymes or proteins that are responsible 

https://www.notulaebotanicae.ro/index.php/nbha/article/view/12485/9271
https://www.notulaebotanicae.ro/index.php/nbha/article/view/12485/9271
https://www.notulaebotanicae.ro/index.php/nbha/article/view/12485/9271
https://www.notulaebotanicae.ro/index.php/nbha/article/view/12485/9271
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for photosynthesis (Xu et al., 2015). Our current investigation revealed that the Cd-stressed seedlings exhibited 
significantly lower contents of Chls and Car, suggesting that toxic Cd reduces photosynthetic pigments, which 
results in impairment of growth of the lentil seedlings (Figure 2a–d, Table 1). Shahwar et al. (2019) also 
reported that Cd reduces the photosynthetic pigments Chl a, Chl b, and Car in lentils. However, L-Glu 
application reduces the loss of photosynthetic pigments under Cd stress, indicating that L-Glu improved the 
photosynthetic pigments in the leaf tissue, and consequently, seedling growth and biomass increased under Cd 
stress (Figure 2a–d; Table 1). The role of L-Glu in ameliorating the damage to the photosynthetic apparatus 
has also been noticed under drought- and salt-stress conditions (La et al., 2020; Fardus et al., 2021). 

Excessive amounts of heavy metals including Cd can trigger the generation of ROS in plants directly or 
indirectly, which leads to lipid peroxidation (Küpper and Andresen, 2016; Rizwan et al., 2017). In our 
experiment, Cd stress induced oxidative damage in the membranes and accumulation of ROS in the lentil 
seedlings, which is indicated by higher amounts of MDA, H2O2, and another aldehyde, and higher EL (Figure 
3a–d). Bashri and Prasad (2016), Anjum et al. (2016), and Chen et al. (2019) also found increased MDA and 
EL in fenugreek, maize, and rice, respectively, in response to Cd stress. On the other hand, L-Glu pre-treatment 
considerably reduced the contents of MDA, H2O2, and other aldehyde, and reduced EL in the lentil seedlings, 
suggesting that L-Glu application alleviates the Cd-induced membrane damage and reduces the 
overaccumulation of ROS (Figure 3a–d). Our results are in line with La et al. (2020), who suggest that 
exogenous Glu application modulates the response to drought stress, especially the accumulation of H2O2. 

The efficient functioning of the enzymatic and non-enzymatic components of the antioxidant defense 
system of plants regulates excessive ROS production and maintains a redox potential under adverse 
environmental conditions (Nazar et al., 2012; Khademian et al., 2019). Our current study investigated the 
response of different components of the antioxidant defense system in the lentil seedlings (Figure 4a–k). The 
non-enzymatic antioxidants AsA and GSH are an integral part of plants, act as a ROS scavenger, and also 
counteract the different stress-induced oxidative stresses (Foyer and Noctor, 2005; Halliwell, 2006). Our study 
revealed that L-Glu application increased the amount of AsA and the GSH/GSSG ratio but lowered the 
amount of GSH and GSSG under Cd stress (Figure 4a–d). These results indicated that L-Glu reduced the 
inhibitory effect of toxic Cd and maintained the redox balance of the plant cells with the help of AsA and 
GSH/GSSG. 

The antioxidant enzymes CAT, APX, and GPX play an important role in converting H2O2 to H2O 
(Suzuki et al., 2012). DHAR and MDHAR regulate the pool of AsA (Wang et al., 2018; Xia et al., 2018). GR 
and GST also play an important role in scavenging ROS. In our study, L-Glu supplementation in the lentil 
seedlings increased the activities of CAT, APX, GPX, and MDHAR and decreased DHAR, GR, and GST 
under Cd stress (Figure 4e–k). These results mean that application of L-Glu stimulated some enzymes to 
protect the lentils from Cd-induced oxidative damage. On the other hand, the Cd-stressed seedlings exhibited 
reduced AsA content and CAT activity resulting in increased ROS (Figure 4a, e). Nahar et al. (2016) also 
reported that the activity of CAT and the level of AsA decreased in response to Cd stress in mungbean plants. 
A similar reduction in these enzymes was also found in pepper and strawberry plants in response to Cd stress 
(Kaya et al., 2020, Wu et al., 2021). Moreover, higher contents of GSH and GSSG, and higher activities of 
APX, MDHAR, GR, GST, GPX, and DHAR were found in the Cd-stressed seedlings, indicating that the 
stressed seedlings increased their levels to manage the sustainability of the seedlings under stress conditions 
(Figure 4b–d,f–k). Increased enzyme activity and non-enzyme content were also found in lentil, rice, and maize 
plants with the application of Cd (Horemans et al., 2015; Khodarahmi and Khoshgoftarmanesh, 2017; Per et 
al., 2017; Lu et al., 2019). The response of the antioxidant defense system might vary depending on several 
factors such as types of stress, duration of stress, experimental conditions, and plant species (Shanying et al., 
2017). Efficient functioning of one or two enzymes among the sets of enzymes might enhance stress tolerance 
(Abogadallah, 2010). Based on our results, we surmised that the combined action of CAT, APX, MDHAR, 
and AsA inhibited the overaccumulation of ROS in the lentil seedlings under Cd stress with pre-treatment by 
L-Glu. 
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Accumulation of heavy metals in plants depends upon plant species and their particular parts in addition 
to the type of metal and their toxicity characteristics (Zhou et al., 2018; Rohani et al., 2019). Our present study 
showed that the Cd content in the leaves, shoots, and roots increased in the Cd-stressed lentil seedlings, where 
a higher amount of Cd was found in the root tissue (Figure 5a–c). Perhaps the transportation of Cd to the 
aerial parts from the roots is obstructed by the action of plant resistance. Bansal et al. (2021) also reported that 
under Cd stress, the uptake of Cd in lentil roots increased, which was then transferred to the shoots and leaves 
in lower amounts compared with the roots. However, L-Glu played an important role in maintaining Cd 
homeostasis by inhibiting the accumulation of Cd in the roots and translocation of Cd to the shoots and leaves 
(Figure 5a–c). It might be due to strengthening of lentil seedlings against Cd stress through increasing the other 
ion uptake by root and shoot ion transporter channels. Forde and Lea (2007) reported that, external 
application of Glu in soil increased the uptake of Ca2+ and K+ by increasing the activity of responsive genes of 
glutamate-gated Ca2+ and K+ channel under deficient condition of Ca2+ and K+. Our current study also revealed 
that exogenous application of l-Glu improved the accumulation and translocation of K+, Ca2+, and Mg2+ in the 
leaves, shoots, and roots of the lentil seedlings under both Cd concentrations, indicating that L-Glu limits the 
accumulation of Cd (Supplementary Figure 3a-i). Perhaps different L-Glu responsive genes in the nutrient 
transport channel of lentil seedlings restricted the uptake and translocation of Cd which in turn increase 
nutrient availability to the seedling under toxic Cd stress condition. However, toxic Cd caused an imbalance 
in the uptake and transport of K+, Ca2+, and Mg2+ to the roots, shoots, and leaves of the lentil seedlings 
(Supplementary Figure 3a-i). Correlation analysis also showed a negative correlation between ionic 
homeostasis and Cd concentration (1 and 2 mM) in the lentil seedlings (Supplementary Figure 4). It might be, 
one toxic effect of Cd stress is that it competes with the accumulation of other nutrient elements such as K+, 
Ca2+, and Mg2+ in plants and causes an imbalance in ionic homeostasis (Liu et al., 2016). According to the 
report of Kurtyka et al. (2008), uptake and translocation of K+ become declined in response of toxic Cd which 
in turn failed to conduct chlorophyll and carotenoid biosynthesis of plant. In addition, Cd also compete with 
Ca2+, and Mg2+ uptake and transportation through infiltrating their transportation channel due to having 
divalent properties of Cd2+ similar of Ca2+, and Mg2+ (Yang et al., 2021). Our results are similar to those of 
other studies, in which a reduction of the accumulation of K+, Ca2+, and Mg2+ by toxic Cd were found in 
mustard, pepper, tomato, and chickpea plants (Gratão et al., 2015; Ahmad et al., 2016; Wang et al., 2018; Kaya 
et al., 2020). Concerning this point of view, we can assume that L-Glu maintain nutrient homeostasis by 
reducing the uptake of Cd in lentil seedlings which in turn remains as the main cause of protection against toxic 
Cd.  

 
 
Conclusions 
 
Cadmium inhibited the growth of lentil seedlings, which was exacerbated by the increase in Cd 

concentration. The growth parameters and photosynthetic pigments of the lentil seedlings also decreased 
severely with exposure to Cd stress. However, L-Glu pre-treatment significantly improved the seedling growth 
and photosynthetic pigments in both the 1- and 2-mM Cd-stressed seedlings. The application of L-Glu to the 
lentil seedlings alleviated Cd toxicity by hindering the accumulation of Cd and transportation of the 
accumulated Cd to the shoots and leaves. In addition, L-Glu pre-treatment alleviated the damage caused by the 
Cd-induced oxidative stress through the efficient functioning of AsA, CAT, APX, MDHAR, and GPX in the 
lentil seedlings. Our findings suggest that exogenous L-Glu pre-treatment could be a potential candidate to 
alleviate the noxious effect of Cd stress. However, further investigation is needed to determine the long-term 
effects of L-Glu for stress tolerance and to understand the molecular mechanism of how L-Glu controls Cd 
uptake and the antioxidant responses. 
 
 

https://www.notulaebotanicae.ro/index.php/nbha/article/view/12485/9271
https://www.notulaebotanicae.ro/index.php/nbha/article/view/12485/9271
https://www.notulaebotanicae.ro/index.php/nbha/article/view/12485/9271
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