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Extraction of a target sound source amidst multiple interfering sound sources is difficult when there
are fewer sensors than sources, as is the case for human listeners in the classic cocktail-party
situation. This study compares the signal extraction performance of five algorithms using recordings
of speech sources made with three different two-microphone arrays in three rooms of varying
reverberation time. Test signals, consisting of two to five speech sources, were constructed for each
room and array. The signals were processed with each algorithm, and the signal extraction
performance was quantified by calculating the signal-to-noise ratio of the output. A
frequency-domain minimum-variance distortionless-response beamformer outperformed the
time-domain based Frost beamformer and generalized sidelobe canceler for all tests with two or
more interfering sound sources, and performed comparably or better than the time-domain
algorithms for tests with one interfering sound source. The frequency-domain minimum-variance
algorithm offered performance comparable to that of the Peissig—Kollmeier binaural
frequency-domain algorithm, but with much less distortion of the target signal. Comparisons were
also made to a simple beamformer. In addition, computer simulations illustrate that, when
processing speech signals, the chosen implementation of the frequency-domain minimum-variance
technique adapts more quickly and accurately than time-domain technique200©&Acoustical
Society of America.[DOI: 10.1121/1.1624064

PACS numbers: 43.72.Ew, 43.66.Pn, 43.6608S] Pages: 379-391

I. INTRODUCTION erally work well for suppressing statistically stationary inter-
ference sources that are uncorrelated with the target source,
A major problem for hearing aids, speech recognition,our experience has shown that they tend to adapt slowly or
hands-free telephony, teleconferencing, and other acoustigaccurately in the presence of multiple, nonstationary inter-
processing applications is extracting, with good fidelity, aference sources such as speech, especially when there are
target sound in the presence of multiple competing soundsnore sources than sensors. As a result, the performance of
This is particularly true of speech sounds, which are highlythe algorithms is compromised.
nonstationary in spectrum and intensity, and which may  Greenberg and Zurgl 992] suggested that a solution to
change position with respect to the listener over time. Thusihe problem of having more speech sources than sensors was
the cancellation of multiple, nonstationary, interfering speecho add more microphones. This solution is effective if all
sources requires fast, accurate tracking of the sources amflicrophones are located far enough away from each other
robustness to reverberation and correlation between sourcefat they provide added useful inputs. However, accomplish-
Many interference suppression techniques have been e this in a hearing-aid system is difficult because locating
plored to address this problem. The most common approachicrophones away from the ears is undesirable. Some cur-
is the use of an adaptive beamformer to proceSS the Sampl%nt behind_the_ea(‘BTE) hearing aids contain two micro-
time-domain outputs of a multimicrophone array, such thaphones per instrument; however, the small separation of the
reception of the target sound from a particular direction ismjicrophones limits the effectiveness of such systems. Like-
enhancedsee the reviews by Van Veen and Buckley, 1988.yise, it is impractical to use more than one microphone per
Brandstein and Ward, 20Q1These techniques use signals jhstrument in systems that are located in the ear canal. Thus,
from the array to estimate the gradient of an error functiong preferable system would use two sens@rse per instru-
and then iteratively move the filter coefficients closer to anment, located at each ear or in the ear canaisoviding
optimal solution in small steps. Two algorithms that havegreater spatial separation of the microphones.
been used extensively to address this problem are the ggyeral previous studies of adaptive beamformers
iterative-adaptive techniques of Frdst972 and Griffiths [Greenberg and Zurek, 1992; Kompis and Dillier, 1994:
and Jim[1982. Other variations of adaptive algorithms in- yotfman et al. 1994; Kates and Weiss, 19pBave avoided
clude those of Berghe and Woutdts998 and Welker and  he problem of slow algorithm adaptation by allowing the
Greenberd 1997]. Although these adaptive algorithms gen- 5qapyive filters sufficient timéat leas 2 s for these studies
to converge before processing test signals. To provide more
dElectronic mail: melockwo@uiuc.edu challenging test conditions, Greenbesgal. [2003] used a
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“roving” interfering sound source that changed location at We hypothesized that a frequency-domain MVDR
random times. However, this roving source was not used iiFMV) algorithm, specifically implemented for fast adapta-
all test conditions, and the algorithms in that study weretion, might be effective for suppressing multiple interfering
permitted to converge fol s before the onset of the target speech sources using only two sensors. We have imple-
signal. We argue that a beamforming algorithm used in a reahented such an algorithm and evaluated its performance
hearing-aid instrument cannot be preadapted in an acoustvith computer simulationdLockwood, 1999; Lockwood
cally crowded environment due to the changing head posiet al, 1999. Initial tests showed that, compared to time-
tion of the listener and the movement of the interfering talk-domain adaptive algorithms, the computational cost of the
ers, and it may be unable to adapt quickly enough to perfornrMV algorithm is similar, but it converges much more
effective interference suppression. Thus, the adaptation raguickly. For simulated signals with up to four interfering
of a hearing-aid signal-processing algorithm is an importansources, the FMV algorithm outperformed the algorithms of
consideration. Frost[1972 and Griffiths and Jinj1982] in terms of SNR

To improve the adaptation rate of time-domain algo-gain[Yanget al, 2000.
rithms, an alternate approach to an iterative-adaptive tech- The focus of the current study is threefold. The first goal
nique is direct solution of the optimal beamfornj@apon, is to further evaluate the performance of the FMV algorithm
1969. While this in theory provides rapid convergence andwith a two-sensor array in real environments. Although the
improved interference cancellation, this technique generallperformance of the FMV algorithm under simulated condi-
requires the inversion of large, time-domain correlation mations is promising[Larsen et al, 2001, it has not been
trices, a process that is inherently unstable and computatiofgvaluated under actual room conditions with real recorded
ally impractical[Golub and Van Loan, 1996 signals. The second goal is to evaluate and compare time-

To suppress multiple, nonstationary interfering sourcend frequency-domain algorithms in acoustic scenes in
using only two sensors, frequency-domain beamforming alwhich there are more speech sources than sensors. This rep-
gorithms appear to have distinct advantages compared f&sents a challenging condition for beamforming algorithms,
time-domain algorithms. For example, the algorithm of Liuand a condition that most studies have not explored. Only the
et al. [1997, 2000, 200Lfirst determines source locations Study of Kates and Weid4996] evaluated algorithms in an
and Strengthsy and then performs constrained beamformir@'lVironment with more sources than sensors, but the sources
in each frequency band to remove interference. This metho¥ere all multitalker babble rather than speech. Finally, be-
was shown to adapt quickly and could effectively suppres§ause speech sources and acoustic scenes change rapidly in
multiple speech interferers using only two microphones. It€@l-world listening environments, the third goal is to de-
demonstrates a distinct improvement in performance oveYelop a better understanding of how adaptation speed affects
time-domain methods, but it requires intensive computationthe performance of these algorithms.
The LENS algorithn{Deslodge, 199Bextracts a target sig- Recordings were made in three different rooms with
nal by placingn—1 spatial nulls using sensors. Greenberg Varying reverberation time¢RTs: 0.10, 0.37, 0.65)susing

et al. [2003 evaluated a four-sensor LENS implementationthree different microphone array$1) two microphones
with up to three interfering sources. coupled to the ear canals of a KEMAR manneqyR); two

Other frequency-domain algorithms do not performomnidirectional microphones in free field separated by 15
beamforming, but rather attenuate individual frequencycm;a”d@) two cardioid microphones in free field separated
bands that contain interference. The algorithm of Peissig?y 15 ¢m. The performances of a two-channel FMV algo-
Kollmeier, and colleaguesKolimeier, 1997; Kollmeier ~'ithm [Lockwood, 1999; Lockwoodet al, 1999, the Frost

etal, 1993: Peissig and Kollmeier, 1997; Wittkagt al, adaptive beamforméFrost, 1972, a version of the general-

1997, hereafter referred to as the P—K algorithm, uses colz€d Sidelobe cancelé6SQ [Greenberg, 1998; Griffiths and

herence and phase and amplitude differences between chali™ 1983, and an implementation of the Peissig—Kollmeier
nels to determine a gain for each frequency band. Slyh anff’—K) [Kollmeier et al, 1993; Wittkopet al, 1997 binaural
Moses[1993 describe another example of this type of a|go_al_gor|th_m were assessed. The S|gnals were also processed
rithm. These techniques have been shown to be effective inth a fixed beamformer. The algorithms were not allowed to

attenuating off-axis sources using only two sensors, but theflf¢2dapt, and their performance was compared in terms of
also introduce signal distortion by attenuating part of thef'® Signal-to-noise rati€SNR) gain and target signal distor-
target signal. tion produced by each. The adaptation characteristics of the

Frequency-domain minimum-variance distortionless-FMV: Frost, and GSC algorithms were further evaluated in

responséMVDR) beamformer§Cox et al, 1986 1987 are computer simulation. Einally, the computational costs of the
more computationally efficient than both the technique Ofalgorlthms were examined.

time-domain correlation matrix inversion and the algorithm

of Liu et al.[2000, 200]. MVDR beamformers pass signals ||, ALGORITHM IMPLEMENTATIONS

from a target direction with no distortion, assuming the sen- . .
sors are matched. Kates and Wej4996] used adaptive A. Frequency-domain MVDR  (FMV) algorithm
frequency-domain algorithm@readapted for 2)so extract Time-domain input signals, with a sampling rate of
speech in a diffuse noise field using signals from a five-22.05 kHz, are transformed periodicallievery L=16
sensor end-fire array. Their study included an MVDR algo-sampleg into the frequency domain via a length+FT, us-
rithm with a limited adaptation rate. ing a Hamming window. For a two-microphone system, the
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TABLE I. Algorithm parameters for best performance. proach is originally attributed to Capdii969. For an on-
axis target source, both detectors receive the signal at the
same time and with the same amplitude, assuming identical

Processing algorithm:

Microphone FMV Frost GsC P-K detectors. Thuseg”"=[1 1]. If the desired receive direction
Omnidirectional ~N=1024 N.=401 Kge=401 N=1024 Were off-axis, there would be complex valued. For the mini-
(Sennheiser F=32 me=1.0 a=0.15 c,=5 mization goal and constraint given in Ed8a) and(3b), an
MKEII) optimal solution is knowhCapon, 1969; McDonough, 1979;
M=103  c:=001 =1 Cox et al, 1987. For each frequency bitk, the optimal
Cs=1 weight vectorw,, is given by
Cardioids N=1024 Ng=401 Kggc=401 N=1024 1
(Sennheiser F=32 me=1.0 a=0.15 c,=5 W R¢ e @
ME-10: optk= e —1_ *
? M=103  c=0.01 =1 ¢'R et o
=1 where R is defined in Eq.(1), Rk’l represents the matrix
KEMAR N=1024 Ng=401 Kgs=401 N=1024 Inverse ofRy, ando is a very small positive quantity that
(Etymotic F=32 me=1.0 «=0.07 c;=1.0 prevents division by zero. Inherent to this solution is the
ER-1) assumption that it is valid only if the inputs are stationary
M=110  ¢=001 ©~1°  random processes. This is assumed to be true for small time
=1

intervals of speech signals in each frequency band.

To respond quickly to changes iRy, new optimal
weightswy are calculated for half of the frequency bands
frequency-domain signals from the sensors are represente§ery L samples, so all weights are updated evety 2
by the components of the vectd=[Xyx Xa], wherek  samples. This is possible because for a two-sensor system,
indexes the frequency bins. THe most recent FFTs are the matrix inversion for each frequency band is computation-
stored in a buffer, and a correlation matf is calculated  ally inexpensive. It will be demonstrated in Sec. V that this

for each frequency bik by using: technique yields faster and more accurate tracking of nonsta-
M F 1 F tionary sources than time-domain techniqgues.
_Z X5 Xk _2 X5 Xoki To obtain the time-domain output, the newest optimal
Fiza ' T Fi= ’ ’ weights for each frequency band are applied to buffered FFT
Ri= 1 F M F ' (1) data to obtain the outpufEqg. (2)]. The resulting N
Ei21 X’z‘k'ixlk,i F;l ng,ix2k,i frequency-domain values are then transformed to the time

domain using a lengtht inverse FFT. This occurs evety
where* represents complex conjugation, akidis a multi- ~ samples, and the centrll samples of time-domain output
plicative “regularization” constant slightly greater than 1.00 are used. As the outer samples of the FFT window are at-
that helps avoid matrix singularity and improves robustnes¢enuated by the Hamming window, this minimizes the effects
to sensor mismatch. Coat al. [1987] described the use of Of circular convolution which arise due to the FFT-based
additive regularization to control the trade-off between ro-filtering, while requiring less computation and delay than an
bustness and white-noise gain. ValuesNyfM, and F are  overlap-save or overlap-add meth@dbho and Moschytz,
found in Table I. The correlation matricd®, are updated 2000

every L=16 samples, allowing them to quickly track The main consideration in the FMV implementation was
changes of the input signals in all frequency bands. The coifrequency resolution, which is determined by the FFT length
relation matrices and FFT buffers were set to zero beforéelative to the sampling rate. For our experiments, a 1024-

processing each signal. point FFT was chosen because it provided the best perfor-
For each frequency barid the monaural output of the mance. Increasing the FFT length decreases the bandwidth of
beamformer is each frequency bin and should improve FMV performance
" (for stationary signals as this provides the more detailed
Yi=w X, ) estimates of signal spectra. However, in practice, when the

where w, is a vector of frequency-domain weights aHd FFT length was too long the pe_rfprmance _decreased, Iikgly
represents the Hermitian transpose of a vector. The optimPecause the signal was not sufficiently stationary for the in-
zation goal and constraint are expressed for each frequend§'val of the FFT. Also, longer FFTs required more data

band as points, and objectionably increased the system delay.
minE{|Y,/?}, (33 -
W B. Frost, GSC, P-K, and fixed beamformer

implementations

. H —
subject o €'w =1, (3b) Optimized parameter valugsee the next section for

where min represents the minimization of a function withdetailg for three of the algorithms described in this section
respect to selected variabléke weightsw,, in this casg are shown in Table I. All time-domain adaptive weights were
E{} represents the expected-value operation,@isda vec- initialized to that of a conventional beamformer, with a value
tor indicating the desired arrival direction. This general ap-of 0.5 for each channel at an appropriate delay, and zero
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otherwise. All time-domain weights were updated eachC. Optimization
sample. The correlation matrices for the P—K algorithm were All algorithms and metrics were implemented using

also set to zero before processing and were updated every mTLAB 65 (The MathWorks, Inc., Natick, MA Floating-

sampleg(as with the FMV algorithm point calculations were performed with 64-bit precision. The

The Frost algorithm was implemented with the Updatealgorithm parameter&Table ) were adjusted for best perfor-

equation mance in terms of the SNR metii€ec. Il F, Eq.(9)]. The
2 Wexexs test signals were processed with many d_ifferent sets of pa-
Wiew=P- | Wog— 3 7.t F, (5)  rameters. For the frequency-domain algorithms, the effect of
ME - X¢ *X; + Cg changing the FFT length was generally independent of the

whereW,q is the previous set of time-domain filter coeffi- €ff€CtS of changing other parameters, so this was set first.
cients, andmy andcy are adjustable parameters to control Additionally, the additive constart- in the Frost algorithm

the step size and to prevent divide-by-zero, respectively. AdWas found to have little effect on performance so long as it
ditionally, x; is a column vector composed of the time- W&S above a minimum value. This narrowed the parameter

domain input signals from both channefsis a precomputed ~ SPace to two variables for the FMV, Frost, and GSC algo-

projection matrix, andF represents the response constraintsthms, and to three variables for the P—K algorithm.
Many sets of values were chosen for the remaining free

all as per Frosf1972. The factor of 2/3 facilitates compari- _
parameters, and the signals were processed and results ob-

son of the step size with a bound derived by Frogt. is ! ’ )
defined as the length of the adaptive filter. tained for all. It was found that performance varied with the
number of interfering sources. Because this study empha-

The generalized sidelobe cancel66SO algorithm ’ LML -
[Griffiths and Jim, 198Pwas implemented as per Greenberg SIZ€S the effects of multiple interfering sourc¢esore sources
than sensopsthe parameter set for each algorithm that pro-

[1998. This implementation improves performance and re- _ g
duces target distortion in nonstationary environments whequced the best overall performance for tests with multiple

the target signal is strong. The weight update equation wadnt€rferers was chosen as optimal. This wasadrhocdeci-
sion made by plotting the performance on a graph and choos-

sum ing the line that was highest for the multiple-interferer tests.
+ K 2(m + o2(n -e(n)-Xg(n), (6)  For the time-domain algorithms, special care was taken not
esd os(n) +ox(n)] to choose parameter sets that caused instability, as it was
where ag,, is a step size parametar,is an index of the possible to have good multiple-interferer performance while
current sampleWw 4 is the previous set of time-domain filter the algorithm became unstable for the one-interferer test sig-
coefficients,e is the processed outpukg is a vector of nals.
samples of the signal passed by the blocking mdtrigstly
interference Kgscis the filter length, and2 and o2 repre-
sent the average poweligpdated every samplef eandxg, |11 EXPERIMENTAL METHODS
respectively. )
The P—K algorithm[Kollmeier et al, 1993; Wittkop A Test materials
et al, 1997 was implemented with three variable parameters A series of high-context sentences by eight talkévsr
to control the attenuation of the signal as a function of thefemales and four malefrom the revised R-SPIN tefBilger
phase and amplitude differences between channels and tlgg al, 1984 were recorded on digital audio tapPAT) at a
coherence between channels. Forktiefrequency band, the sampling rate of 48 kHz, quantized to 16 bits. Recordings
(real-valued filter weight G, was determined using were made in a sound-treated stugticodel: Studio K5X5
Gi=01c- Uox- ok ft., Acoustic Systems, Austin, TX The recolrded sentences
were downsampled to 44.1 kHz. Three different sentences
C1|LR12|)
a

W new= Woig

™ were chosen from each talker. This provided a total of 24
' different sentences, 12 by male talkers and 12 by female
talkers. A section of multitalker babble from the R-SPIN test
Reg sz] Cs was also used as an interfering signal in several test configu-
:< Ry Rzz) rations. Its sampling rate was also 44.1 kHz.

g1k= ma><( 0, 1-

gox=C m|n(@ R_22
2k 2 R22,R11

wherecy, ¢,, andcy are adjustable parameters that control
the sensitivity of the algorithm to phase differences betwee%
channels, amplitude differences between channels, and co-
herence between channels, respectively;represents the Each of the 24 sentences, the multitalker babble signal,
phase angle in radians, Ré represents the real part of a and 10 s of white noise were played back from eight loud-
complex value, andR; is an element from a frequency- speakers housed in a semicircular enclog&ATS, Sensi-
domain correlation matriksee Eq.(1)], with M =1.00. metrics Corp., Somerville, MA Each loudspeaker was equi-
A simple fixed beamformefreferred to as a conven- distant(75 cm from a central point and comprised a single
tional beamformegrwas implemented by averaging the sig- 7.6-cm-diameter driver with frequency response restricted to
nals from the two microphones after a matching filter was200-Hz to ~13 kHz. The two-microphone arrays were lo-
applied. cated at the central point of the array, 1.15 m above the floor,

Recording techniques and setup
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FIG. 1. (A) Diagram of room 1(treated with acoustic foawith loudspeaker arrayB) Diagram of room 2(conference room with windowswith
loudspeaker array(C) Diagram of room 3(conference room, bare wallsvith loudspeaker array. Filled circle represents target loudspeaker, open circle
represents interferer; distances to central point of the array are shown.

and oriented such that the loudspeakers were at azimuths ofeasurements were taken in each room at the central point of

60°, 40°, 20°, 0°,—20°, —40°, —60°, —80° with respect to the loudspeaker array and the results were averaged. The

the broadside array. meter calculated th&g, times for 1/3-octave bands between
Recordings were made with three sets of microphones200-Hz and 10 kHz. The values for each band were averaged

(1) Sennheiser MKEIlI omnidirectional microphones spacedover the five measurements, and then averaged across fre-

15 cm apart in free field(2) Sennheiser ME104 cardioid quency bands to obtain the reverberation time. The estimated

microphones spaced 15 cm apart in free field; &)dEty-  averageTg, values for rooms 1, 2, and 3 were 0.10, 0.37, and

motic ER-1 microphones mounted in the ears of a KEMARO.65 s, respectively.

mannequin(Knowles Electronics, Itasca, )L The omnidi-

rectional and cardioid microphones were connected directlyy. Compensation, energy equalization, test creation

to a microphone preamplifiéMillennia Media HV-3B, Plac- . ) :

erville, CA) that was connected to the inputs of the Aark 24 To maich the microphones, the recorded white noise

system. The KEMAR microphones were connected to theiff®™ the loudspeaker at 0° was filtered with a 43-tap FIR
own dedicated preamps, and then to the Millennia Media{'lter adapted by an LMS algorithm to match the responses of

preamplifier. Recording and playback were done with a samt-he microphones for the target direction. For a sampling rate
f 22.05 kHz, this filter has a 2-ms delay, corresponding to a

pling rate of 44.1 kHz. The recorded data were downsample8 i , X :
to 22.05 kHz prior to being saved to hard disk. sound propagation distance of approximately 0.7 m. Given
the dimension of the rooms and location of the microphones,

direct reflections should require more than 2 ms to reach the
microphones; the filters should thus compensate mostly for
Recordings were made in three rooms with different re-the differences in frequency response of the microphones,
verberation characteristics. In all rooms, the ceiling hadather than responding to reflections from the room.
acoustic tile suspended at a height of 9 ft. Above it was a  All acoustic recordingsexcept for the recordings of
concrete ceiling. The floors of all rooms were covered withwhite nois¢ were of the same duration; however, the dura-
short carpet. The dimensions of the rooms and the positiortion of the spoken sentences varied. Therefore, the average
ing of the loudspeaker and microphone arrays within thenpower of each recorded sentence was calculé@tddng into
are shown in Figs. (&), (b), and(c). Room 1 was an acous- account the varying durationand all sentences were scaled
tically controlled space with 6.4-cm-thick foatBONEX  to have the same average power. This is referred to as the
Valueline, lllbruck Corp., Minneapolis, MNattached to all normalized energy of a single interfering source. The ampli-
wall surfaces; Room 2 was a rectangular conference roortude of each interfering source could then be adjusted to
with bay windows and bookshelves on two walls; Room 3provide a specified relative amount of interference with re-
was a rectangular conference room with painted gypsumspect to the target sentence.
board walls. To construct a test, the recordings of each source from
The reverberation times of the rooms were measuredts appropriate locatiofloudspeakerwere scaled and added,
with a sound-level mete(Bruel & Kjaer, model 2260 A  keeping the left and right channels separated, thereby pro-
more suitable source of an impulse was not available, so ducing a binaural test signal. This assumed that the acoustic
hand clap was used as a stimulus after it was found that &ddition of the sources and the various components in the
provided consistent results over several measurements. Fivecording and playback system all act in a linear manner.

C. Room descriptions
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TABLE Il. Summary of test configurations.

Azimuth angle of source

Configuration
number +60° +20° 0° —40° —80°

1 Interferef Target
2 Interferer Target
3 MTB? Target
4 MTB Target
5 Interferer Target Interferer
6 Interferer Target Interferer
7 Interferer Target Interferer
8 Interferer Interferer Target Interferer
9 Interferer Interferer Target Interferer

10 Interferer Interferer Target Interferer Interferer

11 Interferer or MTB  Interferer or MTB  Target Interferer or MTB Interferer or MTB

Interferer” and “MTB” indicate interference from the angle listed by a single talker and multitalker babble
source, respectively.

E. Test terminology and guidelines F. Performance metrics

A test configuration was defined as one particular spatial  Processing with the various algorithms was done off-line
arrangement of target and interfering sources. Eleven testnd the signals from the individual sources before and after
configurations were used; Table Il describes the positioningrocessing were known, greatly simplifying the calculation
of the target and interfer@). Each configuration contained of performance metrics. Because the target signal could be
one on-axis target sourdelways a single talkempresented distorted by significant amounts during processing, and be-
from the loudspeaker at 0°, and one to four off-axis interfer-cause distortion is detrimental to speech perception, a signal-
ing sources presented from the loudspeakers at possible até-noise ratio(SNR) metric that incorporated both interfer-
muth angles of+60°, +20°, —40°, or —80°, each a single ence and signal biasdistortion error was chosen. The
talker or multitalker babble source. Multitalker babble wasoutput SNR(after processingis defined as
used in test configurations 3 and 4 as the only interferer. For
test configuration 11, a multitalker babble was placed at one EZ/=1tu(v)2
of the four interference locations and single-talker interferers SNRoyr=10-10g10| _ 2] ®

2y -1(Yp(v) —ty(v))
were placed at the other three.

All sources were located in the front half-plane, and thuswherey,(v) andt,(v) are thevth samples of the processed
the effects of the directionality of the cardioid microphonesoutput and unprocesseditieal) target signals, respectively,
was minimal. Additionally, a front—back ambiguity did not andV is the length of the signal in samples. In this work, the
exist as there was no source located greater than 90° from thamprocessed signal is binaural and the output is monaural.
target signal. Thus, the expression is modified to be

For each spatial test configuration, 12 tests were con-
structed. A test was defined as one permutation of a targéNROUT
sentence and interfering sente(ge Twelve different sen- SV [05ty L (0)+ Goty r(v)]2
tences, three sentences each from two male and two female —10.|og, =1 Pt ZuR ,
talkers, were used exclusively as target senter(@msis, for Z?Ll(yp(v)—(gltu,L(v)+gztu,R(v)))2
each test configuration, six target talkers were males and six 9)
were female3.The remaining 12 sentences were used exclu-
sively as interferers. Additionally, in any test, each sourcewheret, | (v) andt, g(v) are the unprocessed target signals
was a different talker, and all interferers had the same energftom the left and right microphones, respectively, andnd

Each test was constructed and processed at three diffeg, represent the gains applied by the algoritteffectively
ent SNRs. For configurations 1<dne interferex, three nor-  the steering vectgrto the target signal in each channel. In
malized energies were used3, 0, and+3 dB (correspond-  this study,g;, g,=0.5 because filters are used to match the
ing to each interference source having 3 dB less, the same, cesponses of the microphones in the target diredsee Sec.

3 dB more average power, respectively, than the targelil D). If the microphones are not matched for the target di-
source. For test configurations 5—11, three lower normalizedrection, the gains must be replaced with filters.
energies(—6, —3, 0 dB were used. Therefore, the entire The input SNR for one channel is defined as
battery of tests consisted of 11 test configurations, 12 tests

E))/=ltu,L(U)2)

per configuration, and 3 SNR levels per test, for a total of

396 test signals. Each test was approximately 2.5 s long, for >N rn=10- Iogm( SV i ()2
a total of 16.5 minutes of test signals. Results for each test p=tut
configuration are presented in Sec. IV, and were obtained bwherei, | (v) is the interference signal received by the left
averaging the performance metrics over the 12 tests anehicrophone. Because all signals were recorded individually,
three SNR levels for each configuration. the target and interference signals received by the micro-

(10
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A) Room 1, Omnis C)Room 2, Omnis E) Room 3, Omnis A) Room 1, ER-1s, Left Ch. C) Room 2, ER-1s, Left Ch. E) Room 3, ER-1s, Left Ch.
12 12 10 10 10

= FMV «n Conv. BF = FMV 1 Conv. BF

10 10}| ==P-K wmmm SNR, Omni. ==:P-K m=SNR, Omni
—— Frost == SNR, Card. — Frost ww: SNR, Card.
--GSC SC

SNR OUT (dB)
SNR OUT (dB)

SNR OUT (dB)
SNR OUT (dB)

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Configuration Configuration Configuration Configuration Configuration Configuration
FIG. 2. (A), (C), (E) Processed and unprocessed SNR values for the leff!G- 3. (A), (C), (E) Processed and unprocessed SNR values for left KE-
omnidirectional microphone data in rooms 1, 2, and 3, respecti{@ly(D), MAR microphone data in rooms 1, 2, and 3, respective), (D), (F)
(F) Processed and unprocessed SNR values for the left cardioid microphorfocessed and unprocessed SNR values for right KEMAR microphone data
data in rooms 1, 2, and 3, respectively. in rooms 1, 2, and 3, respectively.

phones are known and the SNRalculation yields the SNR  interfering source(configurations 5-11 This is the main
after microphone reception. advantage confer_red by the frequen(_:y-dor_nam algorithms.

A second metric used was a measure of the target dis- FOr the one-interferer testconfigurations 1-4 the
tortion. Access to the processed target signal allowed thiEMV and P—K algorithms perform better than the time-
distortion to be quantified. The FMV, Frost, and GSC algo-domain algorithms in terms of SNfgr for configurations 1
rithms are constrained to pass the target with zero distortior?nd 2. For configurations 3 and 4, the time-domain algo-
and are referred to as distortionless response beamformef§hms perform similarly or slightly better in room 1, and in
However, microphone mismatch and reverberation mean th&P0m 2 with cardioid microphone¢Though the algorithm
only a portion of the target signal satisfies the constraint, sfarameters were not optimized for these one-interferer tests,
target distortion may occur. The P—K algorithm attenuatedh€ improvement in performance that can be obtained by
frequency bands that contain interference, and thus almo&Ptimizing the parameters for these tests is not very large.
always cancels some of the target signal. We define a mea- 1he FMV and P-K algorithms perform similarly in
sure of target distortion as

v 2 05 A) Room 1, Omnis 05 B) Room 1, Cardioids 05 C) Room 1, KEMAR Mics.

2 1(tp(v) = [91ty,L(v) + oty r(V)]) ’ ‘ '

b= v 5 , (]_]_) 0.4 P. 0.4 0.4

2 -1l91ty L (v) + 9oty r(V)] 03 03 03

o
. . -
wheret,(v) is the processetmonaural target signal. When 02 0% A o0 oo <
. . . H —— AL N

Tp is greater than zero, the target signal has been distortec °? °'1>i/‘:’_:;_\ A
Note that this metric does not distinguish between attenua: °= % % & 1o o= % s
tion and phase distortion. 0, D Room2.Omis o, B Room 2 Cardiids 0.5, P RoOm 2. KEMAR Mics.

0.4 0.4 0.4
IV. RESULTS AND DISCUSSION 2 A R °? .
. . 02 I, I" “\"\N\\’/\, 02 I, a” 0'2/\'\/\/\'1\’4

A. Algorithm comparisons N N A e arlsdd N
Figure 2(results for omnidirectional and cardioid micro- S s s 1o T % s
phones, left channebnd Fig. 3(results for KEMAR micro- ys, O Room3. omnis 45, HRoom3 Cardoids 1)Room 3, KEMAR Mics.
phones, both channglshow the average SNf3t produced 04 oa MM
by the algorithms after processing. The SNRas received osl 7 os s "
by the omnidirectional, cardioid, and KEMAER-1) micro- & __kGUgEspo_ . A e ome”
X o2pw " ¥ 02| A . 0218 A AKX T3

phones, is labeled aSNR, omnj, (SNR, card, and(SNR, N AGASSE VS "ol o Vo e

ER-1, respectively. To facilitate the comparisons in Sec. Dm )
IVC, (SNR, omnj is also shown with the results for the 2 i ° ? Gsgrion ® Gontguraion

cardioid and KEMAR microphones. In all three rooms and
FIG. 4. (A), (D), (G) Target distortion for omnidirectional microphones in

for all microphone types, the FMV and P—K algorithms Con_rooms 1, 2, and 3, respectivel), (E), (H) Target distortion from cardioid

sistently outperform the Frost anq GSC_ algorithms in terMsyicrophones in rooms 1, 2, and 3, respectivéty, (F), (1) Target distortion
of SNRyyt for all test configurations with more than one for KEMAR microphones in rooms 1, 2, and 3, respectively.
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terms of SNRy, but the P—K produces more target distor- beration. The matching filters were chosen carefully, but they
tion, as can be seen in Fig. 4. This is to be expected, as thiere kept sufficiently short so that they did not compensate
FMV algorithm uses constrained spatial filtering to removefor reflections and reverberation. Therefore, the distortion
interference without distorting the target signanith  figures generally reveal how sensitive the algorithms are to
matched sensors and no reverberatiovhile the P—K algo-  reverberation.
rithm simply attenuates frequency bands that appear to be Increasing the amount of reverberation consistently in-
dominated by interference. Therefore, target distortion is accreases target distortion. Figure 4 reveals that the target dis-
cepted in exchange for an improved ShiR tortion for the FMV, Frost, and GSC algorithms approxi-

The differences between the GSC and the Frost algomately doubles from room 1 to room 2, and doubles again
rithm are generally small. Griffiths and Jifi982 showed from room 2 to room 3. The FMV and GSC generally have
that their GSC structure converges to the same solution d§e lowest distortion for all rooms. The distortion of the P—K
the Frost beamformer, although their paths to convergencelgorithm rises by approximately 0.05 for both rooms 2 and
may be different. In the tests conducted here, the GSC alga. The P-K algorithm has by far the highest distortion in
rithm appears to have a slight performance advantage ovépoms 1 and 2 with omnidirectional and cardioid micro-
the Frost algorithm for the single-interferer tests, while thephones; Frost has the second highest. The distortion of the
Frost algorithm appears to perform better than the GSC akrost algorithm is comparable to that of the P—K algorithm
the number of interferers rises. This difference is more apfor room 3. While the FMV, Frost, and GSC algorithms ap-
parent with the KEMAR microphong§ig. 3), for which the ~ pear to be more sensitive to increases in reverberation time
GSC has a more pronounced advantage in the one-interferitan the P—K algorithm, for the range of RTs used in this
tests(up to 3 dB and for which the Frost algorithm performs study, the distortion of the FMV and GSC algorithms is still
better in the multiple-interferer testby up to 2 dB. The  notably less than that of the P—K algorithm.
cause of these differences is not known.

The FMV and GSC algorithms generally produce lessC. Microphone effects

distortion(Fig. 4) of the target signal than the Frost and P-K  Thg girectionality of the cardioid microphones accounts
algorithms. The FMV and GSC distortion figures are oftensq, up to a 3-dB improvement in the SNRISNR, card over
comparable, but the FMV has an advantage in the more rgpat of the omnidirectional microphonéSNR, omnj, as can
verberant environments. The high distortion figures of theye seen in Fig. 2. This appears to account for the approxi-
P_—K algorithm are expected, but those for the_ Fros_t a|9°mately 1—-2-dB improvement in the SNR; that is observed
rithm are not. They suggest that the Frost algorithm is morgq, 4| algorithms for the multiple-interferer tests in all three
sensitive to the amount of reverberation and the type of Mi;ooms. Overall, the FMV algorithm with cardioid micro-
crophone being used than the GSC or FMV algorithms aréphones performs best, albeit by a small margin.

The conventional beamformer, which averages the tWo  The KEMAR microphonesFig. 3) cause a reduction in
inputs, perf_orms more poorly than all other algorithms, aspe SNR, for the left channel and an increase in the SNR
shown in Figs. 2 and 3. (SNR, ER-2 for the right channel for single-interferer tests.
This is because the interfering source for these tests is from
the left of the array, at-60° or +20°, and thus the interfer-
ence is stronger in the left ear of the KEMAR than the right.

The performance, in terms of SNR; (Figs. 2 and 3 of  For multiple interferer tests, the SNNRs lower than with the
all algorithms generally decreases by 1 dB or less for thether microphones. Thus, processing the KEMAR signals
tests in room 2(RT=0.37 9 as compared to room (RT vyields 1-2-dB lower SNB, than with omnidirectional or
=0.10 9. This decrease is fairly consistent across the differcardioid microphones. Another notable effect of the KEMAR
ent types of microphones. Performance differences betweemicrophones is the dramatic increase in distort[éiigs.
room 2 and room 3RT=0.65 9 are slightly more pro- 4(c),(f),(i)] for the Frost algorithm, likely caused by sensitiv-
nounced, including a drop of 1-2 dB for the FMV and P—K ity to reverberation or microphone mismatch. The distortion
algorithms across all configurations. Frost and GSC algofor the GSC algorithm remains low.
rithm performance is reduced by a similar amount. For the experiments in this study, all sound sources were

In general, the performance of all algorithms is de-placed in the front half-plane. This reduced the benefits ob-
creased by similar amounts as the reverberation time of th@ined by using the cardioid or KEMAR microphones. If
room increases. Importantly, this implies that the perfor-sources had been placed in the back half-plane, using these
mance advantage of the frequency-domain algorithms isnicrophones would have resulted in higher values of NR
maintained as the reverberation time increases. For the onelowever, for this study, the effect of the directionality of the
interferer configurations, the advantage of the frequencymicrophones that is most interesting is the ability to reduce
domain algorithms actually increases with reverberatiorthe reverberation in the recorded signals. It was hoped that
time; this implies that the advantages of these algorithms arthe directional microphones would make all algorithms more
not limited to the configurations in which there are morerobust to reverberation effects. Compared to the processed
sources than sensors. signals from the omnidirectional microphones, processing

It is important to point out that distortion for the signals from the cardioid microphones produces a some-
distortionless-response beamforméfV, Frost, GSQ is  what higher output SNRfor all three roomsand generally
due to sensor mismatdiincluding mis-steeringand rever- lower target distortion, while processing signals from the

B. Effects of reverberation
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TABLE IIl. Frequencies of sinusoidal interferers and positions as a function of time.

Time
interval Sinusoid frequencig$iz)

500 611 682 769 921 1016 1095 1187 1331 1448

Azimuth angles

0.00— —65° —55° —45° —35° —25° 20° 30° 40° 50° 60°
0.75 s
0.75— 20° 30° 40° 50° 60° —65° —55° —45° —35° —25°
1.50 s
1.50— 60° 50° 40° 30° 20°  —25° —35° —45° —55° —65°
2.25s

KEMAR microphones produces slightly lower SNRs andsence of sensor mismatch also allows accurate beam patterns
higher distortion. Overall, the performances of the algo-to be calculated to observe these characteristics.

rithms were improved by the use of the cardioid directional ~ The algorithms were all optimized to produce the best
microphones, and only slightly reduced by the KEMAR mi- SNR gain for the simulated signals. The first example illus-
crophones. trates the behavior of MVDR beamformers with statistically
stationary interference. The second example shows that the
FMV is able to adapt more quickly and accurately to rapid
changes in interfering sound sources, and thus it more effec-

The optimal parameter sets for each algoritfifable ) tively attenuates multiple-interfering sound sources.
were found to be the same for both omnidirectional and car-

dioid microphones, but different for the KEMAR micro-

phones. As compared to the best parameter sets for the freB- Simulation example 1: Multiple spatially separated

field microphones, the FMV algorithm performs best with aSinusoidal interferers

larger regularization valudl, the GSC algorithm requires a MVDR beamforming algorithms may, in theory, attenu-
smaller step sizex to remain stable in multiple interferer ate multiple, statistically stationary narrow-band interference
tests, and the P—K algorithm performs best with values,of = signals at different frequencies. To demonstrate this, a two-
and c; that weight the amplitude difference most heavily channel test signal was synthesized containing a single on-

D. Best parameter sets

instead of the phase difference. axis speech source and ten off-axis sinusoidal signals, each
with a different frequency and azimuth. The sinusoid fre-
V. TIME-VERSUS FREQUENCY-DOMAIN MVDR guencies ranged from 500 to 1450 Hz, with approximately
BEAMFORMERS 100-Hz spacing. Neglecting frequency smearing due to win-
A. Overview
(A) Target, unprocessed (B) Target + Interference
The results in Sec. IV show the performance advantage ,, 4%
of the FMV over conventional time-domain algorithms. The _,. 25
Frost and GSC algorithms differ from the FMV in that they £, ; 20
are iterative-adaptive time-domain techniques, while theg ., 4
FMV calculates optimal solutions directly for many fre- %m 2 ¢
quency bands. However, all are classified as MVDR beam-* 0s| s RS éséﬁ A
formers, because they have identical optimization goals anc % 2== =
constraint§minimize output power, pass target source undis- o5 1 158 2 05 1 15 2
torted. These MVDR beamformeréime- and frequency- (B)Processs, P " (D) Processed. Frost
domain will all asymptotically converge to identical solu- s 2'5
tions for inputs that are stationary random processesf |
Therefore, differences in SNR performance are due to differ-3° f 20 .
ent adaptation characteristics in the presence of nonstatior%j': , . {,.f :ZL i v
ary signals such as speech. e S-S A el & £
Using specific simulated signals, we now examine the °° E#G 'E____ .?gs °'5!E‘h E’g%’ _t;
reasons for the performance advantage of the FMV over the 05 1 15 2 05 1 15 2
other algorithms. The test signals are not true binaural re- Timeite Time{e)

cordlngs as in the previous experiments, rather they argg. s, (A) Spectrogram of the target speech signal in examptdie war
simulated. The signals for each source in each channel diffatas fought with armored tanks.before processingB) Spectrogram of the
only by time de|ay_ Therefore, no sensor mismatch is presengpmbined target and sinusoidal interference signals in example 1 before
the EMV. Frost. and GSC algorithms produce no target disprocessing. The target signal is at 0° azimuth, and ten sinusoidal interferers
. ' ’ . originate from angles between65° azimuth.(C), (D) Spectrograms of
tortion, and performance differences result only from thegyampie 1 after processing with the FMV algoritti@) and the Frost algo-

varying adaptation characteristics of the algorithms. The abrithm (D).
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(A) FMV, 925 Hz (A) Target, unprocessed (B) Target + interference
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FIG. 6. (A) Magnitude(in decibel$ of the beam pattern for the FMV algo- EELEEe B m@-_
rithm for the 925-Hz FFT bin. Note the null at25° (t=0.00 to 0.75 § 05 1 15 2 05 1 15 2
~60° (t=0.75to 1.50 § and 20° {=1.50 to 2.25 s (B) Magnitude(in (E) Processed, GSC
decibel$ of the beam pattern for the Frost algorithm for the 925-Hz FFT 6 E 2
bin. The null location varies considerably, but on average is rezB° (t £ :
=0.00 to 0.75 5 60° (t=0.75to 1.50 5§ and 20° {=1.50 to 2.25 & ',:5
z4
dowing, there is no spatial or frequency overlap of the inter- g3
. . o -
ferers. So that the adaptation rate of both algorithms can b 22 &
observed, the sinusoids instantaneously change locations 1 : . S & P
0.75 and 1.5 s. The sinusoid frequencies and azimuths as e

function of time are listed in Table III. 05 1 15 2
Spectrograms of the target and combined signals before Tni)

processing are shown in Figgaband(b), respectively. The FIG. 7. (A) Spectrogram of target speech signal in exampléHz killed

SNR before processing is7.35 dB. The spectrograms of the dragon with his sword)”before processingB) Spectrogram of com-

the processed output from the FMV and Frost algorithms argined target and two interfering speech signals in example 2, before pro-
Cessing. The target signal is at 0° azimuth and the interference sources are at

shown in Figs. £c) and(d), reSPeCti\_/el% and the SNR gains 45 (c), (D), (E) Spectrogram of example 2 after processing with the
were 18.56 and 16.14 dB, respectively. FMV (C), Frost(D), and GSC(E) algorithms.

While processing this signal, all of the frequency-
domain weights calculated by the FMV algorithm for the correlation matrices may be formed using data from longer
FFT bin centered on 925 Hz were recorded. All of the time'time intervals with the trade-off of slower adaptatipn.
domain filter coefficients from the Frost algorithm were Figure &b) shows the beam pattern for the Frost algo-
transformed to frequency-domain coefficients and recordedithm for the 925-Hz EFT bin. The direction of the null
Using these coefficients, the beam pattern for the 925-Hg|aced by the Frost algorithm is erratic when the signals
FFT bin (the gain, in decibels, for signals as a function of gyerlap (between 0.75 and 1.5).sThis occurs because a
azimuth angle and timevas calculated for both algorithms, nojsy time-domain estimate of the gradient is used to adapt
and is shown in Fig. @). A two-element beamforméwith a  the filter weights. This misadjustment error can be reduced
constraint can place at most one spatial null per frequencypy |owering the adaptation rate, but only at the expense of
band, and the null direction Changes with time as it adapts t§|ower convergence, thus |eading to poorer performance in
the input Signal. The nu” iS eaSily Visible, OCCUrring_azso, the presence Of mu'trp'e interferers‘
near 60°, and at 20° for time intervd®.0, 0.75 $ [0.75, 1.5 In this example the FMV and Frost algorithms show
s|, and[1.5, 2.25 § respectively. Table Ill shows that a ponideal effects when target and interference signals overlap.
sinusoidal interferer with a frequency of 921 Hz was at thesgyowever, both algorithms effectively attenuate multiple,

locations at the above time intervals. . nonoverlapping statistically stationary interferers using sig-
Figure Ga) also shows that the FMV algorithm null de- pals from two sensors.

viates from the direction of the interferer between 0.75 and
1.5 s. Examining Fig. @) reveals that the spectra of the
target(speech and interferencésinusoidal sources overlap

in the 925-Hz FFT bin between 0.75 and 1.5 s. The optimal  This example uses statistically nonstationary interfer-
filter weights are calculated assuming that there is no correence sourceéspeechto compare the speed and accuracy of

lation between target and interfering sources; in practice, thisonvergence of the FMV, Frost, and GSC algorithms. An

is rarely true over short time intervals. Thus, the correlationon-axis speech source and two off-axis interfering speech
matrix estimates contain some err¢fo reduce this error, sources(at =45° are simulated. Figures(d and (b) show

C. Simulation example 2: Multiple speech interferers
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(A) FMV, 800 Hz
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FIG. 8. (A), (B), (C) Magnitude(in decibel$ of the beam patterns for the
FMV (A), Frost(B), and GSQC) algorithms for the 800-Hz FFT bin. Nulls
near=+45° correspond to cancellation of interfering speech sourcesiat.
(D), (E), (F) Magnitude(in decibel$ of the beam patterns &+ 0.6875 s for
the FMV (D), Frost(E), and GSC(F) algorithms.

tively reduced the interference. This is supported by Figs.
7(c)—(e), which show the spectrograms of the outputs of the
FMV, Frost, and GSC algorithms, respectively. It is evident
that the FMV outpu{Fig. 7(c)] more closely resembles the
target signa[Fig. 7(a)].

The better performance of the FMV in terms of the SNR
gain may be explained by examining the time-varying beam
patterns for the FMV, Frost, and GSC algorithms, shown in
Figs. 8a), (b), and(c), respectively. The nulls placed by the
FMV converge consistently and quickly to45°. In contrast,
the Frost algorithm’s nulls rarely converge to exact the direc-
tions of the interference sources, and the GSC algorithm’s
convergence is even less precise. Figur@h, 8e), and (f)
show instantaneous beam patterns for the FMV, Frost, and
GSC algorithms. At this point in time, the FMV algorithm
placed nulls closer to the directions of the interferéas
+45°), especially for the—45° source between 2300 and
5000 Hz.

This example illustrates the typical behavior of the algo-
rithms for signals containing multiple speech sources. When
compared to the Frost and GSC algorithms, the FMV algo-
rithm exhibits faster, more accurate adaptation. This results
in better interference cancellation.

D. Computational complexity

The computational complexity of the FMV algorithm is
derived after some simplifications of the computation. Time-
domain microphone data are real-valued, so weights for only
N/2+1 frequency bins are calculatéahereN is the number
of FFT bing, and the remainin{/2— 1 bins are obtained by

the spectrograms of the target and target plus interferenagtilizing the conjugate-symmetry property of the FFT.
signals, respectively. The SNR gains produced by processingecause cross-correlation termsRnare conjugate symmet-
with the FMV, Frost, and GSC algorithms are 9.14, 5.41, andic, only three of the four terms need to be calculated. For
4.30 dB, respectively, indicating that the FMV most effec-an n-microphone system, weights for only—1 channels

TABLE IV. Computational expense for various parts of the FMV algorithm.

Part of Complex Complex Real
algorithm Complex adds multiplies divisions multiplies Time
) . L
Windowing? 0 0 0 n-N T
S
N N L
FFTs (n+1)- = log, N (n+1)- —log, N 0 0 =
2 4 fs
2 N 2 N L
Correlation (n“Fmjz+1 ()3 +1 0 0 T
2 2 °
Weight N N L
application (=17 +1) n(E +1) 0 0 f
o : n® n® BL
Matrix inversion — — 0 0 —
3 3 fs
Weight
calculation(not . N , (N N 0 BL
including matrix (n*+n—2) 5 +1 (n“+n) > +1 (n—1) 3 +1 fs

inversion

3 or example, the windowing operation requires\ real multiplies every/f, seconds, wherk is the number
of samples between FFTs, afigis the sampling rate in Hz.
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need be calculated using E@), because Eq(3b) may correlation matrix(as per Capomnl1969]) of dimension 401
be utilized to obtain weights for theth channel with less (the length of the Frost and GSC filtgrsdone every 32
computation. samples(as with the calculation of the FMV weightsis
The computational complexity of the FMV is a function approximately 15 billion OPS.
of fg, the sampling frequency, the number of sensorg,
the block lengthithe number of FFTs, for a single channel, VI. CONCLUSION
that are calculated between each computation of new filter
weights, N, the number of points in the FFT, ard the
number of output samples obtained from each IF@Tis
assumed that there is no overlap of groups of outpu
samples. Assumptions made for this analysis ard) a
radix-2-real-valued FFT is calculated evdrysamples;(2)
calculating a matrix inverse requires/3 complex multipli-
cations andn®/3 complex additions; and3) the second
weight is obtained using E¢3b).
Table IV summarizes the costs of each part of the algo
rithm in terms of complex additions, complex multiplica-
tions, complex divisions, real multiplications, and the time in

Test signals containing multiple speech sources were
created from recordings made with three different types of
two-microphone arrays in three rooms with varying rever-
Beration times. The performance of a frequency-domain
minimum-variance distortionless-respons&€MV) beam-
former, the Frost adaptive beamformer, the generalized side-
lobe cancelefGSQ, and an implementation of the Peissig—
Kollmeier (P—K) binaural algorithm were evaluated. The
FMV and P—K algorithms outperform the time-domain Frost
and GSC algorithms in terms of output SNR. A pair of car-
dioid microphones vyields the best performance and lowest
target distortion. A pair of omnidirectional microphones per-
WhiCh each must be completed. _Th_ese cost estimates do ?ns almost as wgll, followed by microphonespmounte% in
include the _cogt of overhead within a computer programy. -1 of the ear canals of a KEMAR.

such as rgtrlevmg dgta from memory; they reflect only the The performances of the FMV and P—K algorithms are
mathematical operations required to execute the algorlthm.very similar in terms of the SNR of the output signal, but the

. Assuming that tvx./olrea_l additions for each Co.”_‘p'ex ad'P—K algorithm generates significantly more distortion of the
dition, four real mu.|tI[Z')|IC<’:.1tI0nS and two real addltlons_for target signal. In the tests conducted in this study, filters were
gach complex muIﬂphggﬂon, and two complex mglpphca— used to match approximately the response of the micro-
thhS' and two real divisions for each complex division arephones for sounds received from the target direction, but
required, the total number of operations per sectDRS some inherent error is still present in the test signals. This

required for the algorithm is error means that even the distortionless response beamform-

fg 5 ers could distort the target signal, as is evidenced in the plots
OPS= TIN{n+ §(n+ 1)log, N | +(N+2) ﬁnS of the target distortion(This issue has been addressed by
Elledge[2000].) The FMV generally produces the smallest
4, , 4 amount of distortion, while the Frost and P—K algorithms

+| 2+ g n°+| 20+ g|n—15- g” (120 generally produce the largest distortion figures. The impact

of the distortion on speech perception and quality has not

Additionally, the cost of the Frost and GSC algorithms been determined with human listeners.
are, respectively, Informal observations indicate that the P—K algorithm,
as implemented here, produces highly intelligible, though

OP§:=Ts (2Kt 4Kg-n), (13 distorted output. This suggests that if distortionless response

OPSsec=fo- (N?+ 4K gse (N—1)). (14) is a requiremgn@sugh asina high—fi(_jelity heari_ng ai.dhe_r]

the FMV algorithm is preferred, but if maximal intelligibility

For the best parameter sets, the FMV and P-K algois the principal goal, then the P—K algorithfas imple-
rithms require 178 million OPS, the Frost algorithm requiresmented hergis also promising. A hybridization of the FMV
88 million OPS, and the GSC requires 36 million OPS. Asand P—K algorithms may prove beneficial if it can preserve
implemented, the FMV requires about five times more comsome of the benefits of each approach.
putation than the GSC and about twice as much as the Frost. The two-channel FMV has been implemented in a real-
By increasingL from 16 to 32 in the FMV and P—K algo- time system[Elledge et al, 2000. Preliminary tests show
rithms, the cost is roughly cut in half. In practice, we havethat the real-time system helps normal-hearing listeners un-
found that by increasing the interval between calculation ofderstand an on-axis talker amidst many interfering sources in
FFTs, the computational cost of the FMV algorithm can becontrolled environments as compared to conditions with di-
made approximately equal to that of the GSC or Frost algoehotic unprocessed signals and diotic signéannels
rithms with only a small decrease in performance. summed [Larsenet al, 2001; Feng, 200R Informal tests

The P—K algorithm implementation was very similar to indicate that the FMV improves intelligibility in rooms that
that of the FMV, because it also performs FFTs periodicallyvary widely in size and reverberation characteristics. The
and uses correlation matrices and frequency-domain filteringoutput of the real-time system sounds natural and is of high
Its cost was considered to be comparable to that of the FMVidelity.
algorithm. Thus, with similar computational cost, the FMV This study uses recordings that were made at a distance
and P—K algorithms provide performance superior to that obf 75 cm from the loudspeaker, where the direct-to-
the Frost and GSC algorithms in terms of SNR gain. Byreverberant ratio is relatively high. Even though reverbera-
comparison, the cost of the direct inversion of a time-domairtion was not dominant, the performance of all the algorithms
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is compromised to varying degrees, with the FMV and P—KGreenberg, J. E1998. “Modified LMS algorithms for speech processing
algorithms showing the smallest degradation. Our goal for with an adaptive noise canceller,” IEEE Trans. Speech Audio Proégss.
the present study was to determine the relative effectiveness>>c 3%

f th | ith . havi diff b reenberg, J. E., Deslodge, J. G., and Zurek, P(2@03. “Evaluation of
of these algorithms in rooms having diiferent reverberant array-processing algorithms for a headband hearing aid,” J. Acoust. Soc.

characteristics, but not to quantify the effect of the reverbera- am. 113 1646-1657.
tion per se Future work is required to evaluate the perfor- Griffiths, L. J., and Jim, C. W(1982. “An alternative approach to linearly
mance of the algorithms with microphones farther from the constrained adaptive beamforming,” IEEE Trans. Antennas ProfBg.

; o C30(1), 27-34.
sources where the direct-to-reverberant ratio is lower. Add|H0ffman’ M. W., Trine, T. D., Buckley, K. M., and Van Tasell, D.(1994.
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the driver, thereby reducing the amount of high-frequency’oho, M., and Moschytz, G. $2000. “Connecting partitioned frequency-

reverberation. In the future, loudspeakers with less direc- ggg‘_ag;;”ters in parallel or in cascade,” IEEE Trans. Circuits Syst.
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