Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification

Duyu Tang1, Furu Wei2, Nan Yang2, Ming Zhou2, Ting Liu1, Bing Qin1

1 Harbin Institute of Technology
2 Microsoft Research
Roadmap

• Motivation

• The Proposed Method

• Experiments

• Conclusion
Twitter sentiment classification

• Input: A tweet
• Output: Sentiment polarity of the tweet
 – Positive / Negative / Neutral
Top-system in SemEval-2013 Task 2(B)

- *NRC-Canada* [Mohammad 2013]
 - Feature engineering
 - Hand-crafted features
 - Sentiment lexicons

- How about learning feature automatically from data for Twitter sentiment classification?
Word Representation (Embedding)

• Word embedding is important
 – Compositionality
 – [Yessenalina11; Socher13]

• Word Embedding

\[
\text{linguistic} = \begin{pmatrix}
1.045 \\
0.912 \\
-0.894 \\
-1.053 \\
0.459
\end{pmatrix}
\]
Is It Enough for Sentiment Analysis?

- Existing embedding learning algorithms typically use the syntactic contexts of words.

\[
\text{he formed the } \textbf{good} \text{ habit of } \ldots \\
\text{he formed the } \textbf{bad} \text{ habit of } \ldots
\]

The words with similar contexts but opposite sentiment polarity are mapped into close vectors.
Roadmap

• Motivation

• The Proposed Method

• Experiments

• Conclusion
Twitter Sentiment Classification

Input

Embedding Layer

Layer f

Layer f'

average

max

min

concatenate

Training Data

Learning Algorithm

Sentiment Classifier
Collobert and Weston (C&W) 2011

Loss Function

\[
\max(0, 1 - f^{cw}(t) + f^{cw}(t^r))
\]

HardTanh

\[
y = \begin{cases}
-1 & \text{if } x < -1 \\
x & \text{if } -1 \leq x \leq 1 \\
1 & \text{if } x > 1
\end{cases}
\]

Linear

\[
Y_j = W_{ij} \times X_i + b_j
\]
Collobert and Weston (C&W) 2011

Loss Function
\[\max(0, 1 - f^{cw}(t) + f^{cw}(t^r)) \]

HardTanh
\[
\frac{\partial y}{\partial x} = \begin{cases}
0 & \text{if } x < -1 \\
1 & \text{if } -1 \leq x \leq 1 \\
0 & \text{if } x > 1
\end{cases}
\]

Linear
\[
\frac{\partial L}{\partial W_{ij}} = \frac{\partial L}{\partial Y_j} \times \frac{\partial Y_j}{\partial W_{ij}} = \frac{\partial L}{\partial Y_j} \times X_i \\
\frac{\partial L}{\partial X_i} = \sum_j \frac{\partial L}{\partial Y_j} \times \frac{\partial Y_j}{\partial X_i} = \sum_j \frac{\partial L}{\partial Y_j} \times W_{ij} \\
\frac{\partial L}{\partial b_j} = \frac{\partial L}{\partial Y_j} \times \frac{\partial Y_j}{\partial b_j} = \frac{\partial L}{\partial Y_j} \times 1
\]
Model 1: SSWE Hard

- Intuition
 - Use the *sentiment polarity of sentences (e.g. tweets)* to learn the sentiment-specific word embedding (*SSWE*)

- Solution
 - Predict the sentiment polarity of text

\[
\begin{array}{ll}
\text{Positive} & [1, 0] \\
\text{Negative} & [0, 1]
\end{array}
\]
it is so coool :)

Loss Function

\[- \sum_{k = \{0, 1\}} f_k^g(t) \cdot \log(f_k^h(t)) \]

Gold Distribution

Predicted Distribution

Softmax

\[Y_i = \frac{\exp(X_i)}{Z} \quad Z = \sum_{i'} \exp(X_{i'}) \]
Model 2: SSWE Soft

• Intuition
 – Use the sentiment polarity of sentences to learn the sentiment-specific word embedding

– Solution
 • Soften the hard constrains of Model 1

Positive [1, 0] P > N

Negative [0, 1] P < N
Loss Function

\[
\max (0, 1 - \delta_s(t) f_0^r(t) + \delta_s(t) f_1^r(t))
\]

Indicator Function

\[
\delta_s(t) = \begin{cases}
1 & \text{if } f^g(t) = [1, 0] \\
-1 & \text{if } f^g(t) = [0, 1]
\end{cases}
\]
Model 3: SSWE Unified

• Intuition
 – Use both the syntactic contexts of words and the sentiment polarity of sentences to learn the sentiment-specific word embedding

 – Solution
 • A hybrid approach by capturing both information

 he formed the good habit of

 Context

 Sentiment
Loss Function
\[\alpha \cdot \text{loss}_{cw}(t, t^r) + (1 - \alpha) \cdot \text{loss}_{us}(t, t^r) \]

Sentiment Loss
\[\max(0, 1 - \delta_s(t) f_1^u(t) + \delta_s(t) f_1^u(t^r)) \]
Embedding Training

• Data
 – Tweets contains positive/negative emoticons
 | Positive | :) | :) | :- | :D | =) |
 |Negative | :(| :(| :(| | |
 – 5M positive, 5M negative tweets from April, 2013

• Back-propagation + AdaGrad [Duchi 2011]
 – Embedding length = 50
 – Window size = 3
 – Learning rate = 0.1
Roadmap

• Motivation
• The Proposed Method
• Experiments
 – Twitter Sentiment Classification
 – Word Similarity of Sentiment Lexicons

• Conclusion
Twitter Sentiment Classification

• Setting
 – Data
 • Twitter Sentiment Classification Track in Semantic Evaluation 2013 (message-level)
 • Positive VS negative classification

 – Evaluation metric
 • Macro-F1 of positive VS negative
Results

• Comparison with Different Embeddings
Results

• Comparison with Twitter Sentiment Classification Algorithms

<table>
<thead>
<tr>
<th>Method</th>
<th>Macro-F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DistSuper + unigram</td>
<td>61.74</td>
</tr>
<tr>
<td>DistSuper + uni/bi/tri-gram</td>
<td>63.84</td>
</tr>
<tr>
<td>SVM + unigram</td>
<td>74.50</td>
</tr>
<tr>
<td>SVM + uni/bi/tri-gram</td>
<td>75.06</td>
</tr>
<tr>
<td>NBSVM</td>
<td>75.28</td>
</tr>
<tr>
<td>RAE</td>
<td>75.12</td>
</tr>
<tr>
<td>NRC (Top System in SemEval)</td>
<td>84.73</td>
</tr>
<tr>
<td>NRC - ngram</td>
<td>84.17</td>
</tr>
<tr>
<td>SSWE_u</td>
<td>84.98</td>
</tr>
<tr>
<td>SSWE_u+NRC</td>
<td>86.58</td>
</tr>
<tr>
<td>SSWE_u+NRC-ngram</td>
<td>86.48</td>
</tr>
</tbody>
</table>
SemEval 2014 Task 9 (b)

- **Coooollll**: A deep learning system for Twitter sentiment classification

![Diagram showing the process of training data, feature representation, learning algorithm, and sentiment classifier.]
SemEval 2014 Task 9 (b)

• Results
 – Our system **Coooollll** is ranked 2nd among 45 systems on Twitter2014 test set.
SemEval 2014 Task 9 (b)

• Results

 – Our system **Coooolll** is ranked 2nd among 45 systems on Twitter2014 test set.

<table>
<thead>
<tr>
<th>Method</th>
<th>Positive/Negative/Neutral</th>
<th>Positive/Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSWE</td>
<td>T1 70.49 T2 64.29 T3 68.69 T4 66.86 T5 50.00</td>
<td>T1 84.51 T2 85.19 T3 85.06 T4 86.14 T5 62.02</td>
</tr>
<tr>
<td>Coooolll</td>
<td>T1 72.90 T2 67.68 T3 70.40 T4 70.14 T5 46.66</td>
<td>T1 86.46 T2 85.32 T3 86.01 T4 87.61 T5 56.55</td>
</tr>
<tr>
<td>STATE</td>
<td>T1 71.48 T2 65.43 T3 66.18 T4 67.07 T5 44.89</td>
<td>T1 83.96 T2 82.82 T3 84.39 T4 86.16 T5 58.27</td>
</tr>
<tr>
<td>W2V</td>
<td>T1 55.19 T2 52.98 T3 52.33 T4 50.58 T5 49.63</td>
<td>T1 68.87 T2 71.89 T3 74.50 T4 71.52 T5 61.60</td>
</tr>
<tr>
<td>Top</td>
<td>T1 74.84 T2 70.28 T3 72.12 T4 70.96 T5 58.16</td>
<td>- - - - - - - - - -</td>
</tr>
<tr>
<td>Average</td>
<td>T1 63.52 T2 55.63 T3 59.78 T4 60.41 T5 45.44</td>
<td>- - - - - - - - - -</td>
</tr>
</tbody>
</table>
Roadmap

• Motivation
• The Proposed Method
• Experiments
 – Twitter Sentiment Classification
 – Word Similarity of Sentiment Lexicons
• Conclusion
Experiment Settings

• Setting
 – Evaluation metric

\[\text{Accuracy} = \frac{\sum_{i=1}^{\#Lex} \sum_{j=1}^{N} \beta(w_i, c_{ij})}{\#Lex \times N} \]

– Data

<table>
<thead>
<tr>
<th>Lexicon</th>
<th>Positive</th>
<th>Negative</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL</td>
<td>1,331</td>
<td>2,647</td>
<td>3,978</td>
</tr>
<tr>
<td>MPQA</td>
<td>1,932</td>
<td>2,817</td>
<td>4,749</td>
</tr>
<tr>
<td>Joint</td>
<td>1,051</td>
<td>2,024</td>
<td>3,075</td>
</tr>
</tbody>
</table>

Accuracy = 8/10 = 80%

{cool, awesome, great, bad, nice, interesting, fantastic, fantastic, love, excellent, terrible}
Results

• Evaluation
 – Word similarity of sentiment lexicons

<table>
<thead>
<tr>
<th>Embedding</th>
<th>HL</th>
<th>MPQA</th>
<th>Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>50.00</td>
<td>50.00</td>
<td>50.00</td>
</tr>
<tr>
<td>C&W</td>
<td>63.10</td>
<td>58.13</td>
<td>62.58</td>
</tr>
<tr>
<td>Word2vec</td>
<td>66.22</td>
<td>60.72</td>
<td>65.59</td>
</tr>
<tr>
<td>ReEmb(C&W)</td>
<td>64.81</td>
<td>59.76</td>
<td>64.09</td>
</tr>
<tr>
<td>ReEmb(w2v)</td>
<td>67.16</td>
<td>61.81</td>
<td>66.39</td>
</tr>
<tr>
<td>WVSA</td>
<td>68.14</td>
<td>64.07</td>
<td>67.12</td>
</tr>
<tr>
<td>SSWE_{\text{h}}</td>
<td>74.17</td>
<td>68.36</td>
<td>74.03</td>
</tr>
<tr>
<td>SSWE_{\text{r}}</td>
<td>73.65</td>
<td>68.02</td>
<td>73.14</td>
</tr>
<tr>
<td>SSWE_{\text{u}}</td>
<td>77.30</td>
<td>71.74</td>
<td>77.33</td>
</tr>
</tbody>
</table>
Conclusion

• Learn continuous representation of words for Twitter sentiment classification.

• Develop three neural networks for learning sentiment-specific word embedding (SSWE) from massive tweets without manual annotation.

• The effectiveness of SSWE has been verified in Twitter sentiment classification and word similarity judgement.
Thanks