
On Round-Efficient Non-Malleable Protocols

Michele Ciampi
DIEM, Università di Salerno

ITALY
mciampi@unisa.it

Rafail Ostrovsky
UCLA

Los Angeles
rafail@cs.ucla.edu

Luisa Siniscalchi
DIEM, Università di Salerno

ITALY
lsiniscalchi@unisa.it

Ivan Visconti
DIEM, Università di Salerno

ITALY
visconti@unisa.it

Abstract

The round complexity of non-malleable commitments and non-malleable zero knowledge
arguments has been an open question for long time. Very recent results of Pass [TCC 2013] and
of Goyal et al. [FOCS 2014, STOC 2016], gave almost definitive answers.

In this work we show how to construct round-efficient non-malleable protocols via compilers.
Starting from protocols enjoying limited non-malleability features, our compilers obtain full-
fledged non-malleability without penalizing the round complexity.

By instantiating our compilers with known candidate constructions, the resulting schemes
improve the current state of the art in light of subtleties that revisit the analysis of previous
work. Additionally, our compilers give a non-malleable zero-knowledge argument of knowledge
that features delayed-input completeness. This property is satisfied by the proof of knowledge
of Lapidot and Shamir [CRYPTO 1990] and has recently been used to improve the round
complexity of several cryptographic protocols.

1

Contents

1 Introduction 3
1.1 Our Results . 4
1.2 Technical Overview . 6

2 Notation and Non-Malleability Definitions 7
2.1 Non-Malleable Commitments and Zero Knowledge 8

3 4-Round NM Commitment Scheme from CRHFs 10

4 4-Round NMZK from CRHFs 14

5 3-Round NM Commitments from Strong OWPs 18

6 Acknowledgments 21

A Standard Definitions and Tools 27
A.1 Commitment Schemes . 29

B Formal Proofs 30
B.1 Proof of Non-Malleability of the 4-Round NM Commitment Scheme 30
B.2 Last Part of the Proof of 4-Round NMZK . 38
B.3 Proof of NM of the 3-Round NM Commitment Scheme 44

2

1 Introduction

Commitment schemes and zero-knowledge argument systems are fundamental primitives in Cryp-
tography. Here we consider the intriguing question of constructing round-efficient schemes that
remain secure even against man-in-the-middle (MiM) attacks: non-malleable (NM) commitments
and NM zero-knowledge (NMZK) argument systems [DDN91].

Non-malleable commitments. The round complexity of commitment schemes in the stand-
alone setting is well understood. Non-interactive commitments exist assuming one-to-one OWFs [GL89],
and 2-round commitments exist assuming one-way functions (OWFs) only. Moreover non-interactive
commitments do not exist if one relies on the black-box use of OWFs only [MP12].

Instead, the round complexity of NM commitments1 after 25 years of research remains a fasci-
nating open question, in particular when taking into account the required computational assump-
tions. The original construction of [DDN91] required a logarithmic number of rounds and the
sole use of OWFs. Then, through a long sequence of very exciting positive results [Bar02, PR03,
PR05b, PR05a, PR08b, PR08a, LPV08, PW10, Wee10, LP11b, LP15, Goy11, GLOV12], the above
open question has been in part addressed obtaining a constant2-round (even concurrent) NM com-
mitment scheme by using any OWF in a black-box fashion. On the negative side, Pass recently
proved that NM commitments require at least 3 rounds [Pas13]3 when security is proved through
a black-box reduction to falsifiable (polynomial or subexponential time) hardness assumptions.

Among the various attempts to solve the above challenging open problem a major progress has
been done by Goyal et al. [GRRV14] that showed a 4-round NM commitment scheme based on
OWFs only. Their scheme admits a very efficient implementation [BGR+15] and is secure also
with respect to adversaries mounting concurrent MiM attacks. In such attacks, there are multiple
interleaved executions of commitments from senders to receivers.

A recent breakthrough of Goyal et al. [GPR16] exploited the use of the NM codes in the split-
state model of Aggarwal et al. [ADL14] to show (surprisingly) a 3-round NM commitment scheme
based on the black-box use of any one-to-one OWF. Their construction is proved one-one NM only4.
A new result of Ciampi et al. [COSV16] obtains concurrent non-malleability in 3 rounds through
a compiler that requires any 3-round one-one NM commitment scheme5 and assumes one-way
permutations (OWPs) secure against subexponential-time adversaries6. Interestingly, the negative
result of Pass [Pas13] applies also to such stronger OWPs, and therefore when properly instantiated,
the compiler of [COSV16] gives a round-optimal concurrent NM commitment scheme.

1In this paper we will consider only NM commitments w.r.t. commitments. Difficulties on additionally achieving
the notion of NM w.r.t. decommitments were discussed in [OPV09, CVZ10].

2According to [GRRV14] the construction of [GLOV12] can be squeezed to 6 rounds.
3If instead one relies on non-standard assumptions or trusted setups (e.g., using trusted parameters, working

in the random oracle model, relying on the existence of NM OWFs) then there exist non-interactive NM commit-
ments [DG03, PPV08].

4One-one NM means that there exists only one sender and one receiver with the MiM playing one session with
each of them. One-many instead allows polynomially many receivers.

5The scheme must also enjoy some extractability property.
6Hardness assumptions against subexponential-time adversaries have been used in the past [PR03, PW10, Wee10]

to improve the round-complexity of NM commitments.

3

Non-malleable zero knowledge. The progress on NMZK arguments has tightly followed ad-
vances on NM commitments7. The construction of [GRRV14] has closed this line of research since
they showed a 4-round NMZK argument of knowledge (AoK) that relies on the existence of OWFs
only. This result is clearly optimal both in round complexity and in computational assumptions.

Interestingly, several years after the 4-round zero knowledge (ZK) argument system from OWFs
of [BJY97], the same optimal round complexity and optimal complexity assumptions have been
shown sufficient for NMZK [GRRV14] and resettably sound ZK [COP+14].

Delayed-input protocols. In [LS90] Lapidot and Shamir showed a 3-round witness-indistinguishable
(WI) proof of knowledge (PoK) for NP where the instance (except its length) and the wit-
ness are not needed before playing the last round. This “delayed-input” form of completeness
has been critically used in the past (e.g., [KO04, DPV04a, YZ07, Wee10]) and very recently
(e.g., [CPS+16a, CPS+16b, GMPP16, COSV16, HV16, MV16]), since it often helps in improv-
ing the round complexity of an external protocol.

1.1 Our Results

In this work we first point out subtleties in the security proofs of [GRRV14]8 that re-open the
questions of constructing 4-round concurrent NM commitments and 4-round (i.e., round optimal)
NMZK arguments. The subtleties concern a MiM that completes the commitment phase when
playing as a sender, even though the committed message is invalid (i.e., it corresponds to ⊥). We
stress that such subtleties appear only in the “parallelized” 4-round version of the main construction
of [GRRV14] (which required a larger constant number of rounds). These subtleties affect in turn
the security of the one-one NM commitment scheme of [BGR+15] since this protocol (and proof)
has essentially the same structure of the one of [GRRV14].

Then we show compilers that starting with basic non-malleability features obtain full-fledged
non-malleability. By instantiating our compilers with candidate constructions proposed in pre-
vious work one obtains 4-round concurrent NM commitments and 4-round delayed-input NMZK
arguments of knowledge assuming the existence of collision-resistant hash functions (CRHFs).

Our approach: non-malleability upgrades. Constructions for NM commitments and NMZK
arguments are usually complicated and start from basic and extremely malleable tools likes regu-
lar commitment schemes and zero-knowledge proofs. Obtaining non-malleability from such basic
building blocks is a well known complicated task and achieving it in a round-efficient way has al-
ways been a major challenge. Given the above indisputable difficulties, security proofs are usually
very non-trivial and can be difficult to study and re-use. Here we take a different approach that
consists of starting with a very basic and limited form of non-malleability, to then upgrade it to
the desired notions.

7For NMZK we will omit the case of concurrent MiM attacks since there is a logarithmic lower bound on the
round complexity of concurrent NMZK [CKPR01] when relying on black-box simulation. While this lower bound has
been matched by Barak et al. [BPS06], no non-black-box construction is known with sub-logarithmic rounds.

8We have informed the authors of [GRRV14] about the above subtleties describing specific one-one and one-many
adversaries. They 1) confirmed in [GRRV16a] that for the 4-round protocols given in [GRRV14] there is currently
no security proof; 2) communicated to us [GRRV16b] that modified protocols and proofs for 4-round concurrent NM
commitments from OWFs and one-one NM zero knowledge from OWFs can be found in [GRRV16c].

4

Informally, we say that a commitment scheme is weak non-malleable if it is non-malleable w.r.t.
adversaries that never commit to ⊥ when receiving honestly computed commitments. Moreover,
we say that an adversary is synchronous if all (i.e., both left and right) sessions are played in
parallel. Clearly the design of a synchronous weak one-one NM commitment scheme can be an
easier task and schemes with such limited non-malleability guarantees might exist with improved
round complexity, efficiency and complexity assumptions compared to previous work achieving full-
fledged non-malleability. Last but not least, the security proof of a synchronous weak NM protocol
is potentially much simpler to write in a robust and easy to read way than security proofs for
full-fledged non-malleability.

On the other hand, two of the three compilers that we propose require the last round of the
receiver of the underlying (limited) NM commitment scheme to be simulatable without having
the private coins used to compute the previous message of the receiver. This constraint clearly
disappears when considering a 3-round protocol, and is clearly satisfied by any public-coin protocol.
Recent work on NM commitments includes 3-round and 4-round protocols from OWFs that are
also public coin as we will discuss below.

More specifically, in this work we provide the following compilers9.

1. Given a 4-round public-coin synchronous weak one-one NM commitment scheme Π, our 1st
compiler gives a 4-round one-one NM commitment scheme Π′ assuming CRHFs. If Π is
also weak one-many NM then Π′ is a concurrent NM commitment scheme. The preliminary
protocol Π3 (when implemented in 4 rounds it needs OWFs only) of [GPR16]10, as input to
our 1st compiler gives a 4-round one-one NM commitment scheme from CRHFs. The basic
scheme Π4 of [GRRV14] (i.e., their construction without the ZKAoK, still implementable with
OWFs only in 4 rounds), is a candidate public-coin weak one-many NM commitment scheme
that used in our 1st compiler would give 4-round concurrent NM commitments from CRHFs.

2. Given a 4-round public-coin one-one NM extractable commitment scheme Π, our 2nd com-
piler gives a 4-round delayed-input NMZK AoK assuming CRHFs. By considering the final
protocol Π′3 of [GPR16] (in 4 rounds it needs OWFs only) our 2nd compiler gives a 4-round
delayed-input NMZK AoK from CRHFs.

3. Given a 3-round synchronous weak one-one NM commitment scheme Π, our 3rd compiler gives
a 3-round extractable one-one NM commitment scheme Π′ assuming OWPs secure against
subexponential-time adversaries. By considering again either Π3 or Π4 (both are based on
OWPs when implemented in 3 rounds) our 3rd compiler gives a 3-round extractable one-
one NM commitment scheme Π′, and the compiler of [COSV16] on input Π′ gives 3-round
concurrent NM commitments from subexponentially strong OWPs.

Remark 1: on the need of public-coin protocols. We require the protocols as input to two
of our three compilers to be public coin because in a reduction we will have to simulate the last
round of the receiver without knowing the randomness he used to compute the previous round.
Of course the public-coin property satisfies the above requirement and moreover the candidate

9When considering a 4-round commitment scheme given as input to our compilers we always assume that the
sender plays the 4-th round.

10In [GPR16] this preliminary public-coin commitment scheme is proved to be synchronous one-one non-malleable,
and is then extended with another subprotocol in order to deal with non-synchronized adversaries obtaining one-one
non-malleability.

5

constructions [GRRV14, GPR16] that can be used to instantiate our compilers are public-coin
protocols. It is straightforward to notice that any 3-round protocol would also let us conclude
successfully the reduction since there is no previous round played by the receiver. Just for simplicity
we state our theorems requiring the public-coin property.

1.2 Technical Overview

We start discussing subtleties in security proofs of 4-round NM commitments and NMZK arguments
given in [GRRV14]. Then we will describe our compilers.

Computational zero knowledge in parallel with (weak) NM commitments. The con-
structions of 4-round (one-one and concurrent) NM commitments and of 4-round NMZK arguments
from OWFs given in [GRRV14] are both based on the paradigm of running in parallel two sub-
protocols. For simplicity and w.l.o.g. we consider now a simpler variant of [GRRV14] based on
OWPs.

For concurrent NM commitments, the first subprotocol is a 3-round synchronous weak NM
commitment while the second subprotocol is a delayed-input ZKAoK based on OWPs (it consists
of the ZKAoK of [FS90] instantiating the underlying WIPoK given by the sender/prover with the
one of [LS90]). Instead, for NMZK the first subprotocol is a NM commitment while the second
subprotocol is the above delayed-input ZKAoK based on OWPs [LS90].

The security proofs of both schemes do not address the case of a synchronous MiM that mauls
the witness used in the last round of the ZKAoK played in the left session. More specifically,
whenever the witness used in the ZKAoK played in the left session corresponds to a legitimate
witness that can be used by the honest sender in the real game, then the right session is played by
the MiM correctly, committing for instance to the same message (therefore mauling). Instead, when
the witness used in the left session corresponds to a trapdoor (i.e., an information that is never used
as witness by a honest sender) then the right session is played by the MiM wrongly, completing
the synchronous NM subprotocols with a wrong last round (still computationally indistinguishable
from a valid last round) and completing the ZKAoK by using the trapdoor.

Notice that the MiM is successful in the real game, and therefore the security proof should reach
a contradiction. The MiM is clearly attacking the computational WI of the execution of [LS90]
inside [FS90] but unfortunately a reduction seems to be problematic. Indeed, in order to construct a
reduction to the WI of [LS90] an extraction on the right session is required. However the challenger
of the WI experiment can not be rewound and therefore it is not clear how to complete the left
session after the rewind, in order to then extract the committed message from the right session.

Compilers for non-malleability upgrades. We take a different approach to non-malleability.
Our goal is to start with a commitment scheme Π that enjoys some partial non-malleability features
only. For instance, we assume that the initial scheme is non-malleable in case the adversary never
commits to ⊥ when receiving a well formed commitment. Also we consider a limitation on the
scheduling of the messages, requiring that the adversary be synchronous. We notice that this type
of commitment scheme corresponds to the initial subprotocol given in [GRRV14] as well as the first
subprotocol given in [GPR16]. We also require some subprotocols to be public coin (see Remark 1
for further details).

Next we give compilers that upgrade these limited forms of non-malleability to the desired
non-malleability. The common idea in all compilers is that during the experiment we should

6

have a subprotocol to get a trapdoor to later on fool the adversary. We implement this step in
our compilers by just assuming OWFs when 3 rounds are available to get the trapdoor (we will
extract two signatures from the adversary under the same public key, following previous ideas
of [DPV04b, GJO+13, CPS13, COP+14]), and by assuming subexponentially strong OWPs (sim-
ilarly to [COSV16]) otherwise (indeed in this case there are only 2 rounds, therefore rewinds are
useless and instead we will invert through brute-force search an element in the range of a OWP
sent by the adversary).

Our compilers will use a delayed-input WIPoK where the prover proves knowledge of either a
well formed (message, randomness) pair certifying the correctness of the execution of Π (in the
case of NMZK this PoK also proves that the message is a witness) or of signatures of messages. In
order to avoid the same difficulties in the security proof of [GRRV14], we require the WI to hold
against subexponential-time adversaries when only 3 rounds are available, or to be statistical when 4
rounds are available. This last case can be implemented by running the construction of [LS90] using
statistically hiding commitments, therefore obtaining an argument of knowledge (AoK) instead of
a PoK. In the former case we avoid the above issues because statistical WI guarantees that the
adversary can not notice a switch from a legitimate witness to a trapdoor. In the latter case we
can still complete the reduction to the computational WI because by making use of complexity
leveraging we can extract in straight-line the messages committed on the right in order to break
the WI of the proof received from a challenger that is plugged in the left session.

We give two compilers for NM commitments that differ on the number of rounds and the
complexity assumptions required (3 rounds and subexponentially strong OWPs in one case, 4
rounds and CRHFs in the other case). We also give a compiler for NMZK that follows the one for
NM commitments under CRHFs.

Delayed-input NMZK. The above discussion is not sufficient for delayed-input NMZK. The
reason is that the commitment scheme Π could require the message to commit before the last
round. We address this point by instead relying on using Π to commit to a random string s0 and
in sending in the last round a string s1 such that w = s0 ⊕ s1 is a witness. This technique was
introduced in [COSV16] to obtain delayed-input NM commitments.

Efficiency. The above description of our constructions seems to indicate that our results are
interesting only from a theoretical point of view, mainly because of the NP reductions required
by the delayed-input WIPoK [LS90]. However we point out that depending on the existence of
an efficient Σ-protocol for the weak/synchronous NM commitment schemes used in our compiler,
the new OR-composition technique of Σ-protocols of [CPS+16a] could replace [LS90] avoiding NP
reductions. Tweaking and instantiating properly our compilers for a practical scheme can be the
subject of future work.

2 Notation and Non-Malleability Definitions

We denote the security parameter by λ and use “|” as concatenation operator (i.e., if a and b are
two strings then by a|b we denote the concatenation of a and b). For a finite set Q, x← Q sampling
of x from Q with uniform distribution. We use the abbreviation ppt that stays for probabilistic
polynomial time. We use poly(·) to indicate a generic polynomial function.

7

A polynomial-time relation Rel (or polynomial relation, in short) is a subset of {0, 1}∗ × {0, 1}∗
such that membership of (x,w) in Rel can be decided in time polynomial in |x|. For (x,w) ∈ Rel,
we call x the instance and w a witness for x. For a polynomial-time relation Rel, we define the
NP-language LRel as LRel = {x|∃w : (x,w) ∈ Rel}. Analogously, unless otherwise specified, for an
NP-language L we denote by RelL the corresponding polynomial-time relation (that is, RelL is such
that L = LRelL).

Let A and B be two interactive probabilistic algorithms. We denote by 〈A(α), B(β)〉(γ) the
distribution of B’s output after running on private input β with A using private input α, both
running on common input γ. Typically, one of the two algorithms receives 1λ as input. A transcript
of 〈A(α), B(β)〉(γ) consists of the messages exchanged during an execution where A receives a
private input α, B receives a private input β and both A and B receive a common input γ.
Moreover, we will refer to the view of A (resp. B) as the messages it received during the execution
of 〈A(α), B(β)〉(γ), along with its randomness and its input. We denote by Ar an algorithm A that
receives as randomness r. We say that a protocol (A,B) is public coin if B sends to A random bits
only.

Standard definitions and their variants w.r.t. subexponential-time adversaries can be found
in App. A. We will say that a complexity assumption is T̃ -breakable if it can be broken with
overwhelming probability by running in time T̃ .

2.1 Non-Malleable Commitments and Zero Knowledge

Here we follow [LPV08]. Let Π = (Sen,Rec) be a statistically binding commitment scheme. Con-
sider MiM adversaries that are participating in left and right sessions in which poly(λ) commitments
take place. We compare between a MiM and a simulated execution. In the MiM execution the
adversary A, with auxiliary information z, is simultaneously participating in poly(λ) left and right
sessions. In the left sessions the MiM adversary A interacts with Sen receiving commitments to
values m1, . . . ,mpoly(λ) using identities id1, . . . , idpoly(λ) of its choice. In the right session A inter-
acts with Rec attempting to commit to a sequence of related values m̃1, . . . , m̃poly(λ) again using
identities of its choice ĩd1, . . . , ĩdpoly(λ). If any of the right commitments is invalid, or undefined,
its value is set to ⊥. For any i such that ĩdi = idj for some j, set m̃i =⊥ (i.e., any commitment
where the adversary uses the same identity of one of the honest senders is considered invalid). Let

mim
A,m1,...,mpoly(λ)

Π (z) denote a random variable that describes the values m̃1, . . . , m̃poly(λ) and the
view of A, in the above experiment. In the simulated execution, an efficient simulator S directly in-
teracts with Rec. Let simS

Π(1λ, z) denote the random variable describing the values m̃1, . . . , m̃poly(λ)

committed by S, and the output view of S; whenever the view contains in the i-th right session
the same identity of any of the identities of the left session, then mi is set to ⊥.

In all the paper we denote by δ̃ a value associated with the right session (where the adversary
A plays with a receiver Rec) where δ is the corresponding value in the left session. For example,
the sender commits to v in the left session while A commits to ṽ in the right session.

Definition 1 (Concurrent NM commitment scheme [LPV08]). A commitment scheme is concurrent
NM with respect to commitment (or a many-many NM commitment scheme) if, for every ppt
concurrent MiM adversary A, there exists a ppt simulator S such that for all mi ∈ {0, 1}poly(λ) for
i = {1, . . . , poly(λ)} the following ensembles are computationally indistinguishable:

{mim
A,m1,...,mpoly(λ)

Π (z)}z∈{0,1}? ≈ {simS
Π(1λ, z)}z∈{0,1}? .

8

As in [LPV08] we also consider relaxed notions of concurrent non-malleability: one-many and
one-one NM commitment schemes. In a one-many NM commitment scheme, A participates in one
left and polynomially many right sessions. In a one-one (i.e., a stand-alone secure) NM commitment
scheme, we consider only adversaries A that participate in one left and one right session. We will
make use of the following proposition of [LPV08].

Proposition 1. Let (Sen,Rec) be a one-many NM commitment scheme. Then, (Sen,Rec) is also
a concurrent (i.e., many-many) NM commitment scheme.

We say that a commitment is valid or well formed if it can be decommitted to a message m 6= ⊥.
Following [LP11b] we say that a MiM is synchronous if it “aligns” the left and the right sessions;
that is, whenever it receives message i on the left, it directly sends message i on the right, and vice
versa.

Definition 2 (synchronous NM commitment scheme). A commitment scheme is synchronous
one-one (resp., one-many) non-malleable if it is one-one (resp., one-many) NM with respect to
synchronous MiM adversaries.

Definition 3 (weak NM commitment scheme). A commitment scheme is weak one-one (resp.,
one-many) non-malleable if it is a one-one (resp., one-many) NM commitment scheme with respect
to MiM adversaries that when receiving a well formed commitment in the left session, except with
negligible probability computes well formed commitments (i.e., 6= ⊥) in the right sessions.

We also consider the definition of a NM commitment scheme secure against a MIM A running
in time bounded by T = 2λ

α
for some positive constant α < 1. In this case we will say that a

commitment scheme is T -non-malleable.
As already pointed out in previous work, when the identity is selected by the sender then the

above id-based definitions guarantee non-malleability without ids as long as the MiM does not
behave like a proxy (an unavoidable attack). Indeed the sender can pick as id the public key of a
strong signature scheme signing the transcript. The MiM will have to use a different id or to break
the signature scheme.

Delayed-input non-malleable zero knowledge. Following [LP11a] we give a definition that
gives to the adversary the power of adaptive-input selection11.

Let Π = (P,V) be a delayed-input interactive argument system for a NP-language L with
witness relation RelL. Consider a ppt MiM adversary A that is simultaneously participating in
one left session and one right session. Before the execution starts, both P,V and A receive as a
common input the security parameter in unary 1λ, and A receives as auxiliary input z ∈ {0, 1}?.

In the left session A interacts with P using identity id of his choice. In the right session, A
interacts with V, using identity ĩd of his choice.

Furthermore, in the left session A, before the last round of Π, adaptively selects the statement
x to be proved and the witness w, s.t (x,w) ∈ RelL, and sends them to P. Also, in the right session
A, during the last round of Π, adaptively selects the statement x̃ to be proved and sends it to V.
Let ViewA(1λ, z) denote a random variable that describes the view of A in the above experiment.

11In [LP11a] the adversary selects the instance and a Turing machines outputs the witness in exponential time.
Here we slightly deviate by 1) requiring the adversary to output also the witness (similarly to [SCO+01]) and 2)
allowing the adversary to make this choice at the last round.

9

π2

wsyn, π
2

sLS, msg

π3

wsyn, π
3

sLS, σ

π4

wsyn, π
4

sLS

NM4Sen(m, id) NM4Rec(id)

π1

wsyn, π
1

sLS, vk

• vk is a verification key of a signature scheme.

• τ = (π1
wsyn, π

2
wsyn, π

3
wsyn, π

4
wsyn) is the transcript of 〈Senwsyn(m),Recwsyn〉(id).

• (π1
sLS, π

2
sLS, π

3
sLS, π

4
sLS) is the transcript of sLS proving knowledge of either the decommitment of τ or

of two signatures of two different messages w.r.t vk.

Figure 1: Informal description of our 4-round NM commitment scheme ΠNM4Com.

Definition 4 (Delayed-input NMZK). A delayed-input argument system Π = (P,V) for a NP-
language L with witness relation RelL is NM Zero Knowledge (NMZK) if for any MiM adversary
A that participates in one left session and one right session, there exists a ppt machine S(1λ, z)
such that:

1. The probability ensembles {S1(1λ, z)}λ∈N,z∈{0,1}? and {ViewA(1λ, z)}λ∈N,z∈{0,1}? are compu-

tationally indistinguishable over λ, where S1(1λ, z) denotes the first output of S(1λ, z).

2. Let z ∈ {0, 1}?, and let (View, w̃) denote the output of S(1λ, z). Let x̃ be the right-session
statement appearing in View and let id and ĩd be the identities of the left and right sessions
appearing in View. If the right session is accepting and id 6= ĩd, then RelL(x̃, w̃) = 1.

The above definition of NMZK allows the adversary to select statements adaptively at the last
round both on left and right sessions, therefore any argument system that is NMZK according
to the above definition enjoys also adaptive-input argument of knowledge and adaptive-input zero
knowledge.

3 4-Round NM Commitment Scheme from CRHFs

Our construction is based on a compiler that takes as input a 4-round public-coin synchronous
weak one-one NM commitment scheme Πwsyn = (Senwsyn,Recwsyn), a delayed-input adaptive-input
statistical WI adaptive-input AoK sLS = (P,V) (see Sec. A) a signature scheme, and outputs a
4-round one-one NM commitment scheme ΠNM4Com = (NM4Sen,NM4Rec).

Let m be the message that NM4Sen wants to commit. The high-level idea of our compiler is
depicted below. In the 1st round the receiver NM4Rec computes and sends the 1st round π1

sLS of
sLS and the 1st round π1

wsyn of Πwsyn. Also he computes a pair of signature and verification keys
(sk, vk) and sends the verification key vk to the sender NM4Sen. The sender NM4Sen, on input the
session-id id and the message m computes and sends the 2nd round π2

wsyn of Πwsyn to commit to
the message m using id as session-id. Moreover he computes the 2nd round π2

sLS of sLS and sends

10

a random message msg. In the 3rd round the receiver NM4Rec sends the 3rd round π3
wsyn of Πwsyn,

the 3rd round of sLS and a signature σ (computed using sk) of the message msg. In the last round
NM4Sen verifies whether or not σ is a valid signature for msg. If σ is a valid signature, then NM4Sen
computes the last round π4

wsyn of Πwsyn, the 4th round π4
sLS of sLS and sends (π4

wsyn, π
4
sLS) to the

receiver NM4Rec. The delayed-input adaptive-input statistical WI adaptive-input AoK protocol
sLS is used by NM4Sen to prove either knowledge of a message and randomness consistent with the
transcript computed using Πwsyn or knowledge of signatures of two different messages w.r.t vk.

Our compiler needs the following tools:
1. a 4-round public-coin synchronous weak one-one NM commitment scheme Πwsyn = (Senwsyn,Recwsyn);
2. a signature scheme Σ = (Gen,Sign,Ver);
3. a delayed-input statistical WIAoK protocol sLS = (P,V) for the language

L =
{(
τ = (π1

wsyn, π
2
wsyn, π

3
wsyn, π

4
wsyn), id, vk

)
: ∃ (m, dec, msg1, msg2, σ1, σ2) s.t.(

Recwsyn on input (τ,m, dec, id) accepts m as a decommitment of τ OR(
Ver(vk, msg1, σ1) = 1 AND Ver(vk, msg2, σ2) = 1 AND msg1 6= msg2

))}
that is adaptive-input statistical WI and an adaptive AoK for the corresponding relation
RelL. We remark that to execute sLS the instance x is not needed until the last round but
the instance length is required from the onset of the protocol. We will refer to the instance
length as ` = |x|. Fig. 2 describes in details our 4-round one-one NM.

Theorem 1. Suppose Πwsyn is a 4-round public-coin synchronous weak one-one NM commitment
scheme and CRHFs exist then ΠNM4Com is a one-one NM commitment scheme.

Proof. The security proof is divided in two parts. In the 1st part we prove that ΠNM4Com is indeed
a commitment scheme. Then we prove that ΠNM4Com is a non-malleable commitment scheme.

Lemma 1. ΠNM4Com is a statistically-binding computationally-hiding commitment scheme.

Proof. Correctness. The correctness follows directly from the completeness of sLS, the correctness
of Πwsyn and from the validity of the signature scheme Σ.

Statistical Binding. Observe that the message given in output in the decommitment phase of
ΠNM4Com is the message committed using Πwsyn. Moreover the decommitment of ΠNM4Com coincides
with the decommitment of Πwsyn. Since Πwsyn is statistically binding then so is ΠNM4Com.

Hiding. Following Def. 11 to prove the hiding of ΠNM4Com we have to show that an experiment
ExpHiding0

A,ΠNM4Com
(λ) where NM4Sen commits to a messagem0 is computationally indistinguishable

from the experiment ExpHiding1
A,ΠNM4Com

(λ) where NM4Sen commits to a message m1. Therefore,
in order to prove hiding, we consider the following hybrid experiments.

• The 1st hybrid experiment H0(λ) differs from ExpHiding0
A,ΠNM4Com

(λ) in the witness used to
compute the messages of sLS. In more details in H0(λ) NM4Sen extracts, by rewinding
from the 3rd round to the 2nd round, two signatures of two different messages12. These two
signatures are used as a witness to compute messages of sLS. The adaptive-input statistical
WI of sLS guarantees that H0(λ) and ExpHiding0

A,ΠNM4Com
(λ) are statistically close.

12In the proof of Lemma 6 we show that the extraction fails with negligible probability. The same analysis applies
here for the proof of hiding.

11

Common input: security parameter λ, instance length `, NM4Sen’s identity id ∈ {0, 1}λ.

Input to NM4Sen: m ∈ {0, 1}poly{λ}.
Commitment phase:

1. NM4Rec→ NM4Sen

1. Run (sk, vk)← Gen(1λ).
2. Run V on input 1λ and ` thus obtaining the 1st round π1

sLS of sLS.
3. Run Recwsyn on input 1λ, id thus obtaining the 1st round π1

wsyn of Πwsyn.

4. Send (vk, π1
sLS, π

1
wsyn) to NM4Sen.

2. NM4Sen→ NM4Rec

1. Run Senwsyn on input 1λ, id, π1
wsyn and m thus obtaining the 2nd round π2

wsyn of Πwsyn.

2. Run P on input 1λ, ` and π1
sLS thus obtaining the 2nd round π2

sLS of sLS.
3. Pick a message msg← {0, 1}λ.
4. Send (π2

wsyn, π
2
sLS, msg) to NM4Rec.

3. NM4Rec→ NM4Sen

1. Run Recwsyn on input π2
wsyn thus obtaining the 3rd round π3

wsyn of Πwsyn.

2. Run V on input π2
sLS thus obtaining the 3rd round π3

sLS of sLS.
3. Run Sign(sk, msg) to obtain a signature σ of the message msg.
4. Send (π3

wsyn, π
3
sLS, σ) to NM4Sen.

4. NM4Sen→ NM4Rec

1. If Ver(vk, msg, σ) 6= 1 then abort, continue as follows otherwise.
2. Run Senwsyn on input π3

wsyn thus obtaining the 4th round π4
wsyn of Πwsyn and the decommitment

information decwsyn.
3. Set x = (π1

wsyn, π
2
wsyn, π

3
wsyn, π

4
wsyn, id, vk) and w = (m, decwsyn,⊥,⊥,⊥,⊥) with |x| = `. Run P

on input x, w and π3
sLS thus obtaining the 4th round π4

sLS of sLS.
4. Send (π4

wsyn, π
4
sLS) to NM4Rec.

5. NM4Rec : Set x = (π1
wsyn, π

2
wsyn, π

3
wsyn, π

4
wsyn, id, vk) and abort iff (π1

sLS, π
2
sLS, π

3
sLS, π

4
sLS) is not accepting

for V with respect to x.

Decommitment phase:

1. NMSen→ NMRec: Send (decwsyn,m) to NMRec.

2. NMRec: accept m as the committed message if and only if Recwsyn, on input (m, decwsyn), accepts m
as the committed message of (π1

wsyn, π
2
wsyn, π

3
wsyn, π

4
wsyn, id).

Figure 2: Our 4-round NM commitment scheme ΠNM4Com.

• The 2nd hybrid H1(λ) differs from H0(λ) only in the committed message. More specifically,
NM4Sen runs Senwsyn to commits to m1 instead of m0. The indistinguishability between
H0(λ) and H1(λ) comes from the computationally-hiding property of Πwsyn. Note that the
reduction to the hiding of Πwsyn is possible because the extraction of the signatures does not
rewind the challenger of Πwsyn.

The proof ends with the observation that by the adaptive-input statistical WI of sLS the ex-
periments H1(λ) and ExpHiding1

A,ΠNM4Com
(λ) are statistically close.

We give now an overview of the non-malleability proof, while the formal proof can be found in
App. B.1. We want to show that the committed value and the view of ANM4Com when interacting

12

with NM4Sen that commits to a message m is indistinguishable from the committed value and the
view of a simulator. The proof is divided in two cases. In the 1st case we consider an adversarial
MiM ANM4Com that acts in a synchronized way, while in the 2nd case we deal with the case of a non-
synchronized ANM4Com. The proof of the 1st case goes through a sequence of hybrid experiments
summarized below.

• The 1st hybrid is Hm1 (z) and in the left session NM4Sen commits to m, while in the right
session NM4Rec interacts with ANM4Com. We prove that in the right session ANM4Com does
not commit to a message m̃ =⊥. By contradiction if ANM4Com commits to m̃ =⊥ then the
witness used to complete an accepting transcript for sLS consists of two valid signatures of
two different messages. Then, using the AoK property of sLS we can contradict the security
property of Σ. Note that this hybrid corresponds to the real experiment where ANM4Com

interacts with NM4Sen in the left session.

• The 2nd hybrid is Hm2 (z) and differs from Hm1 (z) only in the witness used to compute the
messages of sLS in the left session. In more details, we rewind the adversary ANM4Com from
the 3rd to the 2nd round of the left session to extract two signatures σ1, σ2 of two different
messages (msg1, msg2) and we use them as witness to execute sLS in the left session. From
the adaptive-input statistical WI property of sLS follows that the committed value and the
view of ANM4Com do not change when moving from Hm1 (z) to Hm2 (z).

• The 3rd hybrid that we consider is H0
1(z) and differs from the first hybrid experiment that we

have consideredHm1 (z) in the committed message. Indeed in this case, the message committed
in the left session is 0λ. We observe that H0

1(z) actually is the simulated game. Note that also
in this hybrid we can argue that in the right session ANM4Com does not commit to a message
m̃ =⊥, for the same reason explained in hybrid Hm1 (z).

• The 4th hybrid experiment that we consider is H0
2(m) and it differs from H0

1(z) only in
the witness used to compute the sLS transcript. In more details, we rewind the adversary
ANM4Com from the 3rd to the 2nd round of the left session to extract two signatures σ1, σ2

of two different messages (msg1, msg2) and we use them as witness to execute sLS in the left
session. From the adaptive-input statistical WI of sLS we have that the committed value and
the view of ANM4Com do not change when moving from H0

1(z) to H0
2(z).

To conclude the proof we need to show that the view and the committed message of ANM4Com

that acts in Hm1 (z) are indistinguishable from the view and the committed message of ANM4Com

that acts in H0
1(z). Given the indistinguishability of the hybrids discussed above, it only remains

to show that the view and the committed message of Hm2 (z) are indistinguishable from the view
and the committed message of H0

2(z). This is ensured by the synchronous weak one-one non-
malleability of Πwsyn. Indeed, observe that here we need only to use a weak synchronous one-one
NM commitment because we are guaranteed (from the previous arguments) that whenever ANM4Com

completes a commitment in the right session, the corresponding message committed through Πwsyn

is different from ⊥ with overwhelming probability, and this holds both in Hm2 (z) and in H0
2(z).

One additional caveat that we have to address in this reduction is due to the rewinds executed in
the experiment in the left session to extract signatures. These rewinds can affect the straight-line
execution of the MiM adversary for Πwsyn that we want to construct. This is the point where the

13

π2

ext(s0), π
2

sLS, msg

π3

ext(s0), π
3

sLS, σ

s1, π
4

ext(s0), π
4

sLS

PZK(id) VZK(id)

π1

ext(s0), π
1

sLS, vk

Upon receiving x,w s.t.

(x,w) ∈ RelL set s1 = w ⊕ s0

• vk is a verification key of a signature scheme.

• τ = (π1
ext, π

2
ext, π

3
ext, π

4
ext) is the transcript of 〈Senext(m),Recext〉(id).

• (π1
sLS, π

2
sLS, π

3
sLS, π

4
sLS) is the transcript of sLS proving knowledge of either the decommitment of τ to a

message s0 s.t. (x,w = s0 ⊕ s1) ∈ RelL or of two valid signatures of two different messages w.r.t vk.

Figure 3: Informal description of our delayed-input 4-round NMZK AoK ΠZK.

public-coin property of Πwsyn is used. Indeed, in the reduction we will not need to rewind the
external receiver of Πwsyn because we can easily simulate his answers.

The proof for the asynchronous case is much simpler and relies on the hiding of ΠNM4Com. More
precisely we observe that in the asynchronous scheduling it is possible to rewind the adversary
ANM4Com (by changing the 3rd round), without rewinding the sender in the left session. This make
us able to extract the witness used in sLS, that with overwhelming probability is the committed
message. This allow us to reach a contradiction by breaking the hiding of ΠNM4Com.

Theorem 2. Suppose Πwom is a 4-round public-coin weak one-many NM commitment scheme and
CRHFs exist then ΠNM4Com is a concurrent NM commitment scheme.

The proof of this theorem is similar to the proof of Theorem 1. The main difference is in
the NM security proof, where there is no need to distinguish two cases since Πwom is only weak
non-malleable (and not restricted to being synchronous). More specifically we can consider the
sequence of hybrids listed above for the synchronized case of Theorem 1, and consider a MiM
adversary that has no restriction on the scheduling of the messages. The proof still works since
the indistinguishability between Hm2 and H0

2 can rely directly on the one-many non-malleability of
Πwom. We go from one-many to concurrent non-malleability by using Proposition 1.

4 4-Round NMZK from CRHFs

Our construction is based on a compiler that takes as input any 4-round public-coin extractable
one-one NM commitment scheme Πext = (Senext,Recext), a delayed-input adaptive-input statistical
WI adaptive-input AoK sLS = (P,V), a signature scheme, and outputs a delayed-input 4-round
NMZK AoK ΠZK = (PZK,VZK) for the NP-language L and corresponding relation RelL.

The high-level idea of our compiler is depicted in Fig. 3. In the 1st round VZK computes and
sends the 1st round π1

sLS of sLS and the 1st round π1
ext of Πext to PZK. Also VZK computes a pair

of signature and verification keys (sk, vk) and sends vk to PZK. PZK input the session-id id, picks
a random string s0, then computes and sends to VZK the 2nd round π2

ext of Πext to commit to the

14

message s0 using id as session-id. Moreover PZK computes the 2nd round π2
sLS of sLS and sends it

along with a random message msg to VZK. In the 3rd round VZK sends the 3rd round π3
ext of Πext,

the 3rd round of sLS and a signature σ (computed using sk) of msg to PZK. In the last round upon
receiving x,w s.t. (x,w) ∈ RelL, PZK verifies whether or not σ is a valid signature for msg. If σ
is a valid signature, then PZK computes the last round π4

ext of Πext and the 4th round π4
sLS of sLS.

Finally, PZK sets s1 = s0⊕w and sends (π4
ext, π

4
sLS, s1) to VZK. The delayed-input statistical WIAoK

protocol sLS is used by PZK to prove either 1) knowledge of a message s0 and randomness that are
consistent with the transcript computed using Πext and s.t. (x, s1 ⊕ s0) ∈ RelL or 2) knowledge of
signatures of two different messages w.r.t vk.

For constructing our ΠZK = (PZK,VZK) for the NP-language L and corresponding relation RelL
we need the following tools:

1. a 4-round public-coin extractable one-one NM commitment scheme Πext = (Senext,Recext);
2. a signature scheme Σ = (Gen,Sign,Ver);
3. a delayed-input adaptive-input statistical WIAoK protocol sLS = (P,V) for the language

Λ =
{(
τ = (π1

ext, π
2
ext, π

3
ext, π

4
ext), id, vk, x, s1

)
: ∃ (s0, dec, msg1, msg2, σ1, σ2) s.t.(

(Recext on input (τ, s0, dec, id) accepts s0 as a decommitment of τ AND (x, s0 ⊕ s1) ∈ RelL) OR(
Ver(vk, msg1, σ1) = 1 AND Ver(vk, msg2, σ2) = 1 AND msg1 6= msg2

))}
that is adaptive-input statistical WI and adaptive-input AoK for the corresponding relation
RelΛ.

Lemma 2. ΠZK enjoys delayed-input completeness.

Proof. First we observe that completeness follows directly from the completeness of sLS, the cor-
rectness of Πext and the validity of the signature scheme Σ. Delayed-input completeness follows from
the delayed-input completeness of sLS and from the observation that PZK does not need to know
the witness to run Πext. We stress that Πext is not required to enjoy a delayed-input property.

Theorem 3. If Πext is a 4-round public-coin extractable one-one NM commitment scheme and
CRHFs exist then ΠZK is a delayed-input NMZK AoK for NP.

We will refer to the simulated experiment as the experiment where SimZK interacts with the
adversary emulating both a prover and a verifier. The simulator works in a pretty straight-forward
way. It commits to a random message, it extracts a second signature from the left session and
completes the execution generating the first output according to Def. 4. Then it extracts the
witness from the extractable commitment Πext played by the adversary in the right session (see
Fig. 8 for a detailed description of SimZK). Obviously we will have to show that the probability
that the message extracted is not a witness for the statement proved by the adversary in the right
session is negligible.

We will give a lemma for each of the two properties of Def. 4.

Lemma 3. {Sim1
ZK(1λ, z)}λ∈N,z∈{0,1}∗ ≈ {ViewA(1λ, z)}λ∈N,z∈{0,1}∗ , where Sim1

ZK(1λ, z) denotes the
1st output of SimZK.

In order to prove the above lemma we consider an hybrid experiment H1(1λ, z). H1(1λ, z)
differs from the real execution of ΠZK in the witness used to compute messages of sLS. In more

15

Common input: security parameter λ, the instance length ` of sLS and PZK’s identity id ∈ {0, 1}λ, and
the instance x available only at the last round.
Private input of PZK: w s.t. (x,w) ∈ RelL, available only at the last round.

1. VZK → PZK

1. Run (sk, vk)← Gen(1λ).
2. Run V on input 1λ and ` thus obtaining the 1st round π1

sLS of sLS.
3. Run Recext on input 1λ, id thus obtaining the 1st round π1

ext of Πext.
4. Send (vk, π1

sLS, π
1
ext) to PZK.

2. PZK → VZK

1. Pick at random s0 s.t. |s0| is the witness length for an instance of L.
2. Run Senext on input 1λ, id, π1

ext and s0 thus obtaining the 2nd round π2
ext of Πext.

3. Run P on input 1λ, ` and π1
sLS thus obtaining the 2nd round π2

sLS of sLS.
4. Pick a message msg← {0, 1}λ.
5. Send (π2

ext, π
2
sLS, msg) to VZK.

3. VZK → PZK

1. Run Recext on input π2
ext thus obtaining the 3rd round π3

ext of Πext.
2. Run V on input π2

sLS thus obtaining the 3rd round π3
sLS of sLS.

3. Run Sign(sk, msg) to obtain a signature σ of the message msg.
4. Send (π3

ext, π
3
sLS, σ) to PZK.

4. PZK → VZK

1. If Ver(vk, msg, σ) 6= 1 then abort, continue as follows otherwise.
2. Set s1 = s0 ⊕ w.
3. Run Senext on input π3

ext thus obtaining the 4th round π4
ext of Πext and the decommitment

information decext.
4. Set xsLS = (π1

ext, π
2
ext, π

3
ext, π

4
ext, id, vk, x, s1) and wsLS = (s0, decext,⊥,⊥,⊥,⊥) with |xsLS| = `.

Run P on input xsLS, wsLS and π3
sLS thus obtaining the forth round π4

sLS of sLS.
5. Send (π4

ext, π
4
sLS, s1) to VZK.

5. VZK : Set xsLS = (π1
ext, π

2
ext, π

3
ext, π

4
ext, id, vk, x, s1) and accept iff (π1

sLS, π
2
sLS, π

3
sLS, π

4
sLS) is accepting for V

with respect to xsLS.

Figure 4: Our 4-round delayed-input NMZK argument of knowledge ΠZK.

details in H1(1λ, z) PZK extracts (through rewinds), two signatures of different messages13 that are
used as witness for sLS. Let {ViewAZK

H1
(1λ, z)}λ∈N,z∈{0,1}∗ denote a random variable that describes

the view of AZK in H1(1λ, z). The adaptive-input statistical WI of sLS and the negligible prob-
ability of failing in extracting a second signature guarantee that {ViewAZK

H1
(1λ, z)}λ∈N,z∈{0,1}∗ and

{ViewAZK(1λ, z)}λ∈N,z∈{0,1}∗ are statistically close.

Observe now that the only difference between H1(1λ, z) and the simulated execution is the
message committed using Πext. In more details, let x be the adaptively chosen statement proved
by PZK. In H1(1λ, z) PZK commits using Πext to a value s0 s.t. s1 = w ⊕ s0 (where (x,w) ∈ RelL).
Instead in the simulated experiment SimZK commits to a random string. Now we can claim
that {Sim1

ZK(1λ, z)}λ∈N,z∈{0,1}∗ and {ViewAZK
H1

(1λ, z)}λ∈N,z∈{0,1}∗ are computationally indistinguish-
able by using the computationally-hiding property of Πext. Informally, suppose by contradic-
tion that there exist an adversary AZK and a distinguisher DZK such that DZK distinguishes

13In the proof of Lemma 4 we show that the extraction fails with negligible probability. The same analysis applies
here.

16

{Sim1
ZK(1λ, z)}λ∈N,z∈{0,1}∗ from {ViewAZK

H1
(1λ, z)}λ∈N,z∈{0,1}∗ . Then we can construct an adversary

AHiding that breaks the computationally hiding of Πext in the following way. AHiding sends to the
challenger of the hiding game CHiding two random messages (m0,m1). Then AHiding acts as PZK

except for messages of Πext for which he acts as proxy between CHiding and AZK. When AHiding

computes the last round of the left session AHiding sets s1 = m0 ⊕ w. At the end of the execution
AHiding runs DZK and outputs what DZK outputs. It easy to see that if CHiding commits to m0 then,
AZK acts as in H1(1λ, z), otherwise he acts as in the simulated experiment. Note that the reduction
to the hiding property of Πext is possible because the rewinds to extract a second signature do not
affect the execution with the challenger of Πext that remains straight-line. Thus we have proved
that {ViewAZK(1λ, z)}λ∈N,z∈{0,1}∗ ≡s {ViewAZK

H1
(1λ, z)}λ∈N,z∈{0,1}∗ ≈ {Sim1

ZK(1λ, z)}λ∈N,z∈{0,1}∗ .

Lemma 4. Let x̃ be the right-session statement appearing in View = Sim1
ZK(1λ, z) and let id and

ĩd be the identities of the left and right sessions appearing in View. If the right session is accepting
and id 6= ĩd, then except with negligible probability, the second output of SimZK(1λ, z) is w̃ such
that RelL(x̃, w̃) = 1.

The formal proof can be found in App. B.2. Here we give an overview. The proof relies on
hybrid experiments to prove that AZK commits to s̃0 s.t. (x̃, s̃0 ⊕ s̃1) ∈ RelL

14 through Πext in the
simulated experiment.

• The 1st hybrid is H1(z) in which in the left session PZK interacts with AZK and in the right
session AZK interacts with VZK. We refer to this hybrid experiment as H1(z). Now we prove
that in the right session of H1(z) the MiM adversary AZK commits to the witness. Let x̃ be
the adaptively chosen theorem proved by AZK. By contradiction if AZK commits to a message
s′0 s.t. (x̃, s̃′0 ⊕ s̃1) /∈ RelL, then the witness used to complete an accepting transcript for sLS
consists of two valid signatures of two different messages. Then, by using the adaptive-input
AoK property of sLS we can reach a contradiction by breaking the security of Σ. Note that
this hybrid corresponds to the real experiment where AZK interacts with PZK in the left
session.

• The 2nd hybrid is H2(z) and differs from H1(z) only in the witness used to compute messages
of sLS in the left session. In more details, we rewind the adversaryAZK from the 3rd to the 2nd
round of the left session to extract two signatures σ1, σ2 of two different messages (msg1, msg2)
and we use them as witness to execute sLS in the left session. From the adaptive-statistical
WI of sLS it follows that the distribution of the message committed by AZK does not change
when moving from H1(z) to H2(z).

• The 3rd hybrid is H3(z). The only difference between this hybrid and the previous one is
that both s0 and s1 are random strings. From the non-malleability property of Πext it follows
that the distribution of the message committed by AZK does not change when switching from
H2(z) to H3(z). This is again a delicate reduction because it requires to show a successful
MiM for Πext that is supposed to work in straight-line. However the above experiment requires
to rewind the adversary in order to extract a second signature. As already discussed in the
previous section, this is the place where the public-coin property is used. Indeed this allows
us to simulate the additional answers of the honest receiver of Πext that are needed because
of the rewinds performed to extract a second signature.

14For simplicity in the rest of the proof we say that a player commits to a witness when he commits to s0 and
sends s1 in the last round s.t. (x, s0 ⊕ s1) ∈ RelL.

17

Note that H3(z) corresponds to the the simulated experiment, this implies that also in the
simulated game AZK commits to the witness. Therefore, our simulator can use the extractor of
Πext to get the witness w̃ s.t. (x̃, w̃) ∈ RelL, where x̃ is the adaptively chosen theorem proved by
AZK.

5 3-Round NM Commitments from Strong OWPs

Our construction is based on a compiler that takes as input a 3-round synchronous weak one-one
NM commitment scheme Πwsyn = (Senwsyn,Recwsyn), a OWP f , an LS WIPoK for NP LS, and
outputs a 3-round one-one NM commitment scheme ΠNMCom = (NMSen,NMRec).

Let m be the message that NMSen wants to commit. The high-level idea of our compiler is
depicted in Fig. 5. The sender NMSen, on input the session-id id and the message m, computes
the 1st round of the protocol by sending the 1st round aLS of LS and the 1st round awsyn of Πwsyn

(to commit to the message m using id as session-id). In the 2nd round the receiver NMRec sends
challenges cwsyn and cLS of Πwsyn and LS, also picks and sends an element Y in the range of f .
In the 3rd round NMSen computes the 3rd round of Πwsyn and completes the transcript for LS by
sending zwsyn and zLS. Let τ = (awsyn, cwsyn, zwsyn) be the transcript of the execution of Πwsyn. LS
is used by NMSen to prove knowledge of either a decommitment of τ to a message 6=⊥ or of a
preimage of Y .

awsyn, aLS

cwsyn, cLS, Y

zwsyn, zLS

NMSen(m, id) NMRec(id)

• Y is an element taken from the range of the OWP f .

• τ = (awsyn, cwsyn, zwsyn) is the transcript of 〈Senwsyn(m),Recwsyn〉(id).

• (aLS, cLS, zLS) is the transcript of LS for proving knowledge of either the decommitment of τ to a
message 6=⊥ or of the preimage of Y .

Figure 5: Informal description of our 3-round NM commitment scheme ΠNMCom.

Our compiler needs the following tools:
1. a OWP f that is secure against ppt adversaries and that is T̃f -breakable;
2. a 3-round one-one synchronous weak NM commitment scheme Πwsyn = (Senwsyn,Recwsyn)
that is Twsyn-hiding/NM, and T̃wsyn-breakable;

3. the LS PoK LS = (P,V) for the language

L =
{

(a, c, z, Y, id) : ∃ (m, dec, y) s.t.
(
Recwsyn on input (a, c, z,m, dec, id)

accepts m 6=⊥ as a decommitment of (a, c, z, id) OR Y = f(y)
)}

that is TLS-WI for the corresponding relation RelL.
Let λ be the security parameter of our scheme. We use w.l.o.g. λ also as security parameter

for the one-wayness of f with respect to polynomial-time adversaries. We consider the following

18

hierarchy of security levels: T̃f << Twsyn << T̃wsyn =
√
TLS << TLS where by “T << T ′” we mean

that “T · poly(λ) < T ′”.
Now, similarly to [PW10, COSV16], we define different security parameters, one for each tool

involved in the security proof to be consistent with the hierarchy of security levels defined above.
Given the security parameter λ of our scheme, we will make use of the following security parameters:
1) λ for the OWP f ; 2) λwsyn for the synchronous weak one-one NM commitment scheme; 3) λLS

for LS.
All of them are polynomially related to λ and they are such that the above hierarchy of security

levels holds. In the construction we assume for simplicity to have a function Params that on input
λ outputs (λwsyn, λLS, `) where ` is the length of the theorem to be proved using LS.15 The detailed
scheme is described in Fig. 6 and a compact version is depicted in Fig. 5.

Common input: security parameters: λ, (λwsyn, λLS, `) = Params(λ), id ∈ {0, 1}λ.

Input to NMSen: m ∈ {0, 1}poly{λ}.
Commitment phase:

1. NMSen→ NMRec

1. Run Senwsyn on input 1λwsyn , id and m thus obtaining the 1st round awsyn of Πwsyn.
2. Run P on input 1λLS and ` thus obtaining the 1st round aLS of LS.
3. Send (awsyn, aLS) to NMRec.

2. NMRec→ NMSen

1. Run Recwsyn on input id and awsyn thus obtaining the 2nd round cwsyn of Πwsyn.
2. Run V on input aLS thus obtaining the 2nd round cLS of LS.
3. Pick a random Y ∈ {0, 1}λ.
4. Send (cwsyn, cLS, Y) to NMSen.

3. NMSen→ NMRec

1. Run Senwsyn on input cwsyn thus obtaining the 3rd round zwsyn of Πwsyn and the decommitment
information decwsyn.

2. Set x = (awsyn, cwsyn, zwsyn, Y, id) and w = (m, decwsyn,⊥) with |x| = `. Run P on input x, w,
and cLS thus obtaining the 3rd round zLS of LS.

3. Send (zwsyn, zLS) to NMRec.

4. NMRec: Set x = (awsyn, cwsyn, zwsyn, Y, id) and abort iff (aLS, cLS, zLS) is not accepted by V for x ∈ L.

Decommitment phase:

1. NMSen→ NMRec: Send (decwsyn,m) to NMRec.

2. NMRec: accept m as the committed message if and only if Recwsyn on input (m, decwsyn) accepts m
as a committed message of (awsyn, cwsyn, zwsyn, id).

Figure 6: Our 3-round NM commitment scheme ΠNMCom.

Theorem 4. Suppose there exist a synchronous weak one-one NM commitment scheme and OWPs,
both secure against subexponential-time adversaries, then ΠNMCom is a NM commitment scheme.

The proof is divided in two parts. First we prove that ΠNMCom is a commitment scheme. Then
we prove that ΠNMCom is a NM commitment scheme.

Lemma 5. ΠNMCom is a statistically-binding computationally-hiding commitment scheme.

15To compute 1st and 2nd round of LS only the length ` of the instance is required.

19

Proof. Correctness. The correctness of ΠNMCom follows immediately from the completeness of
LS, and the correctness of Πwsyn.

Statistical Binding. Observe that the message given in output in the decommitment phase
of ΠNMCom is the message committed using Πwsyn. Moreover the decommitment phase of ΠNMCom

coincides with the decommitment phase of Πwsyn. Since Πwsyn is binding we have that the same
holds for ΠNMCom.

Hiding. Following Def. 11 to prove the hiding of ΠNMCom we have to show that the experiment
ExpHiding0

A,ΠNMCom
(λ) in which NMSen commits to a message m0 is computationally indistinguish-

able from the experiment ExpHiding1
A,ΠNMCom

(λ) in which NMSen commits to a message m1. In
order to prove this indistinguishability we consider the following hybrid experiments.

• The 1st hybrid experiment H0(λ) is equal to the real game experiment ExpHiding0
A,ΠNMCom

(λ),
with the difference that a value y s.t. Y = f(y) is computed and used as a witness for LS.
Observe that in order to compute y the commitment phase takes time T̃f . The indistinguisha-
bility between H0(λ) and ExpHiding0

A,ΠNMCom
(λ) comes from the adaptive-input WI of LS, that

holds against adversaries with running time bounded by TLS >> T̃f .

• The 2nd hybrid H1(λ) differs from H0(λ) in the message committed by the adversary using
Πwsyn. More precisely, Πwsyn is used by NMSen to commit to the message m1 instead of
m0. The indistinguishability between H0(λ) and H1(λ) comes from the hiding of Πwsyn and
noticing that the hiding of Πwsyn still holds against adversaries with running time bounded
by Twsyn >> T̃f .

The proof ends with the observation that H1(λ) ≈ ExpHiding1
A,ΠNMCom

(λ). The indistinguisha-

bility between H1(λ) and ExpHiding1
A,ΠNMCom

(λ) comes from the adaptive-WI property of LS and
from the observation that, as before, the adaptive-input WI of LS still holds against adversaries
with running time bounded by TLS >> T̃f .

The full proof of non-malleability can be found in App. B.3. Here we give an overview of
the proof. The proof is divided in two cases, in the first case we consider an adversarial MiM
ANMCom that acts in a synchronized way, while in the second case ANMCom is non-synchronized. In
both cases we want to show that the committed value (and the view) of ANMCom when interacting
with a prover NMSen that commits to a message m is indistinguishable from the committed value
(and the view) of a simulator. The proof for the synchronous case goes through a series of hybrid
experiments listed below.

• We consider the real game experiment Hm1 (z) in which in the left session NMSen commits to
m, while in the right session NMRec interacts with ANMCom. Now we prove that in the right
session the MiM adversary ANMCom does not commit to a message m̃ =⊥. By contradiction
if ANMCom commits to m̃ =⊥ then the witness used to complete an accepting transcript for
LS is a value ỹ s.t. f(Ỹ) = ỹ. Then, by using the adaptive PoK property of LS we can reach
a contradiction by inverting f in polynomial time.

• The 2nd hybrid is Hm2 (z) and it differs from Hm1 (z) only in the witness used to compute the
sLS transcript. The adversary ANMCom, running in sub-exponential time, computes a value
y s.t. f(y) = Y , and uses it as witness for the execution of LS. From the adaptive-input WI

20

(that is stronger than inverting the OWP and of breaking Πwsyn) of sLS, the view and the
committed message of ANMCom do not change between Hm2 (z) and Hm1 (z).

• We now consider the hybrid experiment is H0
1(z) that differs from the first hybrid experiment

that we have considered Hm1 (z) in the committed message. Indeed in this case, the message
committed in the left session is 0λ. We observe that H0

1(z) actually is the simulated game. As
for the hybrid experimentHm1 (z) we need to prove that in the right session the MiM adversary
ANMCom does not commit to a message m̃ =⊥. By contradiction if ANMCom commits to m̃ =⊥
then the witness used to complete an accepting transcript for LS is a value ỹ s.t. f(Ỹ) = ỹ.
Then, by using the PoK property of LS we can reach a contradiction by inverting f in
polynomial time.

• The last hybrid experiment that we consider is H0
2(z) and it differs from H0

1(z) only in the
witness used to compute the sLS transcript. In more details the adversary ANMCom, running
in sub-exponential time, computes a value y s.t. f(y) = Y , and uses it as witness for the
execution of LS. From the adaptive-input WI (that is stronger than inverting the OWP)
of sLS, the view and the committed message of ANMCom do not change between H0

2(z) and
H0

1(z).

To conclude this proof we show that the view and the committed message of ANMCom acting
in Hm1 (z) are indistinguishable from the view and the committed message of ANMCom acting in
H0

1(z). Given the already argued indistinguishabilities, it remains to show that the view and the
committed message of Hm2 (z) are indistinguishable from the view and the committed message of
H0

2(z). This is ensured by the synchronous weak non-malleability of Πwsyn. Here we need only to use
a weak synchronous one-one NM commitment since we are guaranteed from the above arguments
that whenever ANMCom completes a commitment in a right session, the underlying commitment
computed through Πwsyn corresponds to ⊥ with negligible probability only both in Hm2 (z) and in
H0

2(z).
The proof for the asynchronous case is much simpler and relies on the hiding of ΠNMCom. More

precisely we observe that in case of asynchronous scheduling it is possible to rewind the adversary
ANMCom without rewinding the sender in the left session. This allows us to extract (in polynomial
time) the witness used by the adversary in the execution of LS, that with overwhelming probability
corresponds to the committed message. Therefore we contradict the hiding of ΠNMCom.

6 Acknowledgments

We thank Vipul Goyal, and Silas Richelson for remarkable discussions on [GPR16].
Research supported in part by “GNCS - INdAM”, EU COST Action IC1306, NSF grants

1065276, 1118126 and 1136174, US-Israel BSF grant 2008411, OKAWA Foundation Research
Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Foundation
Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award. This mate-
rial is based upon work supported in part by DARPA Safeware program. The views expressed are
those of the authors and do not reflect the official policy or position of the Department of Defense
or the U.S. Government.

The work of 1st, 3rd and 4th authors has been done in part while visiting UCLA.

21

References

[ADL14] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from
additive combinatorics. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 774–783, 2014. (Cited on page 3.)

[Bar02] Boaz Barak. Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In 43rd Symposium on Foundations of Computer Science
(FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings, pages
345–355, 2002. (Cited on page 3.)

[BGR+15] Hai Brenner, Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. Fast
non-malleable commitments. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, Denver, CO, USA, October 12-6, 2015,
pages 1048–1057, 2015. (Cited on pages 3 and 4.)

[BJY97] Mihir Bellare, Markus Jakobsson, and Moti Yung. Round-optimal zero-knowledge ar-
guments based on any one-way function. In Advances in Cryptology - EUROCRYPT
’97, International Conference on the Theory and Application of Cryptographic Tech-
niques, Konstanz, Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture
Notes in Computer Science, pages 280–305. Springer, 1997. (Cited on page 4.)

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-malleable zero
knowledge. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages
345–354, 2006. (Cited on page 4.)

[CKPR01] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-
knowledge requires omega˜(log n) rounds. In Proceedings on 33rd Annual ACM Sym-
posium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, pages 570–
579, 2001. (Cited on page 4.)

[COP+14] Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, Muthuramakrishnan Venkitasubra-
maniam, and Ivan Visconti. 4-round resettably-sound zero knowledge. In Theory of
Cryptography - 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA,
USA, February 24-26, 2014. Proceedings, volume 8349 of Lecture Notes in Computer
Science, pages 192–216. Springer, 2014. (Cited on pages 4 and 7.)

[COSV16] Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Concur-
rent non-malleable commitments (and more) in 3 rounds. Advances in Cryptology
- CRYPTO 2016 - 36nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016. Proceedings, 2016. (Cited on pages 3, 4, 5, 7, and 19.)

[CPS13] Kai-Min Chung, Rafael Pass, and Karn Seth. Non-black-box simulation from one-
way functions and applications to resettable security. In Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 231–
240. ACM, 2013. (Cited on pages 7 and 27.)

22

[CPS+16a] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Improved or-composition of sigma-protocols. In Theory of Cryptography -
13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016,
Proceedings, Part II, pages 112–141, 2016. (Cited on pages 4 and 7.)

[CPS+16b] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Siniscalchi, and Ivan
Visconti. Online/offline OR composition of sigma protocols. In Advances in Cryptology
- EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings,
Part II, pages 63–92, 2016. (Cited on pages 4 and 28.)

[CVZ10] Zhenfu Cao, Ivan Visconti, and Zongyang Zhang. Constant-round concurrent non-
malleable statistically binding commitments and decommitments. In Public Key Cryp-
tography - PKC 2010, 13th International Conference on Practice and Theory in Public
Key Cryptography, Paris, France, May 26-28, 2010. Proceedings, volume 6056 of Lec-
ture Notes in Computer Science, pages 193–208. Springer, 2010. (Cited on page 3.)

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In Proceedings of the 23rd Annual ACM Symposium on Theory of Comput-
ing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 542–552, 1991. (Cited on page 3.)

[DG03] Ivan Damg̊ard and Jens Groth. Non-interactive and reusable non-malleable commit-
ment schemes. In Proceedings of the 35th Annual ACM Symposium on Theory of
Computing, June 9-11, 2003, San Diego, CA, USA, pages 426–437, 2003. (Cited on page 3.)

[DPV04a] Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti. Constant-round re-
settable zero knowledge with concurrent soundness in the bare public-key model. In
Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO 2004, 24th Annual
International CryptologyConference, Santa Barbara, California, USA, August 15-19,
2004, Proceedings, volume 3152 of Lecture Notes in Computer Science, pages 237–253.
Springer, 2004. (Cited on page 4.)

[DPV04b] Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti. Improved setup assump-
tions for 3-round resettable zero knowledge. In Advances in Cryptology - ASIACRYPT
2004, 10th International Conference on the Theory and Application of Cryptology and
Information Security, Jeju Island, Korea, December 5-9, 2004, Proceedings, volume
3329 of Lecture Notes in Computer Science, pages 530–544. Springer, 2004. (Cited on

page 7.)

[Fei90] Uriel Feige. Alternative models for zero knowledge interactive proofs. Master’s thesis,
Weizmann Institute of Science, Rehovot, Israel, 1990. Ph.D. thesis. (Cited on page 29.)

[FS90] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In
Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing,
STOC ’90, pages 416–426, New York, NY, USA, 1990. ACM. (Cited on page 6.)

[GJO+13] Vipul Goyal, Abhishek Jain, Rafail Ostrovsky, Silas Richelson, and Ivan Visconti.
Constant-round concurrent zero knowledge in the bounded player model. In Advances
in Cryptology - ASIACRYPT 2013, 19th International Conference on the Theory and

23

Application of Cryptology and Information Security, 2004, Proceedings, volume 8279
of Lecture Notes in Computer Science, pages 21–40. Springer, 2013. (Cited on page 7.)

[GK96] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof
systems. SIAM J. Comput., 25(1):169–192, 1996. (Cited on page 43.)

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May
14-17, 1989, Seattle, Washigton, USA, pages 25–32, 1989. (Cited on page 3.)

[GLOV12] Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Constructing non-
malleable commitments: A black-box approach. In 53rd Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October
20-23, 2012, pages 51–60, 2012. (Cited on page 3.)

[GMPP16] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The
exact round complexity of secure computation. In Advances in Cryptology - EURO-
CRYPT 2016 - 35th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II,
pages 448–476, 2016. (Cited on page 4.)

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions. In
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San
Jose, CA, USA, 6-8 June 2011, pages 695–704, 2011. (Cited on page 3.)

[GPR16] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commit-
ments. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 1128–1141,
2016. (Cited on pages 3, 5, 6, and 21.)

[GRRV14] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic approach
to non-malleability. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 41–50, 2014.
(Cited on pages 3, 4, 5, 6, and 7.)

[GRRV16a] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. Personal communica-
tion, May 2016. (Cited on page 4.)

[GRRV16b] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. Personal communica-
tion, June 2016. (Cited on page 4.)

[GRRV16c] Vipul Goyal, Silas Richelson, Alon Rosen, and Margarita Vald. An algebraic approach
to non-malleability. Cryptology ePrint Archive, Report 2014/586, June 2016. http:

//eprint.iacr.org/. (Cited on page 4.)

[HV16] Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. On the power of secure
two-party computation. Cryptology ePrint Archive, Report 2016/074, 2016. http:

//eprint.iacr.org/. (Cited on page 4.)

24

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

[KO04] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation.
In Advances in Cryptology - CRYPTO 2004, 24th Annual International Cryptology-
Conference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings, pages
335–354, 2004. (Cited on page 4.)

[Lin10] Yehuda Lindell. Foundations of cryptography 89-856. http://u.cs.biu.ac.il/

~lindell/89-856/complete-89-856.pdf, 2010. (Cited on page 29.)

[LP11a] Huijia Lin and Rafael Pass. Concurrent non-malleable zero knowledge with adaptive
inputs. In Theory of Cryptography - 8th Theory of Cryptography Conference, TCC
2011, Providence, RI, USA, March 28-30, 2011. Proceedings, pages 274–292, 2011.
(Cited on page 9.)

[LP11b] Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from any one-
way function. In Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 705–714, 2011. (Cited on pages 3,

9, 28, and 30.)

[LP15] Huijia Lin and Rafael Pass. Constant-round nonmalleable commitments from any
one-way function. J. ACM, 62(1):5:1–5:30, 2015. (Cited on page 3.)

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent
non-malleable commitments from any one-way function. In Theory of Cryptography,
Fifth Theory of Cryptography Conference, TCC 2008, New York, USA, March 19-21,
2008., pages 571–588, 2008. (Cited on pages 3, 8, and 9.)

[LS90] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge
proofs. In Advances in Cryptology - CRYPTO, 1990. (Cited on pages 4, 6, 7, and 29.)

[MP12] Mohammad Mahmoody and Rafael Pass. The curious case of non-interactive commit-
ments - on the power of black-box vs. non-black-box use of primitives. In Advances
in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2012. Proceedings, pages 701–718, 2012. (Cited on page 3.)

[MV16] Arno Mittelbach and Daniele Venturi. Fiat-shamir for highly sound protocols is in-
stantiable. Cryptology ePrint Archive, Report 2016/313, 2016. http://eprint.iacr.
org/. (Cited on page 4.)

[OPV09] Rafail Ostrovsky, Giuseppe Persiano, and Ivan Visconti. Simulation-based concurrent
non-malleable commitments and decommitments. In Theory of Cryptography, 6th
Theory of Cryptography Conference, TCC 2009, San Francisco, CA, USA, March
15-17, 2009. Proceedings, volume 5444 of Lecture Notes in Computer Science, pages
91–108. Springer, 2009. (Cited on page 3.)

[Pas13] Rafael Pass. Unprovable security of perfect NIZK and non-interactive non-malleable
commitments. In TCC, pages 334–354, 2013. (Cited on page 3.)

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-way func-
tions and applications. In Advances in Cryptology - CRYPTO 2008, 28th Annual

25

http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf
http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/

International Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008.
Proceedings, pages 57–74, 2008. (Cited on page 3.)

[PR03] Rafael Pass and Alon Rosen. Bounded-concurrent secure two-party computation in a
constant number of rounds. In 44th Symposium on Foundations of Computer Science
(FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 404–413,
2003. (Cited on page 3.)

[PR05a] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October
2005, Pittsburgh, PA, USA, Proceedings, pages 563–572, 2005. (Cited on page 3.)

[PR05b] Rafael Pass and Alon Rosen. New and improved constructions of non-malleable cryp-
tographic protocols. In Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 533–542, 2005. (Cited on

page 3.)

[PR08a] Rafael Pass and Alon Rosen. Concurrent nonmalleable commitments. SIAM J. Com-
put., 37(6):1891–1925, 2008. (Cited on page 3.)

[PR08b] Rafael Pass and Alon Rosen. New and improved constructions of nonmalleable cryp-
tographic protocols. SIAM J. Comput., 38(2):702–752, 2008. (Cited on page 3.)

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from
one-way functions. In Theory of Cryptography, 6th Theory of Cryptography Conference,
TCC 2009, San Francisco, CA, USA, March 15-17, 2009. Proceedings, pages 403–418,
2009. (Cited on page 30.)

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from sub-
exponential one-way functions. In Advances in Cryptology - EUROCRYPT 2010, 29th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, French Riviera, May 30 - June 3, 2010. Proceedings, pages 638–655, 2010.
(Cited on pages 3 and 19.)

[SCO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust non-interactive zero knowledge. In Advances in Cryptology -
CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in
Computer Science, pages 566–598. Springer, 2001. (Cited on page 9.)

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability am-
plification. In 51th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 531–540. IEEE
Computer Society, 2010. (Cited on pages 3 and 4.)

[YZ07] Moti Yung and Yunlei Zhao. Generic and practical resettable zero-knowledge in the
bare public-key model. In Advances in Cryptology - EUROCRYPT 2007, 26th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Barcelona, Spain, May 20-24, 2007, Proceedings, pages 129–147, 2007. (Cited on page 4.)

26

A Standard Definitions and Tools

Definition 5 (One-way function (OWF)). A function f : {0, 1}? → {0, 1}? is called one way if the
following two conditions hold:

• there exists a deterministic polynomial-time algorithm that on input y in the domain of f
outputs f(y);

• for every ppt algorithm A there exists a negligible function ν, such that for every auxiliary
input z ∈ {0, 1}poly(λ):

Prob
[
y←{0, 1}? : A(f(y), z) ∈ f−1(f(y))

]
< ν(λ).

We say that a OWF f is a one-way permutation (OWP) if f is a permutation.
We will require that an algorithm that runs in time T̃ = 2λ

α
for some positive constant α < 1,

can invert a OWP f . In this case we say that f is T̃ -breakable.

Definition 6 (Strong Signatures [CPS13]). A triple of ppt algorithms (Gen, Sign,Ver) is called a
signature scheme if it satisfies the following properties.

Validity: For every pair (s, v)← Gen(1λ), and every m ∈ {0, 1}λ, we have that

Ver(v,m,Sign(s,m)) = 1.

Security: For every ppt A, there exists a negligible function ν, such that for all auxiliary input
z ∈ {0, 1}? it holds that:

Pr[(s, v)← Gen(1λ); (m,σ)← ASign(s,·)(z, v) ∧ Ver(v,m, σ) = 1 ∧ (m,σ) /∈ Q] < ν(λ)

where Q denotes the list of query-answer pairs for all queries asked by A to the oracle Sign(s, ·).

Definition 7 (Computational indistinguishability). Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be en-
sembles, where Xλ’s and Yλ’s are probability distribution over {0, 1}l, for same l = poly(λ). We
say that X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable, denoted X ≈ Y ,
if for every ppt distinguisher D there exists a negligible function ν such that for sufficiently large
λ ∈ N, ∣∣∣Prob

[
t← Xλ : D(1λ, t) = 1

]
− Prob

[
t← Yλ : D(1λ, t) = 1

] ∣∣∣ < ν(λ).

We note that in the usual case where |Xλ| = Ω(λ) and λ can be derived from a sample of Xλ,
it is possible to omit the auxiliary input 1λ. In this paper we also use the definition of Statistical
Indistinguishability. This definition is the same as Definition 7 with the only difference that the
distinguisher D is unbounded. In this case use X ≡s Y to denote that two ensembles are statistically
indistinguishable.

Definition 8 (Delayed-input proof/argument system). A pair of ppt interactive algorithms Π =
(P,V) constitutes a proof system (resp., an argument system) for an NP-language L, if the fol-
lowing conditions hold:

Completeness: For every x ∈ L and w such that (x,w) ∈ RelL, it holds that:

Prob [〈P(w),V〉(x) = 1] = 1.

27

Soundness: For every interactive (resp., ppt interactive) algorithm P?, there exists a negligible
function ν such that for every x /∈ L and every z:

Prob [〈P?(z),V〉(x) = 1] < ν(|x|).

A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-input completeness
if P needs x and w only to compute the last round and V needs x only to compute the output. Before
that, P and V run having as input only the size of x. The notion of delayed-input completeness
was defined in [CPS+16b].

An interactive protocol Π = (P,V) is public coin if, at every round, V simply tosses a predeter-
mined number of coins (random challenge) and sends the outcome to the prover.

We say that the transcript τ of an execution b = 〈P(z),V〉(x) is accepting if b = 1.

Witness indistinguishability. Let View
P(w)
V?(z)(x) be the random variable that denotes V?’s view

in an interaction with P when V? is given auxiliary input z, P is given witness w, and both parties
are given common input x.

Definition 9 (Witness Indistinguishability (WI)). An argument/proof system Π = (P,V) for
NP-language L, is Witness Indistinguishable (WI) for the corresponding relation RelL if, for every
malicious ppt verifier V?, for all auxiliary input z ∈ {0, 1}? and for all x,w,w′ such that (x,w) ∈
RelL and (x,w′) ∈ RelL, the following ensembles are computationally indistinguishable:

{View
P(w)
V?(z)(x)} ≈ {View

P(w′)
V?(z) (x)}.

The notion of a statistically WI proof/argument system is obtained by requiring that the two

ensembles {View
P(w)
V?(z)(x)} and {View

P(w′)
V?(z) (x)} are statistically indistinguishable.

Obviously one can generalize the above definitions of WI to their natural adaptive-input variant,
where the adversarial verifier can select the statement and the witnesses adaptively, before the
prover plays the last round.

In this paper we also consider a definition where the adaptive-WI property of the argument/proof
system still holds against a distinguisher with running time bounded by T = 2λ

α
for some constant

positive constant α < 1. In this case we say that the instantiation of WI proof system is T -Witness
Indistinguishable (T -WI).

Definition 10 (Proof of Knowledge [LP11b]). A proof system Π = (P,V) is a proof of knowledge
(PoK) for the relation RelL if there exist a probabilistic expected polynomial-time machine E, called
the extractor, such that for every algorithm P?, there exists a negligible function ν, every statement
x ∈ {0, 1}λ, every randomness r ∈ {0, 1}? and every auxiliary input z ∈ {0, 1}?,

Prob [〈P?r (z),V〉(x) = 1] ≤ Prob
[
w ← EP

?
r (z)(x) : (x,w) ∈ RelL

]
+ ν(λ).

We also say that an argument system Π is a argument of knowledge (AoK) if the above condition
holds w.r.t. any ppt P?.

In this paper we also consider the adaptive-input PoK/AoK property. Adaptive-input PoK/AoK
ensures that the PoK/AoK property still holds when a malicious prover can choose the statement
adaptively at the last round. In this case, to be consistent with Definition 10 of PoK/AoK where

28

the extractor algorithm E takes as input the statement proved by P?, we have to consider a
different extractor algorithm. This extractor algorithm takes as input the randomness r′ of V, the
randomness r of P? and outputs the witness for x ∈ L, where x is selected by P?r when interacting
with Vr′ .

In this paper we use the 3-round public-coin WI PoK (WIPoK) proposed by Lapidot and
Shamir [LS90], that we denote by LS. LS enjoys delayed-input completeness since the inputs for
both P and V are needed only to play the last round, and only the length of the instance is needed
earlier. LS also enjoys adaptive-input PoK and adaptive-input WI. We also use a 4-round delayed-
input, adaptive-input AoK, and adaptive-input statistical WI argument of knowledge (WIAoK),
that is a variant of LS [Fei90]. More in details, the WI of LS relies on the hiding property of the
underlying commitment scheme, therefore if the prover of LS uses a 2-round statistically hiding
commitment scheme, then we obtain adaptive-input statistical WIAoK. Note that compared to LS
this variation of LS requires an additional round from verifier to prover in order to send the first
round of the statistically hiding commitment scheme.

A.1 Commitment Schemes

Definition 11 (Commitment Scheme). Given a security parameter 1λ, a commitment scheme
CS = (Sen,Rec) is a two-phase protocol between two ppt interactive algorithms, a sender Sen and
a receiver Rec. In the commitment phase Sen on input a message m interacts with Rec to produce
a commitment com. In the decommitment phase, Sen sends to Rec a decommitment information d

such that Rec accepts m as the decommitment of com.
Formally, we say that CS = (Sen,Rec) is a perfectly binding commitment scheme if the following

properties hold:
Correctness:

• Commitment phase. Let com be the commitment of the message m given as output of an
execution of CS = (Sen,Rec) where Sen runs on input a message m. Let d be the private
output of Sen in this phase.

• Decommitment phase16. Rec on input m and d accepts m as decommitment of com.

Statistical (resp. Computational) Hiding([Lin10]): for any adversary (resp. pptadversary)
A and a randomly chosen bit b ∈ {0, 1}, consider the following hiding experiment ExpHidingbA,CS(λ):

• Upon input 1λ, the adversary A outputs a pair of messages m0,m1 that are of the same
length.

• Sen on input the message mb interacts with A to produce a commitment of mb.

• A outputs a bit b′ and this is the output of the experiment.

For any adversary (resp. ppt adversary) A, there exist a negligible function ν, s.t.:∣∣∣Prob
[

ExpHiding0
A,CS(λ) = 1

]
− Prob

[
ExpHiding1

A,CS(λ) = 1
] ∣∣∣ < ν(λ).

Statistical (resp. Computational) Binding: for every commitment com generated during
the commitment phase by a possibly malicious unbounded (resp. malicious ppt) sender Sen?

there exists a negligible function ν such that Sen?, with probability at most ν(λ), outputs two

16In this paper we consider a non-interactive decommitment phase only.

29

decommitments (m0, d0) and (m1, d1), with m0 6= m1, such that Rec accepts both decommit-
ments.

We also say that a commitment scheme is perfectly binding iff ν(λ) = 0.

We also consider the definition of a commitment scheme where computational hiding still holds
against an adversary A running in time bounded by T = 2λ

α
for some positive constant α < 1. In

this case we will say that a commitment scheme is T -hiding. We will also say that a commitment
scheme is T̃ -breakable to specify that an algorithm running in time T̃ = 2λ

β
, for some positive

constant β < 1, recovers the (if any) only message that can be successfully decommitment.

Extractable commitment schemes. Informally, a commitment scheme is extractable if there
exists an efficient extractor that having black-box access to any efficient malicious ppt sender
ExSen? that successfully performs the commitment phase, outputs the only committed string that
can be successfully decommitted.

Definition 12 (Extractable Commitment Scheme [PW09]). A perfectly (resp. statistically) binding
commitment scheme ExCS = (ExSen,ExRec) is an extractable commitment scheme if there exists
an expected ppt extractor ExtCom that given oracle access to any malicious ppt sender ExSen?,
outputs a pair (τ, σ?) such that the following two properties hold:

- Simulatability: τ is identically distributed to the view of ExSen? (when interacting with an
honest ExRec) in the commitment phase.

- Extractability: the probability that there exists a decommitment of τ to σ, where σ 6= σ? is 0
(resp. negligible).

B Formal Proofs

B.1 Proof of Non-Malleability of the 4-Round NM Commitment Scheme

Lemma 6. ΠNM4Com is a one-one synchronous NM commitment scheme.

Proof. We need to prove that for all m ∈ {0, 1}poly(λ)

{mimANM4Com,m
ΠNM4Com

(z)}z∈{0,1}? ≈ {simSimNM4Com
ΠNM4Com

(1λ, z)}z∈{0,1}?

where SimNM4Com is the simulator depicted in Fig. 7.
We remark that in the security proofs we denote by δ̃ a value associated with the right session

(where the adversary plays with a receiver) where δ is the corresponding value in the left session.
For example, the sender commits to v in the left session while the adversary commits to ṽ in the
right session.

In order to prove the indistinguishability of the above two distributions we proceed by showing
two experiments Hm1 (z),Hm2 (z) where m is the message committed in the left session. Follow-
ing [LP11b] we denote by {mimANMCom

Hmi
(z)}z∈{0,1}? the random variable describing the view of the

MiM ANMCom combined with the value it commits to in the right interaction in hybrid Hmi (z)
(as usual, the committed value is replaced by ⊥ if the right interaction does not correspond to a
commitment that can be decommitted successfully or if ANMCom has copied the identity of the left
interaction). The same notation is used also in the other proofs of non-malleability.

Let be p the probability that in the real experiment ANM4Com concludes the left session.

30

In the first experiment in the left session NM4Sen commits to m, while in the right session we
let NM4Rec interacts with ANM4Com. We refer to this hybrid experiment as Hm1 (z). Details follow
below.

Hm
1 (z).
Left session:

1. Second round, upon receiving (vk, π1
sLS, π

1
wsyn) from ANM4Com, run as follows:

1.1. Run Senwsyn on input 1λ, id, π1
wsyn and m thus obtaining the second round π2

wsyn of
Πwsyn.

1.2. Run P on input 1λ, ` and π1
sLS thus obtaining the second round π2

sLS of sLS.
1.3. Pick a message msg← {0, 1}λ.
1.4. Send (π2

wsyn, π
2
sLS, msg) to ANM4Com.

2. Fourth round, upon receiving (π3
wsyn, π

3
sLS, σ) from ANM4Com, run as follows:

2.1. If Ver(vk, msg, σ) 6= 1 then abort, continue as follows otherwise.
2.2. Run Senwsyn on input π3

wsyn thus obtaining the fourth round π4
wsyn of Πwsyn and the

decommitment information decwsyn.
2.3. Set x = (π1

wsyn, π
2
wsyn, π

3
wsyn, π

4
wsyn, id, vk) and w = (m, decwsyn,⊥,⊥,⊥,⊥) with |x| =

`. Run P on input x,w, and π3
sLS thus obtaining the fourth round π4

sLS of sLS.
2.4. Send (π4

wsyn, π
4
sLS) to ANM4Com.

Right session: act as a proxy between ANM4Com and NM4Rec.
The distribution of mimANM4Com

Hm1
(z)17 clearly corresponds to the distribution of mimANM4Com

ΠNM4Com
(z).

We now prove that in the right session the MiM adversary ANM4Com does not commit to a
message m̃ =⊥. More formally prove the following claim.

Claim 1. Let p̄ be the probability that in the right session of Hm1 (z) ANM4Com successfully commits
to a message m̃ =⊥, then p̄ < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that the claim does not hold, then we can construct an adversary
AΣ that breaks the security of the signature scheme Σ. Let vk be the challenge verification key. The
intuition of the security proof is to create an adversary AΣ that interacts against the MiM adversary
ANM4Com. AΣ sends vk to ANM4Com in the first round of the right session and extracts the witness
used by ANM4Com to execute sLS in the right session. Since by contradiction we are assuming
that ANM4Com commits to a message m̃ =⊥ then, with non-negligible probability, the witness
extracted by sLS will be a pair of signatures (σ1, σ2) for a pair of distinct messages (msg1, msg2) s.t.
Ver(vk, msg1, σ1) = 1 and Ver(vk, msg2, σ2) = 1. In order to extract the witness used in sLS we use
an extractor E (that exists from the property of adaptive-input AoK enjoyed by sLS). As discussed
in App. A, in order to run E, the theorem x proved by a malicious prover P? is needed. In the case
of adaptive-input AoK, E takes as input the randomnesses r and r′ of the interaction between Vr′
and P?r where the theorem x is proved. Consider now a successful execution of Hm1 (z) where the
theorem proved by sLS to a verifier Vr′ is x̃ = (π̃1

wsyn, π̃
2
wsyn, π̃

3
wsyn, π̃

4
wsyn, ĩd, vk).

We observe that to complete this execution it is necessary to compute a valid signature σ̃
(w.r.t. vk) of a message ˜msg sent by ANM4Com. This is not a problem because σ̃ can be computed
by querying the signing oracle Sign.

17To simplify the notation here, and in the rest of the paper, we will omit to specify that the distribution is indexed
for all z ∈ {0, 1}?.

31

Now we are ready to construct the malicious prover MP? that will interacts with E. More
specifically MP? internally runs ANM4Com and interacts with him as the sender NM4Sen does in
the left session and as the receiver NM4Rec does in the right session. The only difference is that
all the messages of sLS of the right session are sent to a verifier V and vice versa (i.e., messages
received from a V are plugged in messages of the receiver in the right session). Formally MP?
works as follows.

MP?(m, vk, σ̃, r, z).
Use r as randomness for all next steps.
Run ANM4Com and act as follows:
Left session: run as in the left session of Hm1 (z).
Right session:

1. Upon receiving the 1st round π̃1
sLS of sLS from the external verifier V, run as follows:

1.1. Run Recwsyn on input 1λ, ĩd thus obtaining the first round π̃1
wsyn of Πwsyn.

1.2. Set ṽk = vk.

1.3. Send (ṽk, π̃1
sLS, π̃

1
wsyn) to ANM4Com.

2. Upon receiving (π̃2
wsyn, π̃

2
sLS, ˜msg) send π̃2

sLS to the external verifier V.

3. Upon receiving the 3rd round π̃3
sLS of sLS from the external verifier V, run as follows:

3.1. Run Recwsyn on input π̃2
wsyn thus obtaining the third round π̃3

wsyn of Πwsyn.
3.2. Send (π̃3

wsyn, π̃
3
sLS, σ̃) to ANM4Com.

4. Upon receiving (π̃4
wsyn, π̃

4
sLS) set x̃ = (π̃1

wsyn, π̃
2
wsyn, π̃

3
wsyn, π̃

4
wsyn, ĩd, ṽk) and send (π̃4

sLS, x̃)
to the external verifier V.

Now we can conclude the proof of this claim by describing how AΣ works. AΣ runs the extractor
E of sLS on input r′ and r and setting MP? as P? (recall that an extractor of sLS plays having
oracle access to a prover of sLS and receiving the randomnesses of the honest verifier and of the
prover). The extractor, with non-negligible probability, outputs the witness for the statement
proved with sLS. Since we are assuming that with non-negligible probability the commitment
computed by ANM4Com using ΠNM4Com is not well formed, then the output of the extractor (with
non-negligible probability) will be a pair of valid signature (σ1, σ2) for the messages (msg1, msg2),
with msg1 6= msg2. The proof ends with the observation that in the reduction just one oracle query
has been made to the signature oracle.

The next experiment is H0
1(z) and it corresponds to Hm1 (z) with the only difference that the

message committed, using Πwsyn, is 0λ instead of m. We prove the following claim.

Claim 2. Let p̄ be the probability that in the right session of H0
1(z) ANM4Com successfully commits

to a message m̃ =⊥. Then p̄ < ν(λ) for some negligible function ν.

Proof. The security proof follows strictly the one of Claim 1.

We now consider the hybrid experiment Hm2 (z) where in the left session, by rewinding the
adversary ANM4Com from the third to the second round, two signatures σ1, σ2 for two distinct
messages (msg1, msg2) are extracted and used as witness to execute sLS. Note that after 1/p
rewinds the probability of not obtaining a valid new signature is less than 1/2. Therefore the
probability that ANM4Com does not give a second valid signature for a randomly chosen message

32

after λ/p rewinds is negligible in λ. For the above reason we can claim that the probability that in
Hm2 (z) the experiment aborts is statistically close to the probability that in Hm1 (z) the output of
the experiment is abort.

Because of the adaptive-input statistical WI of sLS we can also claim that for all m ∈ {0, 1}poly(λ)

mimANM4Com,m
Hm1

(z) ≡s mimANM4Com,m
Hm2

(z). The formal description of Hm2 (z) is the follows below.

Hm
2 (z).
Left session:

1. Second round, upon receiving (vk, π1
sLS, π

1
wsyn) from ANM4Com, run as follows.

1.1. Run Senwsyn on input 1λ, id, π1
wsyn and m thus obtaining the second round π2

wsyn of
Πwsyn.

1.2. Run P on input 1λ, ` and π1
sLS thus obtaining the second round π2

sLS of sLS.
1.3. Pick a message msg1 ← {0, 1}λ.
1.4. Send (π2

wsyn, π
2
sLS, msg1) to ANM4Com.

2. Fourth round, upon receiving (π3
wsyn, π

3
sLS, σ1) from ANM4Com, run as follows.

2.1. If Ver(vk, msg1, σ) 6= 1 then abort, otherwise continue as follows.
2.2. Repeat Step 1.3, 1.4 and follow-up right-session messages up to λ/p times in order to obtain a

signature σ2 of a random message msg2 6= msg1. Abort in case of failure in obtaining σ2.

2.3. Run Senwsyn on input π3
wsyn thus obtaining the fourth round π4

wsyn of Πwsyn.

2.4. Set x = (π1
wsyn, π

2
wsyn, π

3
wsyn, π

4
wsyn, id) and w = (⊥,⊥, msg1, msg2, σ1, σ2) with |x| = `.

Run P on input x, w and π3
sLS thus obtaining the forth round π4

sLS of sLS.
2.5. Send (π4

wsyn, π
4
sLS) to ANM4Com.

Right session: act as a proxy between ANM4Com and NM4Rec.
The next hybrid is H0

2(m). The only differences between this hybrid and the previous one is
that Senwsyn commits, using Πwsyn, to a message 0λ instead of m. Formally H0

2(z) is the following.

H0
2(z).
Left session:

1. Second round, upon receiving (vk, π1
sLS, π

1
wsyn) from ANM4Com, run as follows.

1.1. Run Senwsyn on input 1λ, id and 0λ thus obtaining the second round π2
wsyn of Πwsyn.

1.2. Run P on input 1λ, ` and π1
sLS thus obtaining the second round π2

sLS of sLS.
1.3. Pick a message msg1 ← {0, 1}λ.
1.4. Send (π2

wsyn, π
2
sLS, msg1) to SimNM4Com.

2. Fourth round, upon receiving (π3
wsyn, π

3
sLS, σ1) from ANM4Com, run as follows.

2.1. If Ver(vk, msg1, σ) 6= 1 then abort, continue as follows otherwise.
2.2. Repeat Step 1.3, 1.4 and follow-up right-session messages up to λ/p times in order

to obtain a signature σ2 of a random message msg2 6= msg1. Abort in case of failure
in obtaining σ2.

2.3. Run Senwsyn on input π3
wsyn thus obtaining the fourth round π4

wsyn of Πwsyn.
2.4. Set x = (π1

wsyn, π
2
wsyn, π

3
wsyn, π

4
wsyn, id) and w = (⊥,⊥, msg1, msg2, σ1, σ2) with |x| = `.

Run P on input x, w and π3
sLS thus obtaining the forth round π4

sLS of sLS.
2.5. Send (π4

wsyn, π
4
sLS) to ANM4Com.

Right session: act as a proxy between ANM4Com and NM4Rec.

33

Observe that from the adaptive-input statistical WI of sLS it follows that for all m ∈ {0, 1}poly(λ)

mimANM4Com

H0
1

(z) ≡s mimANM4Com

H0
2

(z).

So far we have proved that mimANMCom
Hm1

(z) ≡s mimANM4Com
Hm2

(z) and mimANMCom

H0
2

(z) ≡s mimANM4Com

H0
1

(z)

and that both in Hm1 (z) and H0
1(z) the adversary ANM4Com commits to m̃ =⊥ only with negligible

probability. This implies that also in Hm2 (z) and H0
2(z) ANM4Com commits to m̃ =⊥ only with neg-

ligible probability. For this reason now we can prove the indistinguishability between mimANMCom
Hm2

(z)

and mimANMCom

H0
2

(z) by relying only on the synchronous weak non-malleability of Πwsyn. Formally we

prove the following claim.

Claim 3. For all m ∈ {0, 1}poly(λ) it holds that mimANM4Com
Hm2

(z) ≈ mimANM4Com

H0
2

(z).

Proof. Suppose by contradiction that there exist an adversaryANM4Com and a distinguisherDNM4Com

that can tell apart such two distributions. We can construct a distinguisher Dwsyn and an adver-
sary Awsyn that break the synchronous weak non-malleability of Πwsyn. We observe that we can
reduce the security of our scheme to the security of a weak non-malleable commitment because the
previous claims ensure that the message that ANM4Com commits in the right session (using Πwsyn)
is valid with overwhelming probability. Let Cwsyn be the challenger of the synchronous weak NM
commitment scheme and let (0λ,m) be the two challenge messages.

Loosely speaking Awsyn acts as NM4Sen with ANM4Com with the following differences: 1) Awsyn

plays as proxy between Cwsyn and ANM4Com w.r.t. messages of Πwsyn in the main thread; 2) a
second signature is extracted from the left session through rewinds; 3) random strings are played
to simulate the receiver of Πwsyn during rewinds. Then Awsyn runs Dwsyn on input the message m̃
committed by Awsyn and his randomness. Therefore Dwsyn reconstructs the view of ANM4Com (by
using the randomness received as input) and uses it along with the message m̃ as inputs of DNM4Com

giving in output what DNM4Com outputs. Since by contradiction DNM4Com distinguishes between
mimANM4Com

Hm2
(z) and mimANM4Com

H0
2

(z) also Dwsyn can tell apart which message has ben committed

by the MiM adversary Awsyn. We stress that to complete the reduction we need to extract two
signatures for two distinct messages in the left session. This is done by rewinding the MiM adversary
ANM4Com from the third to the second round of the left session. When the rewind occurs ANM4Com

also rewinds the receiver of the right session, rewinding also the receiver of Πwsyn involved in the
security reduction. To avoid this issue in the reduction we answer as a receiver of Πwsyn would have
done (we remark that this can be done because Πwsyn is public coin) for all rewinds that occur in
the right session, allowing the reduction no to rewind the receiver of Πwsyn. Formally the adversary
Awsyn acts as follows (we recall that this reduction is possible because the message scheduling that
we are considering is synchronous).
Awsyn(0λ,m, z)

Left session:

1. Upon receiving (vk, π1
sLS, π

1
wsyn) from ANM4Com forward π1

wsyn to Cwsyn.

2. Upon receiving π2
wsyn from Cwsyn, run as follows.

2.1. Run P on input 1λ, ` and π1
sLS thus obtaining the second round π2

sLS of sLS.
2.2. Pick a message msg1 ← {0, 1}λ.
2.3. Send (π2

wsyn, π
2
sLS, msg1) to ANM4Com.

3. Upon receiving (π3
wsyn, π

3
sLS, σ1) from ANM4Com.

3.1. If Ver(vk, msg1, σ) 6= 1 then abort, otherwise continue as follows.

34

3.2. Repeat Step 1.3, 1.4 and follow-up right-session messages up to λ/p times in order
to obtain a signature σ2 of a random message msg2 6= msg1. Abort if case of failure
in obtaining σ2.

3.3. Set x = (π1
wsyn, π

2
wsyn, π

3
wsyn, π

4
wsyn, id) and w = (⊥,⊥, msg1, msg2, σ1, σ2) with |x| = `.

Run P on input x, w and π3
sLS thus obtaining the forth round π4

sLS of sLS.
3.4. Send (π4

wsyn, π
4
sLS) to ANM4Com.

Right session:

1. Upon receiving π̃1
wsyn from from Recwsyn, run as follows.

1.1. Run (s̃k, ṽk)← Gen(1λ).

1.2. Run V on input 1λ thus obtaining the first round π̃1
sLS of sLS.

1.3. Send (ṽk, π̃1
sLS, π̃

1
wsyn) to ANM4Com.

2. Upon receiving (π̃2
wsyn, π̃

2
sLS, ˜msg) from ANM4Com, run as follows.

2.1. If there is not a rewind phase on the left-session send π̃2
wsyn to Recwsyn and execute

the following steps.

i. Upon receiving π̃3
wsyn from Recwsyn.

ii. Run V on input π̃2
sLS thus obtaining the third round π̃3

sLS of sLS.

iii. Run Sign(s̃k, ˜msg1) to obtain a signature σ̃ of the message ˜msg1.

iv. Send (π̃3
wsyn, π̃

3
sLS, σ̃)

2.2. Else if there is a rewind phase on the left then execute the following steps.

i. Run V on input π̃2
sLS thus obtaining the third round π̃3

sLS of sLS.

ii. Run Sign(s̃k, ˜msg1) to obtain a signature σ̃ of the message ˜msg1.

iii. Compute a random π̃3
wsyn.

iv. Send (π̃3
wsyn, π̃

3
sLS, σ̃) to ANM4Com.

3. Upon receiving (π̃4
wsyn, π̃

4
sLS) from ANM4Com, run as follows.

3.1. Set x̃ = (π̃1
wsyn, π̃

2
wsyn, π̃

3
wsyn, π̃

4
wsyn, ĩd, ṽk) and abort iff (π̃1

sLS, π̃
2
sLS, π̃

3
sLS, π̃

4
sLS) is not

accepting for V with respect to x̃.

3.2. Send π̃4
wsyn to Recwsyn.

Let mimAwsyn(z) be the view and the committed message in the right session by Awsyn. The
distinguisher Dwsyn takes as input mimAwsyn(z) and runs as follows.

Dwsyn(mimAwsyn(z)) : Let m̃ be the committed message sent in the right session by Awsyn to
NM4Rec. Reconstruct the view of ANM4Com (using randomness in mimAwsyn(z)) and give it and m̃
as input of the distinguisher DNM4Com. Output what DNM4Com outputs.

The proof is concluded by observing that if Cwsyn commits to m then the above execution of
Awsyn corresponds to Hm2 (z), otherwise it corresponds H0

2(z).

Observe that the distribution of mimANM4Com
Hm1

(z) clearly corresponds to the distribution of mimANM4Com,m
ΠNM4Com

(z)

while the distribution of mimANM4Com

H0
1

(z) corresponds to the distribution of simSimNM4Com
ΠNM4Com

(1λ, z). With

those observations we have proved that for all m ∈ {0, 1}poly(λ) the following holds:

mimANM4Com,m
ΠNM4Com

(z) = mimANM4Com
Hm1

(z) ≡s mimANM4Com
Hm2

(z) ≈

mimANM4Com

H0
2

(z) ≡s mimANM4Com

H0
1

(z) = simSimNM4Com
ΠNM4Com

(1λ, z).

35

Lemma 7. ΠNM4Com is a one-one NM commitment scheme.

Proof. In Lemma 6 we have shown that ΠNM4Com is a synchronous non-malleable commitment
scheme. Now we prove that ΠNM4Com is non-malleable also when the MiM adversary ANM4Com

interacts with NM4Sen and NM4Rec in a non-synchronized way. More formally we want to argue
that for all m ∈ {0, 1}poly(λ)

{mimANM4Com,m
ΠNM4Com

(z)}z∈{0,1}? ≈ {simSim
ΠNM4Com

(1λ, z)}z∈{0,1}? .

We prove the indistinguishability through a sequence of hybrid experiments. The first hybrid
experiment that we consider is Hm1 (z), that corresponds to Hm1 (z) showed in the proof of Lemma 6
with only difference that ANM4Com acts in a non-synchronized way. Is easy to see that Claim 1 is
valid also in this case.

The second hybrid that we consider is H0
1(z). The only difference between this hybrid and the

previous one is that NM4Rec commits to a message 0λ instead of m. It easy to see that Claim 2 is
valid also in this case.

Claim 4. For all m ∈ {0, 1}poly(λ) mimANM4Com
Hm1

(z)z∈{0,1}? ≈ mimANM4Com

H0
1

(z)z∈{0,1}?.

Proof. Suppose by contradiction that there exist adversary ANM4Com and a distinguisher DNM4Com

that can tell apart such two distributions. We can construct an adversary AHiding that breaks
the hiding of ΠNM4Com (recall the hiding of ΠNM4Com comes from Lemma 5). Let CHiding be the
challenger of the hiding game, we consider the two challenge messages (m, 0λ). The high-level idea
of this proof is that AHiding can break the hiding of ΠNM4Com using the witness extracted from the
sLS transcript computed by ANM4Com in the right session. In more details, if the witness extracted
from the sLS transcript corresponds to the message committed by ANM4Com then AHiding can win
the hiding game by running DNM4Com. Before continuing we observe that Claim 1 ensures that
with overwhelming probability the witness extracted from sLS in Hm1 (z) is the committed message.
Furthermore, Claim 2 ensures that with non-negligible probability the witness extracted from sLS
in H0

1(z) is the committed message.
Similarly to the security proof of Claim 1, in order to extract the witness from sLS we need to

construct the augmented machineMHiding that will be used by AHiding. MHiding internally executes
ANM4Com, and interacts with an external verifier of the protocol sLS acting as the prover. Notice
that there exists an extractor E from the adaptive-input AoK property of sLS. As discussed in
App. A, in the case of adaptive-input AoK E takes as input the randomnesses r and r′ used by the
prover and verifier in an execution where in sLS x has been proved by P?.

To constructMHiding, AHiding runsANM4Com and acts in the left session as a proxy between CHiding

and ANM4Com in order to obtain the transcript τNM4Com = (π1
NM4Com, π

2
NM4Com, π

3
NM4Com, π

4
NM4Com)

of ΠNM4Com. After that AHiding uses MHiding to extract the witness of the sLS transcript. The
augmented machine MHiding runs ANM4Com with same randomness as before acting in the left
session with ANM4Com as the sender NM4Sen using the messages π2

NM4Com, π
4
NM4Com of τNM4Com. In

the right session AHiding interacts with ANM4Com as the receiver NM4Rec with the only difference
that all the messages of sLS received by ANM4Com are forwarded to the extractor E and vice versa.
Now we describe the augmented machine MHiding.

MHiding(τNM4Com, r, z).

36

Use r as randomness for all next steps.
Run ANM4Com and act as follows:

- Upon receiving π1
NM4Com from ANM4Com send π2

NM4Com to ANM4Com.

- Upon receiving π3
NM4Com from ANM4Com send π4

NM4Com to ANM4Com.

- Upon receiving π̃1
sLS of sLS from the external verifier V.

1. Run Recwsyn on input 1λ, ĩd thus obtaining the first round π̃1
wsyn of Πwsyn.

2. Run (s̃k, ṽk)← Gen(1λ).

3. Send (ṽk, π̃1
sLS, π̃

1
wsyn) to ANM4Com.

- Upon receiving (π̃2
wsyn, π̃

2
sLS, ˜msg) from ANM4Com send π̃2

sLS to the external verifier V.

- Upon receiving π̃3
sLS of sLS from the external verifier V execute the following steps.

1. Run Recwsyn on input π̃2
wsyn thus obtaining the third round π̃3

wsyn of Πwsyn.

2. Run Sign(s̃k, ˜msg) to obtain a signature σ̃ of the message ˜msg.

3. Send (π̃3
wsyn, π̃

3
sLS, σ̃) to ANM4Com.

- Upon receiving (π̃4
wsyn, π̃

4
sLS) set x̃ = (π̃1

wsyn, π̃
2
wsyn, π̃

3
wsyn, π̃

4
wsyn, ĩd, ṽk) and send (π̃4

sLS, x̃) to the
external verifier V.

Now we can conclude the proof of this claim by describing how AHiding works. AHiding runs the
extractor E of sLS on input r′ (to be used as randomness of the hoenst verifier) and r (to be used
as randomness of the malicious prover) using MHiding as P? (recall that an extractor of sLS plays
having access to a prover of sLS). We know from Claim 1 and Claim 2 that with overwhelming
probability the witness extracted from sLS is the committed message m̃. Therefore AHiding runs
DNM4Com on input the view of ANM4Com of the above execution and the message m̃, and outputs
what DNM4Com outputs.

Note that CHiding is never rewound for all possible non-trivial non-synchronizing schedulings
of ANM4Com

18. Therefore, it is always possible to execute the extractor when ANM4Com acts in a
non-synchronized way.

The proof ends with the observation that if CHiding commits to m then ANM4Com acts as in
Hm1 (z), otherwise he acts as in H0

1(z).

Observe that the distribution of mimANM4Com,m
Hm1

(z) clearly corresponds to the distribution of

mimANM4Com,m
ΠNM4Com

(z) and the distribution of mimANM4Com,m
H0

1
(z) corresponds to the distribution of simSimNM4Com

ΠNM4Com
(1λ, z).

With this observation the entire security proof now is almost over because we have proved that for
all m ∈ {0, 1}poly(λ) the following relation holds:

mimANM4Com,m
ΠNM4Com

(z) = mimANM4Com

Hm1 (z) (z) ≈ mimANM4Com

H0
1(z)

(z) = simSimNM4Com
ΠNM4Com

(1λ, z).

The proof of Theorem 1 follows from Lemma 1, Lemma 6 and Lemma 7. We show in Fig. 7 the
description of SimNM4Com.

18There can be some non-synchronizing scheduling such that the rewind of the extractor would rewind also the
challenger. However such schedulings are trivial since such man-in-the-middle adversaries can always be simulated
by synchronizing adversaries. Therefore the proof for synchronizing adversaries applies.

37

Common input: Security parameters: λ. NM4Sen’s identity: id ∈ {0, 1}λ.
Internal simulation of the left session:

1. Upon receiving (vk, π1
sLS, π

1
wsyn) from ANM4Com.

1.1. Run Senwsyn on input 1λ, id, π1
wsyn and 0λ thus obtaining the second round π2

wsyn of Πwsyn.

1.2. Run P on input 1λ, ` and π1
sLS thus obtaining the second round π2

sLS of sLS.

1.3. Pick a message msg← {0, 1}λ.

1.4. Send (π2
wsyn, π

2
sLS, msg) to ANM4Com.

2. Upon receiving (π3
wsyn, π

3
sLS, σ) from ANM4Com.

2.1. If Ver(vk, msg, σ) 6= 1 then abort, continue as follows otherwise.

2.2. Run Senwsyn on input π3
wsyn thus obtaining the fourth round π4

wsyn of Πwsyn and the decommitment
information decwsyn.

2.3. Set x = (π1
wsyn, π

2
wsyn, π

3
wsyn, π

4
wsyn, id, vk) and w = (m, decwsyn,⊥,⊥,⊥,⊥) with |x| = `. Run P

on input x, w and π3
sLS thus obtaining the forth round π4

sLS of sLS.

2.4. Send (π4
wsyn, π

4
sLS) to ANM4Com.

Stand-alone commitment:

1. SimNM4Com acts as a proxy between ANM4Com and NM4Rec.

Figure 7: The simulator SimNM4Com.

B.2 Last Part of the Proof of 4-Round NMZK

The security proof goes through a sequence of hybrid experiments that prove that AZK commits to
s̃0 s.t. (x̃, s̃0 ⊕ s̃1) ∈ RelL during the simulated experiment. Once we have ensured that in all the
hybrids the distribution of the message committed by AZK does not change, we show that if the
right session is accepting and id 6= ĩd we can recover the witness used by AZK (that is internally
executed by SimZK).

Let p be the probability that in the real game AZK concludes the left session. We start consid-
ering the hybrid H1 in which in the left session PZK interacts with AZK and in the right session
VZK interacts with AZK. We refer to this hybrid experiment as H1(z). Details follow below.

H1(z).
Left session:

1. Second round, upon receiving (vk, π1
sLS, π

1
ext) from AZK.

1.1. Pick at random s0.
1.2. Run Senext on input 1λ, id, π1

ext and s0 thus obtaining the 2nd round π2
ext of Πext.

1.3. Run P on input 1λ, ` and π1
sLS thus obtaining the 2nd round π2

sLS of sLS.
1.4. Pick a message msg← {0, 1}λ.
1.5. Send (π2

ext, π
2
sLS, msg) to AZK.

2. Fourth round, upon receiving (π3
ext, π

3
sLS, σ, x, w) from AZK.

2.1. If Ver(vk, msg, σ) 6= 1 then abort, continue as follows otherwise.

2.2. Set s1 = s0 ⊕ w.

38

2.3. Run Senext on input (π1
ext, π

3
ext) thus obtaining the 4th round π4

ext of Πext and the
decommitment information decext.

2.4. Set xsLS = (π1
ext, π

2
ext, π

3
ext, π

4
ext, id, vk, x, s1) and wsLS = (s0, decext,⊥,⊥,⊥,⊥) with

|xsLS| = `. Run P on input xsLS, wsLS, π
1
sLS and π3

sLS thus obtaining the 4th round
π4

sLS of sLS.

2.5. Send (π4
ext, π

4
sLS, s1) to AZK.

Right session: act as a proxy between AZK and VZK.
We now prove that in the right session of H1(z) the MiM adversary AZK does not complete

successfully the right session committing to a message s′0 s.t. (x̃, s̃′0⊕ s̃1) /∈ RelL. More formally we
want to prove the following claim.

Claim 5. Let p̄ be the probability that in the right session of H1(z) AZK successfully commits to a
message s′0 s.t. (x̃, s̃′0 ⊕ s̃1) /∈ RelL, and the verifier outputs 1. Then p̄ < ν(λ) for some negligible
function ν.

The highl-level idea of the proof of this claim follows below. Suppose by contradiction that
the claim does not hold, then we can construct an adversary AΣ that breaks the security of the
signature scheme Σ. Let vk be the challenge verification key. The idea of the security proof is
to create an adversary AΣ that interacts against the MiM adversary AZK sending vk in the 1st
round of the right session and extracting the witness used by AZK to execute sLS. Because by
contradiction we are assuming that AZK does not commit to a witness then, with non-negligible
probability, the witness extracted by sLS will be a pair of signatures (σ1, σ2) for a pair of different
messages (msg1, msg2) s.t. Ver(vk, msg1, σ1) = 1 and Ver(vk, msg2, σ2) = 1. From the above informal
description one can notice that the formal proof strictly follows the one of Claim 1, and for this
reason we omit further details.

The 2nd hybrid that we consider isH2(z) and it differs fromH1(z) only in the way the transcript
of sLS is computed. In more details, by rewinding the adversary AZK from the 3rd to the 2nd round
it is possible to extract two signatures σ1, σ2 of two different messages (msg1, msg2) and use them
as a witness to execute the WIAoK sLS. As discussed earlier, after λ/p rewinds a second signature
is obtained with overwhelming probability. For the above reason we can claim that the probability
that in H2(z) the output of the experiment is abort is statistically close to the probability that
in H1(z) the output of the experiment is abort. The formal description of H2(z) is the following
experiment.

H2(z).
Left session:

1. Second round, upon receiving (vk, π1
sLS, π

1
ext) from AZK.

1.1. Pick at random s0.
1.2. Run Senext on input 1λ, id, π1

ext and s0 thus obtaining the 2nd round π2
ext of Πext.

1.3. Run P on input 1λ, ` and π1
sLS thus obtaining the 2nd round π2

sLS of sLS.
1.4. Pick a message msg1 ← {0, 1}λ.
1.5. Send (π2

ext, π
2
sLS, msg1) to AZK.

2. Fourth round, upon receiving (π3
ext, π

3
sLS, σ1, x, w) from AZK.

2.1. If Ver(vk, msg1, σ) 6= 1 then abort, continue as follows otherwise.
2.2. Repeat Step 1.4, 1.5 and follow-up right-session messages up to λ/p times in order to obtain a

signature σ2 of a random message msg2 6= msg1. Abort if case of failure in obtaining σ2.

39

2.3. Run Senext on input (π1
ext, π

3
ext) thus obtaining the 4th round π4

ext of Πext.

2.4. Set xsLS = (π1
ext, π

2
ext, π

3
ext, π

4
ext, id, vk, x, s1) and wsLS = (⊥,⊥, msg1, msg2, σ1, σ2) with

|xsLS| = `. Run P on input xsLS, wsLS, π
1
sLS and π3

sLS thus obtaining the 4th round
π4

sLS of sLS.
2.5. Set s1 = w ⊕ s0.
2.6. Send (π4

ext, π
4
sLS, s1) to AZK.

Right session: act as a proxy between AZK and VZK.
By the adaptive-input statistical WI of sLS the distribution of the message committed by AZK

does not change when moving from H1(z) to H2(z).
The next hybrid is H3(z). The only differences between this hybrid and the previous one is

that now s0 ⊕ s1 is a random string. Formally H3(z) is the following experiment.

H3(z).
Left session:

1. Second round, upon receiving (vk, π1
sLS, π

1
ext) from AZK.

1.1. Pick at random s0.
1.2. Run Senext on input 1λ, id and s0 thus obtaining the 2nd round π2

ext of Πext.
1.3. Run P on input 1λ, ` and π1

sLS thus obtaining the 2nd round π2
sLS of sLS.

1.4. Pick a message msg1 ← {0, 1}λ.
1.5. Send (π2

ext, π
2
sLS, msg1) to AZK.

2. Fourth round, upon receiving (π3
ext, π

3
sLS, σ1, x, w) from AZK.

2.1. If Ver(vk, msg1, σ1) 6= 1 then abort, continue as follows otherwise.
2.2. Repeat Step 1.4, 1.5 and follow-up right-session messages up to λ/p times in order

to obtain a signature σ2 of a random message msg2 6= msg1. Abort if case of failure
in obtaining σ2.

2.3. Run Senext on input (π1
ext, π

3
ext) thus obtaining the 4th round π4

ext of Πext.
2.4. Set xsLS = (π1

ext, π
2
ext, π

3
ext, π

4
ext, id, vk, x, s1) and wsLS = (⊥,⊥, msg1, msg2, σ1, σ2)

with |xsLS| = `. Run P on input xsLS, wsLS, π
1
sLS and π3

sLS thus obtaining the 4th
round π4

sLS of sLS.
2.5. Pick at random s1.
2.6. Send (π4

ext, π
4
sLS, s1) to AZK.

Right session: act as a proxy between AZK and VZK.

Claim 6. The distribution of the message committed by AZK does not change between H2(z) and
H3(z).

Proof. Suppose by contradiction that the claim does not hold. Then AZK in right session commits
to a witness with non-negligible probability only when PZK commits to a witness in the left session
too. Based on this observation we can construct a distinguisher Dext and an adversary Aext that
break the non-malleability of Πext. Let Cext be the challenger of the NM commitment scheme and
let (m0,m1) be the two random challenge messages.

Loosely speaking Aext acts as PZK with AZK in the left session and as VZK in the right session
with the following differences: 1) Aext plays as proxy between Cext and AZK w.r.t. messages of Πext

in the main thread; 2) a second signature is extracted from the left session through rewinds; 3)

40

random strings are played to simulate the receiver of Πext during rewinds. 4) Aext in the last round
of the left session sends s1 s.t. s1 = m0 ⊕ w.

Then Dext, on input the message m̃ committed by Aext and his randomness, reconstructs the
view of AZK and recovers the adaptively chosen statement x̃ proved by AZK and the messages s̃1

sent by AZK in the last round. If s̃1 ⊕ m̃ is s.t. (x̃, s̃1 ⊕ m̃) ∈ RelL then Dext outputs 0, and a
random bit otherwise. Since by contradiction AZK commits to the witness for x̃ with overwhelming
probability only when PZK commits to a witness for x, then Dext can tell apart which message has
ben committed by the MiM adversary Aext. We notice that the reduction queries to query only
once the receiver of Πext involved in the reduction. Formally the adversary Aext acts as follows.

Aext(m0,m1, z).
Set round2 =⊥, round3 =⊥ .
Left session:

1. Upon receiving (vk, π1
sLS, π

1
ext) from AZK forward π1

ext to Cext.

2. Upon receiving π2
ext from Cext.

2.1. Run P on input 1λ, ` and π1
sLS thus obtaining the 2nd round π2

sLS of sLS.
2.2. Pick a message msg1 ← {0, 1}λ.
2.3. Send (π2

ext, π
2
sLS, msg1) to AZK.

3. Upon receiving (π3
ext, π

3
sLS, σ1, x, w) from AZK.

3.1. If Ver(vk, msg1, σ) 6= 1 then abort, continue with the following steps otherwise.
3.2. Repeat Step 2.2, 2.3 and follow-up right-session messages up to λ/p times in order

to obtain a signature σ2 of a random message msg2 6= msg1. Abort in case of failure
in obtaining σ2.

3.3. Set xsLS = (π1
ext, π

2
ext, π

3
ext, π

4
ext, id, vk, x, s1) and wsLS = (⊥,⊥, msg1, msg2, σ1, σ2)

with |xsLS| = `. Run P on input xsLS, wsLS, π
3
sLS and π3

sLS thus obtaining the 4th
round π4

sLS of sLS.
3.4. Set s1 = m0 ⊕ w.
3.5. Send (π4

ext, π
4
sLS, s1) to AZK.

Right session:

1. Upon receiving π̃1
ext from from Recext.

1.1. Run (s̃k, ṽk)← Gen(1λ).

1.2. Run V on input 1λ thus obtaining the 1st round π̃1
sLS of sLS.

1.3. Send (ṽk, π̃1
sLS, π̃

1
ext) to AZK.

2. Upon receiving (π̃2
ext, π̃

2
sLS, ˜msg) from AZK.

2.1. If there is no rewind phase on the left-session then send π̃2
ext to Recext and execute

the following steps. execute the following steps.

i. Upon receiving π̃3
ext from Recwsyn.

ii. Run V on input π̃2
sLS thus obtaining the 3rd round π̃3

sLS of sLS.

iii. Run Sign(s̃k, ˜msg1) to obtain a signature σ̃1 of the message ˜msg1.

iv. Send (π̃3
ext, π̃

3
sLS, σ̃1).

2.2. Else if there is a rewind phase in the left-session then execute the following steps.

i. Run V on input π̃2
sLS thus obtaining the 3rd round π̃3

sLS of sLS.

41

ii. Run Sign(s̃k, ˜msg1) to obtain a signature σ̃1 of the message ˜msg1.

iii. Compute a random π̃3
ext.

iv. Send (π̃3
ext, π̃

3
sLS, σ̃1) to AZK.

3. Upon receiving (π̃4
ext, π̃

4
sLS, s̃1, x̃) from AZK.

3.1. Set x̃sLS = (π̃1
ext, π̃

2
ext, π̃

3
ext, π̃

4
ext, ĩd, ṽk, x̃, s̃1) and abort iff (π̃1

sLS, π̃
2
sLS, π̃

3
sLS, π̃

4
sLS) is not

accepting for V with respect to x̃.

3.2. Send π̃4
ext to Recext.

Let mimAext(z) be the view and the committed message in the right session by Aext. The
distinguisher Dext takes as input mimAext(z) and acts as follows.

Dext(mimAext(z)) : Let m̃ be the committed message sent in the right session by Aext to VZK.
Reconstruct the view of AZK (using randomness in mimAext(z)) and recover the adaptively chosen
statement x̃ proved by AZK and the messages s̃1 sent by AZK in the last round. Since by contra-
diction AZK contradicts the claim, we have that Aext breaks the non-malleability of Πext because
(x̃, s̃1 ⊕ m̃) ∈ RelL with non-negligible probability in H2(z) where m0 = m̃ is committed in com,
while the same happens with negligible probability only in H3(z) where m1 is a random string.
Therefore if (x̃, s̃1 ⊕ m̃) ∈ RelL then Aext outputs 0 otherwise Aext outputs a random bit.

The proof is concluded by observing that if Cext commits to m0 then the above execution of
Aext corresponds to H2(z), otherwise it corresponds to H3(z).

We now describe how SimZK of Figure 8 works. Let ExtCom be the extractor of Πext. SimZK runs
ExtCom in order to get the witness w̃ s.t. (x̃, w̃) ∈ RelL, where x̃ is the adaptively chosen theorem
proved by AZK. Before formally describing SimZK we need to construct an augmented machine
Mext that is a malicious sender that will be black-box accessed by ExtCom.
Mext(1

λ, z).

Run AZK with randomness ϕ.

Left session: Interact with AZK as in H3(z).

Right session:

1. Upon receiving π̃1
ext from from Recext.

1.1. Run (s̃k, ṽk)← Gen(1λ).

1.2. Run V on input 1λ thus obtaining the 1st round π̃1
sLS of sLS.

1.3. Send (ṽk, π̃1
sLS, π̃

1
ext) to AZK.

2. Upon receiving (π̃2
ext, π̃

2
sLS, ˜msg) from AZK.

2.1. If there is no rewind phase on the left-session then send π̃2
ext to Recext and execute

the following steps. execute the following steps.

i. Upon receiving π̃3
ext from Recwsyn.

ii. Run V on input π̃2
sLS thus obtaining the 3rd round π̃3

sLS of sLS.

iii. Run Sign(s̃k, ˜msg1) to obtain a signature σ̃1 of the message ˜msg1.

iv. Send (π̃3
ext, π̃

3
sLS, σ̃1).

2.2. Else if there is a rewind phase in the left-session then execute the following steps.

i. Run V on input π̃2
sLS thus obtaining the 3rd round π̃3

sLS of sLS.

42

Input: Security parameters: λ, auxiliary input: z.

1. Run ExtCom using Mext(1
λ, z) as a sender, and let (w̃,Viewext) be the output of ExtCom where w̃

denote the extracted value and Viewext is the view of Mext(1
λ, z) that contains the transcript τ =

(π̃1
ext, π̃

2
ext, π̃

3
ext, π̃

4
ext) (see App. A.1).

2. Use the same randomness ϕ used by Mext(1
λ, z) and AZK, and reconstruct the view View of AZK by

executing the following steps.

2.1. Run AZK.
2.2. Interact in the left session with AZK as in H3(z).

2.3. Run (s̃k, ṽk)← Gen(1λ).

2.4. Run V on input 1λ thus obtaining the 1st round π̃1
sLS of sLS.

2.5. Send (ṽk, π̃1
sLS, π̃

1
ext) to AZK.

2.6. Upon receiving (π̃2
ext, π̃

2
sLS, ˜msg) from AZK.

i. If there is no rewind phase in the left session then execute the following steps.

A. Run V on input π̃2
sLS thus obtaining the 3rd round π̃3

sLS of sLS.

B. Run Sign(s̃k, ˜msg1) to obtain a signature σ̃1 of the message ˜msg1.

C. Send (π̃3
ext, π̃

3
sLS, σ̃1) to AZK.

ii. Else if there is a rewind phase in the left-session then execute the following steps.

A. Run V on input π̃2
sLS thus obtaining the 3rd round π̃3

sLS of sLS.

B. Run Sign(s̃k, ˜msg1) to obtain a signature σ̃1 of the message ˜msg1.

C. Compute a random third round π̃?ext of Πext.

D. Send (π̃?ext, π̃
3
sLS, σ̃1) to AZK.

2.7. Upon receiving (π̃4
ext, π̃

4
sLS, s̃1, x̃) from AZK, set x̃sLS = (π̃1

ext, π̃
2
ext, π̃

3
ext, π̃

4
ext, ĩd, ṽk, x̃, s̃1) and abort

iff (π̃1
sLS, π̃

2
sLS, π̃

3
sLS, π̃

4
sLS) is not accepting for V with respect to x̃.

3. Let T be the transcript of the main thread in the above execution. Output (View = (ϕ, T), w̃).

Figure 8: The simulator SimZK.

ii. Run Sign(s̃k, ˜msg1) to obtain a signature σ̃1 of the message ˜msg1.

iii. Compute a random π̃3
ext.

iv. Send (π̃3
ext, π̃

3
sLS, σ̃1) to AZK.

3. Upon receiving (π̃4
ext, π̃

4
sLS, s̃1, x̃) from AZK.

3.1. Set x̃sLS = (π̃1
ext, π̃

2
ext, π̃

3
ext, π̃

4
ext, ĩd, ṽk, x̃, s̃1) and abort iff (π̃1

sLS, π̃
2
sLS, π̃

3
sLS, π̃

4
sLS) is not

accepting for V with respect to x̃.

3.2. Send π̃4
ext to Recext.

Similarly to the black-box simulator of [GK96] we assume w.l.o.g. that if a transcript τ appears
in the final output of a black-box extractor ExtCom, then ExtCom has queried the sender of the
extractable commitment Πext on every prefix of τ . SimZK, in order to reconstruct the full transcript
T of the entire execution, interacts in the right session with AZK by playing messages of τ . See
Figure 8 for more details.

43

Common input: security parameters: λ, (λwsyn, λLS, `) = Params(λ).
Identity: id ∈ {0, 1}λ.
Internal simulation of the left session:

1. Run Senwsyn on input 1λwsyn , id and 0λ thus obtaining the first round awsyn of Πwsyn.

2. Run P on input 1λLS and ` thus obtaining the first round aLS of LS.

3. Send (awsyn, aLS) to ANMCom.

4. Upon receiving (cwsyn, cLS, Y) from ANMCom.

4.1. Run Senwsyn on input cwsyn thus obtaining the third round zwsyn of Πwsyn.

4.2. Run Senwsyn thus obtaining the decommitment information decwsyn of Πwsyn.

4.3. Set x =
(
awsyn, cwsyn, zwsyn, Y, id) and w = (m, decwsyn,⊥) with |x| = `. Run P on input x, w,

and cLS thus obtaining the third round zLS of LS.

4.4. Send (zwsyn, zLS) to ANMCom.

Stand-alone commitment:

1. SimNMCom acts as a proxy between ANMCom and NMRec.

Figure 9: The simulator SimNMCom.

B.3 Proof of NM of the 3-Round NM Commitment Scheme

We now formally prove that the commitment scheme ΠNMCom is non-malleable. This security proof
consists of two parts. In the first part we consider a MiM adversary ANMCom that interacts only
in a synchronized way with NMSen and NMRec showing that our scheme is synchronous one-one
non-malleable. In the second part we argue that the commitment scheme is non-malleable also
when A acts in a non-synchronized way. Putting together these two arguments we are able to
conclude the proof on non-malleability.

Lemma 8. ΠNMCom is a synchronous one-one NM commitment scheme.

Proof. We show that for all m ∈ {0, 1}poly(λ) it holds that:

{mimANMCom,m
ΠNMCom

(z)}z∈{0,1}? ≈ {simSimNMCom
ΠNMCom

(1λ, z)}z∈{0,1}?

where SimNMCom is the simulator depicted in Fig. 9.
In the first experiment, in the left session NMSen commits to m playing with ANMCom, while in

the right session ANMCom commits on the right by playing with NMRec. We refer to this experiment
as Hm1 (z). Details follow below.

Hm
1 (z).
Left session:

1. First round.

1.1. Run Senwsyn on input 1λwsyn , id and m thus obtaining the first round awsyn of Πwsyn.
1.2. Run P on input 1λLS and ` thus obtaining the first round aLS of LS.
1.3. Send (awsyn, aLS) to ANMCom.

2. Third round, upon receiving (cwsyn, cLS, Y) from ANMCom, run as follows.

44

2.1. Run Senwsyn on input cwsyn thus obtaining the third round zwsyn of Πwsyn and the
decommitment information decwsyn.

2.2. Set x = (awsyn, cwsyn, zwsyn, Y, id) and w = (m, decwsyn,⊥) with |x| = `. Run P on
input x, w and cLS thus obtaining the third round zLS of LS.

2.3. Send (zwsyn, zLS) to ANMCom.

Right session: act as a proxy between ANMCom and NMRec.
The distribution of mimANMCom

Hm1
(z) clearly corresponds to the distribution of mimANMCom,m

ΠNMCom
(z). We

now prove that in the right session ANMCom does not commit to a message m̃ =⊥. We can do so
by proving that the LS proof of the right session is computed by ANMCom without using as witness
a value ỹ s.t. f(ỹ) = Ỹ , where Ỹ is the value sent to ANMCom in the second round of the right
session. Formally we want have the following claim.

Claim 7. Let p̄ be the probability that in the right session ANMCom successfully commits to m̃ =⊥.
Then p̄ < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that the claim does not hold, then we can construct an adversary
Af that inverts the OWP f in polynomial time. Formally we consider a challenger Cf of f that
chooses a random Y ∈ {0, 1}λ and sends it to Af . Af wins if it gives as output y s.t. Y = f(y).
Before describing the adversary we need to consider the augmented machineMf that will be used
by Af to extract the witness from LS by using the extractor E (that exists from the property of
adaptive-input PoK enjoyed by LS). Recall that in the case of an adaptive-input PoK, the extractor
takes as input the randomnesses r of the prover and r′ of the verifier of an execution of LS when
theorem x has been proved by P?. Now we are ready to describe how Mf works. Mf internally
runs ANMCom with randomness r and interacts with him as the sender NMSen does in the left
session and as the receiver NMRec does in the right session. The only difference is that all messages
of LS of the right session are forwarded to the verifier V and vice versa. Formally Mf acts as
follows.

Mf (z, Y, r).
Execute the following steps with randomness r

- Run NMSen on input m with ANMCom as in Hm1 (z).

- Upon receiving (ãwsyn, ãLS) from ANMCom, send ãLS to V.

- Upon receiving c̃LS from V, run as follows.

1. Run Recwsyn on input ĩd and ãwsyn thus obtaining the second round c̃wsyn of Πwsyn.

2. Set Ỹ = Y .

3. Send (c̃wsyn, c̃LS, Ỹ) to ANMCom.

- Upon receiving the 3rd round of the right session (z̃wsyn, z̃LS) set
x̃ = (ãwsyn, c̃wsyn, z̃wsyn, Ỹ , ĩd) and send (z̃LS, x̃) to V.

Now we can conclude the proof of this claim by describing how Af works. Af runs E on input
the randomness r′ (used by the verifier in an execution where x has been proved) and uses Mf as
prover with randomness r (recall that an extractor of LS plays only having access to a prover of LS).
Notice that the above execution of Mf is distributed identically to Hm1 (z). Since by contradiction

45

ANMCom is successful with non-negligible probability, we have that with non-negligible probability
Af in polynomial time19 outputs the value y such that f(y) = Y .

The next hybrid experiment that we consider is H0
1(z) that is equal to Hm1 (z) with the only

difference that the message committed using Πwsyn is 0λ instead of m. Similarly to Hm1 (z), we have
for H0

1(z) the following claim.

Claim 8. The probability that in the right session ANMCom successfully commits to a message m̃ =⊥
is p < ν(λ) for some negligible function ν.

Proof. The security proof strictly follows the one of Claim 7.

The next hybrid that we consider is Hm2 (z). Hm2 (z) differs from Hm1 (z) only in the witness used
to compute the LS transcript. Formally Hm2 (z) is the following experiment.

Hm
2 (z).
Left session:

1. First round

1.1. Run Senwsyn on input 1λwsyn , id and m thus obtaining the first round awsyn of Πwsyn.
1.2. Run P on input 1λLS and ` thus obtaining the first round aLS of LS.
1.3. Send (awsyn, aLS) to ANMCom.

2. Third round, upon receiving (cwsyn, cLS, Y) from ANMCom, run as follows.

2.1. Run in time T̃f to compute y s.t. Y = f(y).
2.2. Run Senwsyn on input cwsyn thus obtaining the third round zwsyn of Πwsyn.
2.3. Set x = (awsyn, cwsyn, zwsyn, Y, id) and w = (⊥,⊥, y) with |x| = `. Run P on input x,

w and cLS thus obtaining the third round zLS of LS.
2.4. Send (zwsyn, zLS) to ANMCom.

Right session: act as a proxy between ANMCom and NMRec.

Claim 9. For all m ∈ {0, 1}poly(λ) it holds that mimANMCom
Hm1

(z) ≈ mimANMCom
Hm2

(z).

Proof. Suppose by contradiction that there exist adversary ANMCom and a distinguisher DNMCom

that can tell apart such two distributions. We can use this adversary and the associated distin-
guisher to construct ad adversary ALS for the TLS-witness-indistinguishable of LS. Let CLS be the
adaptive-input WI challenger. In the left session ALS acts as NMSen with ANMCom except for the
messages of LS for which he acts as a proxy between CLS and ANMCom. In the right session he
acts as NMRec with ANMCom. After the execution of the right session, ALS runs in time T̃wsyn to
obtain the message m̃ committed by ANMCom in the right session using Πwsyn. Finally ALS gives m̃
and the output view of ANMCom as input to the distinguisher DNMCom and outputs what DNMCom

outputs. Since by contradiction DNMCom distinguishes mimANMCom
Hm1

(z) from mimANMCom
Hm2

(z) we have

19The extractor is an expected polynomial-time algorithm while Af must be a strict polynomial-time algorithm.
Therefore Af will run the extractor up to a given upperbounded number of steps that is higher than the expected
running time of the extractor. Obviously with non-negligible probability the truncated extraction procedure will be
completed successfully and this is sufficient for Af to invert f . The same standard argument about truncating the
execution of an expected polynomial-time algorithm is used in another proofs but for simplicity we will not repeat
this discussion.

46

that ALS can tell apart with non-negligible advantage which witness has been used to compute the
transcript of LS. Formally the adversary ALS works as follows.

ALS(z).
- Act as a honest receiver NMRec with ANMCom, when ANMCom plays as as a sender.
- Upon receiving aLS from CLS, run as follows.

1. Run Senwsyn on input 1λwsyn id and m thus obtaining the first round awsyn of Πwsyn.

2. Send (awsyn, aLS) to ANMCom.

- Upon receiving (cwsyn, cLS, Y) from ANMCom, run as follows.

1. Run in time T̃f to compute y s.t. Y = f(y).

2. Run Senwsyn on input cwsyn thus obtaining the third round zwsyn of Πwsyn and the de-
commitment information decwsyn.

3. Set x = (awsyn, cwsyn, zwsyn, Y, id), w0 = (m, decwsyn,⊥), w1 = (⊥,⊥, y) and send (x, cLS, w0, w1)
to CLS.

4. Upon receiving zLS from CLS, send (zwsyn, zLS) to ANMCom.

After the execution with ANMCom, ALS computes the following steps:

1. Let (ãwsyn, c̃wsyn, z̃wsyn, ĩd) be the commitment received by NMRec when playing as in Πwsyn.
Run in time T̃wsyn to compute m̃ : ∃ ˜decwsyn s.t. Recwsyn on input (m̃, ˜decwsyn) accepts m̃ as
a decomitment of (ãwsyn, c̃wsyn, z̃wsyn, ĩd).

2. Give m̃ and the view of ANMCom to the distinguisher DNMCom.

3. Output what DNMCom outputs.

The proof ends with the observation that if CLS has used w0 as a witness then ANMCom acts as
in Hm1 , otherwise he acts as in Hm2 .

The next hybrid is H0
2(z). The only differences between this hybrid and Hm2 (z) is that Senwsyn

commits, using Πwsyn, to a message 0λ instead of m. Formally H0
2(z) is the following.

H0
2(z).
Left session:

1. First round.

1.1. Run Senwsyn on input 1λwsyn id, and 0λ thus obtaining the first round awsyn of Πwsyn.

1.2. Run P on input 1λLS and ` thus obtaining the first round aLS of LS.
1.3. Send (awsyn, aLS) to ANMCom.

2. Third round, upon receiving (cwsyn, cLS, Y) from ANMCom, run as follows.

2.1. Run in time T̃f to compute y s.t. Y = f(y).
2.2. Run Senwsyn on input cwsyn thus obtaining the third round zwsyn of Πwsyn.

2.3. Set x = (awsyn, cwsyn, zwsyn, Y, id) and w = (⊥,⊥, y) with |x| = `. Run P on input x,
w and cLS thus obtaining the third round zLS of LS.

2.4. Send (zwsyn, zLS) to ANMCom.

Right session: act as a proxy between ANMCom and NMRec.

47

Claim 10. For all m ∈ {0, 1}poly(λ) it holds that mimANMCom

H0
2

(z) ≈ mimANMCom

H0
1

(z).

Proof. The security proof follows the same idea of the proof of Claim 9.

Until now we have proved that mimANMCom
Hm1

(z) ≈ mimANMCom
Hm2

(z) and mimANMCom

H0
2

(z) ≈ mimANMCom

H0
1

(z)

and that both in Hm1 (z) and H0
1(z) the adversary ANMCom commits to m̃ =⊥ only with negligible

probability. This implies that also in Hm2 (z) and H0
2(z) ANMCom commits to m̃ =⊥ only with negli-

gible probability. For this reason now we can prove the indistinguishability between mimANMCom
Hm2

(z)

and mimANMCom

H0
2

(z) by relying only on the synchronous weak one-one non-malleability of Πwsyn.

Formally we prove the following claim.

Claim 11. For all m ∈ {0, 1}poly(λ) it holds that mimANMCom
Hm2

(z) ≈ mimANMCom

H0
2

(z).

Proof. Suppose by contradiction that there exists an adversaryANMCom and a distinguisher DNMCom

that can tell apart such two distributions. We can construct a distinguisher Dwsyn and an adversary
Awsyn that break the synchronous weak one-one non-malleability of Πwsyn. It is important to observe
that we can reduce the security of our scheme to the security of a synchronous weak one-one NM
commitment because the previous claims ensure that the message that ANMCom commits in the
right session (using Πwsyn) is valid with overwhelming probability. Let Cwsyn be the challenger of
the synchronous weak one-one NM commitment and let (0λ,m) be the two challenge messages
given by Cwsyn.

Loosely speaking in the left session Awsyn acts as NMSen with ANMCom with the difference that
w.r.t. to the messages of Πwsyn he acts as a proxy between Cwsyn and ANMCom. In the right session
he acts as NMRec with ANMCom and, as in the left session, acts as a proxy w.r.t. the messages
of Πwsyn exchanged between Recwsyn and Awsyn. Then Awsyn runs Dwsyn on input the message m̃
committed by Awsyn and his randomness. Dwsyn reconstructs the view of ANMCom (by using the same
randomness) and uses it and the message m̃ as inputs of DNMCom giving in output what DNMCom

outputs. Since by contradiction DNMCom distinguishes between mimANM4Com
Hm2

(z) and mimANM4Com

H0
2

(z),

we have that Dwsyn tells apart which message has ben committed by the MiM adversary Awsyn.
The adversary Awsyn acts as follows (we recall that this reduction is possible only because the

message scheduling that we are considering is synchronous).

Awsyn(0
λ,m, z).

Left session:

1. Upon receiving awsyn from Cwsyn, run as follows.

1.1. Run P on input 1λLS and ` thus obtaining the first round aLS of LS.

1.2. Send (awsyn, aLS) to ANMCom.

2. Upon receiving (cwsyn, cLS, Y) from ANMCom, run as follows.

2.1. Run in time T̃f to compute y s.t. Y = f(y).

2.2. Set x = (awsyn, cwsyn, zwsyn, Y, id), w = (⊥,⊥, y). Run P on input x, w and cLS thus
obtaining the third round zLS of LS.

3. Upon receiving zwsyn from Cwsyn, send (zwsyn, zLS) to ANMCom.

Right session:

1. Forward ãwsyn to Recwsyn.

48

2. Upon receiving c̃wsyn from Recwsyn, run as follows.

2.1. Pick a random Ỹ .

2.2. Run V on input ãLS thus obtaining the second round c̃LS of ΠLS.

2.3. Send (c̃wsyn, c̃LS, Y) to ANMCom.

3. Upon receiving z̃wsyn, z̃LS from ANMCom, run as follows:

3.1. Set x̃ = (ãwsyn, c̃wsyn, z̃wsyn, Ỹ , ĩd) and abort iff (ãLS, c̃LS, z̃LS) is not accepted by V
for x̃ ∈ L.

3.2. Send z̃wsyn to Recwsyn.

Let mimAwsyn(z) be the view and the committed message in the right session by Awsyn. The
distinguisher Dwsyn takes as input mimAwsyn(z) and acts as follows.

Dwsyn(mimAwsyn(z)) : Let m̃ be the committed message sent in the right session by Awsyn to
Recwsyn. Reconstruct the view of ANMCom (using the randomness given in mimAwsyn(z)) and give
it and m̃ to the distinguisher DNMCom. Output what DNMCom outputs. We observe that the
reduction could fail if ANMCom commit to ⊥ when Cwsyn commits to 0λ (by definition Πwsyn is not
secure against MiM adversary that can commit to ⊥ when the commitment on the left is honestly
generated). Actually the probability that ANMCom commits to ⊥ is negligible. This is because
mimANMCom

H0
2

(z) ≈ mimANMCom

H0
1

(z) and because of Claim 8. The proof ends with the observation that

if Cwsyn commits to m, ANMCom acts as in Hm2 , otherwise he acts as in H0
2.

Now we can conclude the security proof of Lemma 8 by observing that for all m ∈ {0, 1}poly(λ)

the following holds:

mimANMCom,m
ΠNMCom

(z) = mimANMCom
Hm1

(z) ≈ mimANMCom
Hm2

(z) ≈

mimANMCom

H0
2

(z) ≈ mimANMCom

H0
1

(z) = simSimNMCom
ΠNMCom

(1λ, z).

We conclude the proof of Theorem 4 by proving the following lemma.

Lemma 9. ΠNMCom is a one-one NM commitment scheme.

Proof. The proofs starts with the observation that the only non-trivial adversary using a non-
synchronizing scheduling20 is the sequential scheduling where ANMCom lets the left interaction
complete before beginning the right. Considering this scheduling we now prove again that for
all m ∈ {0, 1}poly(λ) it holds that

{mimANMCom,m
ΠNMCom

(z)}z∈{0,1}? ≈ {simSimNMCom
ΠNMCom

(1λ, z)}z∈{0,1}? .

We prove the indistinguishability through a sequence of two hybrid experiments. The first
hybrid experiment that we consider is Hm1 (z), that corresponds to the Hm1 (z) showed in the proof
of Lemma 8 with the only difference that ANMCom acts in a non-synchronized way. Therefore
Claim 7 holds also in this case.

The second hybrid that we consider is H0
1(z). The only differences between this hybrid and the

previous one is that NMSen commits to the message 0λ instead of m. We observe that Claim 8
holds also in this case.

20As discussed earlier, an adverary using a trivial non-syncrhonizing scheduling can be simulated by an adversary
using a syncrhonizing scheduling. Therefore the security proof for the synchronizing case applies.

49

Claim 12. For all m ∈ {0, 1}poly(λ) it holds that {mimANMCom
Hm1

(z)}z∈{0,1}? ≈ {mimANMCom

H0
1

(z)}z∈{0,1}?.

Proof. Suppose by contradiction that there exist an adversary ANMCom and a distinguisher DNMCom

that can tell apart such two distributions. We can construct an adversary AHiding that breaks the
hiding of ΠNMCom (recall the hiding property of ΠNMCom comes from Lemma 5). Let CHiding be the
challenger of the hiding game and let (m, 0λ) be two challenge messages of the hiding game sent by
AHiding. The high-level idea of this proof is that AHiding can break the hiding of ΠNMCom using the
witness extracted from the LS transcript computed by ANMCom in the right session. In more details
if the witness extract from the LS transcript corresponds to the message committed by ANMCom

then AHiding can win the hiding game by running DNMCom. We observe that Claim 7 and Claim 8
ensure that with non-negligible probability the witness extracted from LS in Hm1 and also in H0

1 is
the committed message m̃.

Before describing the adversary we need to consider the augmented machineMHiding that will be
used by AHiding to extract the witness from LS by using the extractor (that exists from the property
of adaptive-input PoK enjoyed by LS). Recall that the extractor takes as input a randomness r
for the prover and a randomness r′ of Vr′ in an execution of LS where x has been proved by P?r .
Therefore AHiding runs ANMCom and interacts in the left session acting as a proxy between CHiding

and ANMCom in order to obtain the transcript τNMCom = (aNMCom, cNMCom, zNMCom) of ΠNMCom. In
the right session AHiding acts as NMRec with ANMCom.

Then AHiding usesMHiding to extract the witness of the LS transcript. The augmented machine
MHiding runs ANMCom acting in the left session with ANMCom as the sender NMSen using the mes-
sages aNMCom, zNMCom of τNMCom. In the right sessionMHiding interacts with ANMCom as the receiver
NMRec with the only difference that all the messages of LS received by ANMCom are forwarded to
the verifier V and vice versa. Now we describe the augmented machine MHiding.

MHiding(τNMCom, r, z).
Let r be the randomness used for all next steps.

- Send aNMCom to ANMCom.

- Upon receiving cNMCom from ANMCom, send zNMCom to ANMCom.

- Upon receiving (ãwsyn, ãLS) from ANMCom, send ãLS to V.

- Upon receiving c̃LS from V, run as follows.

1. Run Recwsyn on input ĩd and ãwsyn thus obtaining the second round c̃wsyn of Πwsyn.

2. Pick a random Ỹ .

3. Send (c̃wsyn, c̃LS, Ỹ) to ANMCom.

- Upon receiving (z̃wsyn, z̃LS), set x̃ = (ãwsyn, c̃wsyn, z̃wsyn, Ỹ , ĩd) and send (z̃LS, x̃) to V.

Now we can conclude the proof of this claim by describing how AHiding works. AHiding runs the
extractor of LS (on input the randomnesses r and r′) with oracle access to MHiding (recall that an
extractor of LS plays having oracle access to an adversarial prover of LS). We know from Claim 7
and from Claim 8 that with overwhelming probability the witness extracted from LS in Hm1 and
in H0

1 is the committed message m̃. Therefore, AHiding runs the distinguisher DNMCom on input m̃
and the view of ANMCom, and outputs what DNMCom outputs. The proof ends with the observation
that if CHiding commits to m ANMCom acts as in Hm1 (z), otherwise he acts as in H0

1(z).

50

Now, observe that the distribution of mimANMCom
Hm1

(z) corresponds to the distribution of mimANMCom,m
ΠNMCom

(z)

and that the distribution of mimANMCom

H0
1

(z) corresponds to the distribution of simSimNMCom
ΠNMCom

(1λ, z). With

this observation we have proved that for all m ∈ {0, 1}poly(λ) the following relation holds:

mimANMCom,m
ΠNMCom

(z) = mimANMCom
Hm1

(z) ≈ mimANMCom

H0
1

(z) = simSimNMCom
ΠNMCom

(1λ, z).

The proof of Theorem 4 follows from Lemma 5, Lemma 8 and Lemma 9.

51

	Introduction
	Our Results
	Technical Overview

	Notation and Non-Malleability Definitions
	Non-Malleable Commitments and Zero Knowledge

	4-Round NM Commitment Scheme from CRHFs
	4-Round NMZK from CRHFs
	3-Round NM Commitments from Strong OWPs
	Acknowledgments
	Standard Definitions and Tools
	Commitment Schemes

	Formal Proofs
	Proof of Non-Malleability of the 4-Round NM Commitment Scheme
	Last Part of the Proof of 4-Round NMZK
	Proof of NM of the 3-Round NM Commitment Scheme

