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Extraction of a target sound source amidst multiple interfering sound sources is difficult when there
are fewer sensors than sources, as is the case for human listeners in the classic cocktail-party
situation. This study compares the signal extraction performance of five algorithms using recordings
of speech sources made with three different two-microphone arrays in three rooms of varying
reverberation time. Test signals, consisting of two to five speech sources, were constructed for each
room and array. The signals were processed with each algorithm, and the signal extraction
performance was quantified by calculating the signal-to-noise ratio of the output. A
frequency-domain minimum-variance distortionless-response beamformer outperformed the
time-domain based Frost beamformer and generalized sidelobe canceler for all tests with two or
more interfering sound sources, and performed comparably or better than the time-domain
algorithms for tests with one interfering sound source. The frequency-domain minimum-variance
algorithm offered performance comparable to that of the Peissig–Kollmeier binaural
frequency-domain algorithm, but with much less distortion of the target signal. Comparisons were
also made to a simple beamformer. In addition, computer simulations illustrate that, when
processing speech signals, the chosen implementation of the frequency-domain minimum-variance
technique adapts more quickly and accurately than time-domain techniques. ©2004 Acoustical
Society of America.@DOI: 10.1121/1.1624064#

PACS numbers: 43.72.Ew, 43.66.Pn, 43.66.Ts@DOS# Pages: 379–391
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I. INTRODUCTION

A major problem for hearing aids, speech recognitio
hands-free telephony, teleconferencing, and other acou
processing applications is extracting, with good fidelity,
target sound in the presence of multiple competing soun
This is particularly true of speech sounds, which are hig
nonstationary in spectrum and intensity, and which m
change position with respect to the listener over time. Th
the cancellation of multiple, nonstationary, interfering spee
sources requires fast, accurate tracking of the sources
robustness to reverberation and correlation between sou

Many interference suppression techniques have been
plored to address this problem. The most common appro
is the use of an adaptive beamformer to process the sam
time-domain outputs of a multimicrophone array, such t
reception of the target sound from a particular direction
enhanced@see the reviews by Van Veen and Buckley, 198
Brandstein and Ward, 2001#. These techniques use signa
from the array to estimate the gradient of an error funct
and then iteratively move the filter coefficients closer to
optimal solution in small steps. Two algorithms that ha
been used extensively to address this problem are
iterative-adaptive techniques of Frost@1972# and Griffiths
and Jim@1982#. Other variations of adaptive algorithms in
clude those of Berghe and Wouters@1998# and Welker and
Greenberg@1997#. Although these adaptive algorithms ge

a!Electronic mail: melockwo@uiuc.edu
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erally work well for suppressing statistically stationary inte
ference sources that are uncorrelated with the target sou
our experience has shown that they tend to adapt slowly
inaccurately in the presence of multiple, nonstationary in
ference sources such as speech, especially when ther
more sources than sensors. As a result, the performanc
the algorithms is compromised.

Greenberg and Zurek@1992# suggested that a solution t
the problem of having more speech sources than sensors
to add more microphones. This solution is effective if
microphones are located far enough away from each o
that they provide added useful inputs. However, accompl
ing this in a hearing-aid system is difficult because locat
microphones away from the ears is undesirable. Some
rent behind-the-ear~BTE! hearing aids contain two micro
phones per instrument; however, the small separation of
microphones limits the effectiveness of such systems. Li
wise, it is impractical to use more than one microphone
instrument in systems that are located in the ear canal. T
a preferable system would use two sensors~one per instru-
ment, located at each ear or in the ear canals!, providing
greater spatial separation of the microphones.

Several previous studies of adaptive beamform
@Greenberg and Zurek, 1992; Kompis and Dillier, 199
Hoffman et al. 1994; Kates and Weiss, 1996# have avoided
the problem of slow algorithm adaptation by allowing th
adaptive filters sufficient time~at least 2 s for these studies!
to converge before processing test signals. To provide m
challenging test conditions, Greenberget al. @2003# used a
37979/13/$20.00 © 2004 Acoustical Society of America
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‘‘roving’’ interfering sound source that changed location
random times. However, this roving source was not used
all test conditions, and the algorithms in that study we
permitted to converge for 1 s before the onset of the targ
signal. We argue that a beamforming algorithm used in a
hearing-aid instrument cannot be preadapted in an aco
cally crowded environment due to the changing head p
tion of the listener and the movement of the interfering ta
ers, and it may be unable to adapt quickly enough to perfo
effective interference suppression. Thus, the adaptation
of a hearing-aid signal-processing algorithm is an import
consideration.

To improve the adaptation rate of time-domain alg
rithms, an alternate approach to an iterative-adaptive te
nique is direct solution of the optimal beamformer@Capon,
1969#. While this in theory provides rapid convergence a
improved interference cancellation, this technique gener
requires the inversion of large, time-domain correlation m
trices, a process that is inherently unstable and computa
ally impractical@Golub and Van Loan, 1996#.

To suppress multiple, nonstationary interfering sour
using only two sensors, frequency-domain beamforming
gorithms appear to have distinct advantages compare
time-domain algorithms. For example, the algorithm of L
et al. @1997, 2000, 2001# first determines source location
and strengths, and then performs constrained beamform
in each frequency band to remove interference. This met
was shown to adapt quickly and could effectively suppr
multiple speech interferers using only two microphones
demonstrates a distinct improvement in performance o
time-domain methods, but it requires intensive computat
The LENS algorithm@Deslodge, 1998# extracts a target sig
nal by placingn21 spatial nulls usingn sensors. Greenber
et al. @2003# evaluated a four-sensor LENS implementati
with up to three interfering sources.

Other frequency-domain algorithms do not perfo
beamforming, but rather attenuate individual frequen
bands that contain interference. The algorithm of Peis
Kollmeier, and colleagues~Kollmeier, 1997; Kollmeier
et al., 1993; Peissig and Kollmeier, 1997; Wittkopet al.,
1997!, hereafter referred to as the P–K algorithm, uses
herence and phase and amplitude differences between c
nels to determine a gain for each frequency band. Slyh
Moses@1993# describe another example of this type of alg
rithm. These techniques have been shown to be effectiv
attenuating off-axis sources using only two sensors, but t
also introduce signal distortion by attenuating part of
target signal.

Frequency-domain minimum-variance distortionle
response~MVDR! beamformers@Cox et al., 1986; 1987# are
more computationally efficient than both the technique
time-domain correlation matrix inversion and the algorith
of Liu et al. @2000, 2001#. MVDR beamformers pass signa
from a target direction with no distortion, assuming the s
sors are matched. Kates and Weiss@1996# used adaptive
frequency-domain algorithms~preadapted for 2 s! to extract
speech in a diffuse noise field using signals from a fi
sensor end-fire array. Their study included an MVDR alg
rithm with a limited adaptation rate.
380 J. Acoust. Soc. Am., Vol. 115, No. 1, January 2004
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We hypothesized that a frequency-domain MVD
~FMV! algorithm, specifically implemented for fast adapt
tion, might be effective for suppressing multiple interferin
speech sources using only two sensors. We have im
mented such an algorithm and evaluated its performa
with computer simulations@Lockwood, 1999; Lockwood
et al., 1999#. Initial tests showed that, compared to tim
domain adaptive algorithms, the computational cost of
FMV algorithm is similar, but it converges much mor
quickly. For simulated signals with up to four interferin
sources, the FMV algorithm outperformed the algorithms
Frost @1972# and Griffiths and Jim@1982# in terms of SNR
gain @Yang et al., 2000#.

The focus of the current study is threefold. The first go
is to further evaluate the performance of the FMV algorith
with a two-sensor array in real environments. Although t
performance of the FMV algorithm under simulated con
tions is promising@Larsen et al., 2001#, it has not been
evaluated under actual room conditions with real record
signals. The second goal is to evaluate and compare ti
and frequency-domain algorithms in acoustic scenes
which there are more speech sources than sensors. This
resents a challenging condition for beamforming algorithm
and a condition that most studies have not explored. Only
study of Kates and Weiss@1996# evaluated algorithms in an
environment with more sources than sensors, but the sou
were all multitalker babble rather than speech. Finally,
cause speech sources and acoustic scenes change rapi
real-world listening environments, the third goal is to d
velop a better understanding of how adaptation speed aff
the performance of these algorithms.

Recordings were made in three different rooms w
varying reverberation times~RTs: 0.10, 0.37, 0.65 s! using
three different microphone arrays:~1! two microphones
coupled to the ear canals of a KEMAR mannequin;~2! two
omnidirectional microphones in free field separated by
cm; and~3! two cardioid microphones in free field separat
by 15 cm. The performances of a two-channel FMV alg
rithm @Lockwood, 1999; Lockwoodet al., 1999#, the Frost
adaptive beamformer@Frost, 1972#, a version of the general
ized sidelobe canceler~GSC! @Greenberg, 1998; Griffiths and
Jim, 1982#, and an implementation of the Peissig–Kollmei
~P–K! @Kollmeier et al., 1993; Wittkopet al., 1997# binaural
algorithm were assessed. The signals were also proce
with a fixed beamformer. The algorithms were not allowed
preadapt, and their performance was compared in term
the signal-to-noise ratio~SNR! gain and target signal distor
tion produced by each. The adaptation characteristics of
FMV, Frost, and GSC algorithms were further evaluated
computer simulation. Finally, the computational costs of
algorithms were examined.

II. ALGORITHM IMPLEMENTATIONS

A. Frequency-domain MVDR „FMV… algorithm

Time-domain input signals, with a sampling rate
22.05 kHz, are transformed periodically~every L516
samples! into the frequency domain via a length-N FFT, us-
ing a Hamming window. For a two-microphone system, t
Lockwood et al.: Performance of beamformers
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frequency-domain signals from the sensors are represe
by the components of the vectorXk5@X1k X2k#, wherek
indexes the frequency bins. TheF most recent FFTs are
stored in a buffer, and a correlation matrixRk is calculated
for each frequency bink by using:

Rk5F M

F (
i 51

F

X1k,i* X1k,i

1

F (
i 51

F

X1k,i* X2k,i

1

F (
i 51

F

X2k,i* X1k,i

M

F (
i 51

F

X2k,i* X2k,i

G , ~1!

where* represents complex conjugation, andM is a multi-
plicative ‘‘regularization’’ constant slightly greater than 1.0
that helps avoid matrix singularity and improves robustn
to sensor mismatch. Coxet al. @1987# described the use o
additive regularization to control the trade-off between
bustness and white-noise gain. Values ofN, M, and F are
found in Table I. The correlation matricesRk are updated
every L516 samples, allowing them to quickly trac
changes of the input signals in all frequency bands. The
relation matrices and FFT buffers were set to zero bef
processing each signal.

For each frequency bandk, the monaural output of the
beamformer is

Yk5wk
HXk , ~2!

where wk is a vector of frequency-domain weights andH

represents the Hermitian transpose of a vector. The opt
zation goal and constraint are expressed for each frequ
band as

min
wk

E$uYku2%, ~3a!

subject to eHwk51, ~3b!

where min represents the minimization of a function w
respect to selected variables~the weights,wk , in this case!,
E$ % represents the expected-value operation, ande is a vec-
tor indicating the desired arrival direction. This general a

TABLE I. Algorithm parameters for best performance.

Microphone

Processing algorithm:

FMV Frost GSC P–K

Omnidirectional N51024 NF5401 KGSC5401 N51024
~Sennheiser
MKEII !

F532 mF51.0 a50.15 c155

M51.03 cF50.01 c251
c351

Cardioids N51024 NF5401 KGSC5401 N51024
~Sennheiser
ME-104!

F532 mF51.0 a50.15 c155

M51.03 cF50.01 c251
c351

KEMAR N51024 NF5401 KGSC5401 N51024
~Etymotic
ER-1!

F532 mF51.0 a50.07 c151.0

M51.10 cF50.01 c251.5
c351.0
J. Acoust. Soc. Am., Vol. 115, No. 1, January 2004
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proach is originally attributed to Capon@1969#. For an on-
axis target source, both detectors receive the signal at
same time and with the same amplitude, assuming iden
detectors. Thus,eH5@1 1#. If the desired receive direction
were off-axis, thene would be complex valued. For the min
mization goal and constraint given in Eqs.~3a! and ~3b!, an
optimal solution is known@Capon, 1969; McDonough, 1979
Cox et al., 1987#. For each frequency bink, the optimal
weight vectorwopt,k is given by

wopt,k5
Rk

21e

eHRk
21e1s

, ~4!

where Rk is defined in Eq.~1!, Rk
21 represents the matrix

inverse ofRk , ands is a very small positive quantity tha
prevents division by zero. Inherent to this solution is t
assumption that it is valid only if the inputs are stationa
random processes. This is assumed to be true for small
intervals of speech signals in each frequency band.

To respond quickly to changes inRk , new optimal
weights wk are calculated for half of the frequency ban
every L samples, so all weights are updated everyL
samples. This is possible because for a two-sensor sys
the matrix inversion for each frequency band is computati
ally inexpensive. It will be demonstrated in Sec. V that th
technique yields faster and more accurate tracking of non
tionary sources than time-domain techniques.

To obtain the time-domain output, the newest optim
weights for each frequency band are applied to buffered F
data to obtain the output@Eq. ~2!#. The resulting N
frequency-domain values are then transformed to the t
domain using a length-N inverse FFT. This occurs everyL
samples, and the centralL samples of time-domain outpu
are used. As the outer samples of the FFT window are
tenuated by the Hamming window, this minimizes the effe
of circular convolution which arise due to the FFT-bas
filtering, while requiring less computation and delay than
overlap-save or overlap-add method@Joho and Moschytz,
2000#.

The main consideration in the FMV implementation w
frequency resolution, which is determined by the FFT len
relative to the sampling rate. For our experiments, a 10
point FFT was chosen because it provided the best per
mance. Increasing the FFT length decreases the bandwid
each frequency bin and should improve FMV performan
~for stationary signals!, as this provides the more detaile
estimates of signal spectra. However, in practice, when
FFT length was too long the performance decreased, lik
because the signal was not sufficiently stationary for the
terval of the FFT. Also, longer FFTs required more da
points, and objectionably increased the system delay.

B. Frost, GSC, P–K, and fixed beamformer
implementations

Optimized parameter values~see the next section fo
details! for three of the algorithms described in this secti
are shown in Table I. All time-domain adaptive weights we
initialized to that of a conventional beamformer, with a val
of 0.5 for each channel at an appropriate delay, and z
381Lockwood et al.: Performance of beamformers
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otherwise. All time-domain weights were updated ea
sample. The correlation matrices for the P–K algorithm w
also set to zero before processing and were updated eve
samples~as with the FMV algorithm!.

The Frost algorithm was implemented with the upd
equation

Wnew5P•S Wold2
2

3
•

Wold
T "xf "xf

mF•xf
T"xf1cF

D 1F, ~5!

whereWold is the previous set of time-domain filter coeffi
cients, andmF and cF are adjustable parameters to cont
the step size and to prevent divide-by-zero, respectively.
ditionally, xf is a column vector composed of the tim
domain input signals from both channels,P is a precomputed
projection matrix, andF represents the response constrain
all as per Frost@1972#. The factor of 2/3 facilitates compari
son of the step size with a bound derived by Frost.NF is
defined as the length of the adaptive filter.

The generalized sidelobe canceler~GSC! algorithm
@Griffiths and Jim, 1982# was implemented as per Greenbe
@1998#. This implementation improves performance and
duces target distortion in nonstationary environments w
the target signal is strong. The weight update equation w

Wnew5Wold1
asum

KGSC@se
2~n!1sx

2~n!#
•e~n!•xG~n!, ~6!

where asum is a step size parameter,n is an index of the
current sample,Wold is the previous set of time-domain filte
coefficients,e is the processed output,xG is a vector of
samples of the signal passed by the blocking matrix~mostly
interference!, KGSC is the filter length, andse

2 andsx
2 repre-

sent the average powers~updated every sample! of e andxG ,
respectively.

The P–K algorithm@Kollmeier et al., 1993; Wittkop
et al., 1997# was implemented with three variable paramet
to control the attenuation of the signal as a function of
phase and amplitude differences between channels and
coherence between channels. For thekth frequency band, the
~real-valued! filter weight Gk was determined using

Gk5g1k•g2k•g3k ,
~7!

g1k5maxS 0, 12
c1u/R12u

p D ,

g2k5c2•minS R11

R22
,
R22

R11
D , g3k5S Re@R12

2 #

R11•R22
D C3

,

wherec1 , c2 , andc3 are adjustable parameters that cont
the sensitivity of the algorithm to phase differences betw
channels, amplitude differences between channels, and
herence between channels, respectively;/ represents the
phase angle in radians, Re@ # represents the real part of
complex value, andRij is an element from a frequency
domain correlation matrix@see Eq.~1!#, with M51.00.

A simple fixed beamformer~referred to as a conven
tional beamformer! was implemented by averaging the si
nals from the two microphones after a matching filter w
applied.
382 J. Acoust. Soc. Am., Vol. 115, No. 1, January 2004
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C. Optimization

All algorithms and metrics were implemented usin
MATLAB 6.5 ~The MathWorks, Inc., Natick, MA!. Floating-
point calculations were performed with 64-bit precision. T
algorithm parameters~Table I! were adjusted for best perfor
mance in terms of the SNR metric@Sec. III F, Eq.~9!#. The
test signals were processed with many different sets of
rameters. For the frequency-domain algorithms, the effec
changing the FFT length was generally independent of
effects of changing other parameters, so this was set fi
Additionally, the additive constantcF in the Frost algorithm
was found to have little effect on performance so long a
was above a minimum value. This narrowed the param
space to two variables for the FMV, Frost, and GSC alg
rithms, and to three variables for the P–K algorithm.

Many sets of values were chosen for the remaining f
parameters, and the signals were processed and result
tained for all. It was found that performance varied with t
number of interfering sources. Because this study emp
sizes the effects of multiple interfering sources~more sources
than sensors!, the parameter set for each algorithm that p
duced the best overall performance for tests with multi
interferers was chosen as optimal. This was anad hocdeci-
sion made by plotting the performance on a graph and cho
ing the line that was highest for the multiple-interferer tes
For the time-domain algorithms, special care was taken
to choose parameter sets that caused instability, as it
possible to have good multiple-interferer performance wh
the algorithm became unstable for the one-interferer test
nals.

III. EXPERIMENTAL METHODS

A. Test materials

A series of high-context sentences by eight talkers~four
females and four males! from the revised R-SPIN test@Bilger
et al., 1984# were recorded on digital audio tape~DAT! at a
sampling rate of 48 kHz, quantized to 16 bits. Recordin
were made in a sound-treated studio~model: Studio 73535
ft., Acoustic Systems, Austin, TX!. The recorded sentence
were downsampled to 44.1 kHz. Three different senten
were chosen from each talker. This provided a total of
different sentences, 12 by male talkers and 12 by fem
talkers. A section of multitalker babble from the R-SPIN te
was also used as an interfering signal in several test confi
rations. Its sampling rate was also 44.1 kHz.

B. Recording techniques and setup

Each of the 24 sentences, the multitalker babble sig
and 10 s of white noise were played back from eight lou
speakers housed in a semicircular enclosure~SPATS, Sensi-
metrics Corp., Somerville, MA!. Each loudspeaker was equ
distant~75 cm! from a central point and comprised a sing
7.6-cm-diameter driver with frequency response restricted
200-Hz to ;13 kHz. The two-microphone arrays were lo
cated at the central point of the array, 1.15 m above the fl
Lockwood et al.: Performance of beamformers
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FIG. 1. ~A! Diagram of room 1~treated with acoustic foam! with loudspeaker array.~B! Diagram of room 2~conference room with windows! with
loudspeaker array.~C! Diagram of room 3~conference room, bare walls! with loudspeaker array. Filled circle represents target loudspeaker, open c
represents interferer; distances to central point of the array are shown.
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and oriented such that the loudspeakers were at azimuth
60°, 40°, 20°, 0°,220°, 240°, 260°, 280° with respect to
the broadside array.

Recordings were made with three sets of microphon
~1! Sennheiser MKEII omnidirectional microphones spac
15 cm apart in free field;~2! Sennheiser ME104 cardioi
microphones spaced 15 cm apart in free field; and~3! Ety-
motic ER-1 microphones mounted in the ears of a KEMA
mannequin~Knowles Electronics, Itasca, IL!. The omnidi-
rectional and cardioid microphones were connected dire
to a microphone preamplifier~Millennia Media HV-3B, Plac-
erville, CA! that was connected to the inputs of the Aark
system. The KEMAR microphones were connected to th
own dedicated preamps, and then to the Millennia Me
preamplifier. Recording and playback were done with a sa
pling rate of 44.1 kHz. The recorded data were downsamp
to 22.05 kHz prior to being saved to hard disk.

C. Room descriptions

Recordings were made in three rooms with different
verberation characteristics. In all rooms, the ceiling h
acoustic tile suspended at a height of 9 ft. Above it wa
concrete ceiling. The floors of all rooms were covered w
short carpet. The dimensions of the rooms and the posit
ing of the loudspeaker and microphone arrays within th
are shown in Figs. 1~a!, ~b!, and~c!. Room 1 was an acous
tically controlled space with 6.4-cm-thick foam~SONEX
Valueline, Illbruck Corp., Minneapolis, MN! attached to all
wall surfaces; Room 2 was a rectangular conference ro
with bay windows and bookshelves on two walls; Room
was a rectangular conference room with painted gyps
board walls.

The reverberation times of the rooms were measu
with a sound-level meter~Bruel & Kjaer, model 2260!. A
more suitable source of an impulse was not available, s
hand clap was used as a stimulus after it was found th
provided consistent results over several measurements.
J. Acoust. Soc. Am., Vol. 115, No. 1, January 2004
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measurements were taken in each room at the central poi
the loudspeaker array and the results were averaged.
meter calculated theT60 times for 1/3-octave bands betwee
200-Hz and 10 kHz. The values for each band were avera
over the five measurements, and then averaged across
quency bands to obtain the reverberation time. The estim
averageT60 values for rooms 1, 2, and 3 were 0.10, 0.37, a
0.65 s, respectively.

D. Compensation, energy equalization, test creation

To match the microphones, the recorded white no
from the loudspeaker at 0° was filtered with a 43-tap F
filter adapted by an LMS algorithm to match the response
the microphones for the target direction. For a sampling r
of 22.05 kHz, this filter has a 2-ms delay, corresponding t
sound propagation distance of approximately 0.7 m. Giv
the dimension of the rooms and location of the microphon
direct reflections should require more than 2 ms to reach
microphones; the filters should thus compensate mostly
the differences in frequency response of the microphon
rather than responding to reflections from the room.

All acoustic recordings~except for the recordings o
white noise! were of the same duration; however, the du
tion of the spoken sentences varied. Therefore, the ave
power of each recorded sentence was calculated~taking into
account the varying durations! and all sentences were scale
to have the same average power. This is referred to as
normalized energy of a single interfering source. The am
tude of each interfering source could then be adjusted
provide a specified relative amount of interference with
spect to the target sentence.

To construct a test, the recordings of each source fr
its appropriate location~loudspeaker! were scaled and added
keeping the left and right channels separated, thereby
ducing a binaural test signal. This assumed that the acou
addition of the sources and the various components in
recording and playback system all act in a linear manner
383Lockwood et al.: Performance of beamformers
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TABLE II. Summary of test configurations.

Configuration
number

Azimuth angle of source

160° 120° 0° 240° 280°

1 Interferera Target
2 Interferer Target
3 MTBa Target
4 MTB Target
5 Interferer Target Interferer
6 Interferer Target Interferer
7 Interferer Target Interferer
8 Interferer Interferer Target Interferer
9 Interferer Interferer Target Interferer

10 Interferer Interferer Target Interferer Interferer
11 Interferer or MTB Interferer or MTB Target Interferer or MTB Interferer or MT

a‘‘Interferer’’ and ‘‘MTB’’ indicate interference from the angle listed by a single talker and multitalker bab
source, respectively.
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E. Test terminology and guidelines

A test configuration was defined as one particular spa
arrangement of target and interfering sources. Eleven
configurations were used; Table II describes the position
of the target and interferer~s!. Each configuration containe
one on-axis target source~always a single talker! presented
from the loudspeaker at 0°, and one to four off-axis interf
ing sources presented from the loudspeakers at possible
muth angles of160°, 120°, 240°, or 280°, each a single
talker or multitalker babble source. Multitalker babble w
used in test configurations 3 and 4 as the only interferer.
test configuration 11, a multitalker babble was placed at
of the four interference locations and single-talker interfer
were placed at the other three.

All sources were located in the front half-plane, and th
the effects of the directionality of the cardioid microphon
was minimal. Additionally, a front–back ambiguity did no
exist as there was no source located greater than 90° from
target signal.

For each spatial test configuration, 12 tests were c
structed. A test was defined as one permutation of a ta
sentence and interfering sentence~s!. Twelve different sen-
tences, three sentences each from two male and two fe
talkers, were used exclusively as target sentences.~Thus, for
each test configuration, six target talkers were males and
were females.! The remaining 12 sentences were used exc
sively as interferers. Additionally, in any test, each sou
was a different talker, and all interferers had the same ene

Each test was constructed and processed at three d
ent SNRs. For configurations 1–4~one interferer!, three nor-
malized energies were used:23, 0, and13 dB ~correspond-
ing to each interference source having 3 dB less, the sam
3 dB more average power, respectively, than the ta
source!. For test configurations 5–11, three lower normaliz
energies~26, 23, 0 dB! were used. Therefore, the enti
battery of tests consisted of 11 test configurations, 12 t
per configuration, and 3 SNR levels per test, for a total
396 test signals. Each test was approximately 2.5 s long
a total of 16.5 minutes of test signals. Results for each
configuration are presented in Sec. IV, and were obtained
averaging the performance metrics over the 12 tests
three SNR levels for each configuration.
oc. Am., Vol. 115, No. 1, January 2004
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F. Performance metrics

Processing with the various algorithms was done off-l
and the signals from the individual sources before and a
processing were known, greatly simplifying the calculati
of performance metrics. Because the target signal could
distorted by significant amounts during processing, and
cause distortion is detrimental to speech perception, a sig
to-noise ratio~SNR! metric that incorporated both interfer
ence and signal bias~distortion! error was chosen. The
output SNR~after processing! is defined as

SNROUT510• log10S (v51
V tu~v !2

(v51
V ~yp~v !2tu~v !!2D , ~8!

whereyp(v) and tu(v) are thevth samples of the processe
output and unprocessed~ideal! target signals, respectively
andV is the length of the signal in samples. In this work, t
unprocessed signal is binaural and the output is monau
Thus, the expression is modified to be

SNROUT

510• log10S ( i 51
V @g1tu,L~v !1g2tu,R~v !#2

( i 51
V ~yp~v !2~g1tu,L~v !1g2tu,R~v !!!2D ,

~9!

wheretu,L(v) and tu,R(v) are the unprocessed target signa
from the left and right microphones, respectively, andg1 and
g2 represent the gains applied by the algorithm~effectively
the steering vector! to the target signal in each channel.
this study,g1 , g250.5 because filters are used to match t
responses of the microphones in the target direction~see Sec.
III D !. If the microphones are not matched for the target
rection, the gains must be replaced with filters.

The input SNR for one channel is defined as

SNRIN510• log10S (v51
V tu,L~v !2

(v51
V i u,L~v !2D , ~10!

where i u,L(v) is the interference signal received by the le
microphone. Because all signals were recorded individua
the target and interference signals received by the mic
Lockwood et al.: Performance of beamformers
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phones are known and the SNRIN calculation yields the SNR
after microphone reception.

A second metric used was a measure of the target
tortion. Access to the processed target signal allowed
distortion to be quantified. The FMV, Frost, and GSC alg
rithms are constrained to pass the target with zero distort
and are referred to as distortionless response beamform
However, microphone mismatch and reverberation mean
only a portion of the target signal satisfies the constraint
target distortion may occur. The P–K algorithm attenua
frequency bands that contain interference, and thus alm
always cancels some of the target signal. We define a m
sure of target distortion as

TD5
(v51

V ~ tp~v !2@g1tu,L~v !1g2tu,R~v !# !2

(v51
V @g1tu,L~v !1g2tu,R~v !#2

, ~11!

wheretp(v) is the processed~monaural! target signal. When
TD is greater than zero, the target signal has been disto
Note that this metric does not distinguish between atten
tion and phase distortion.

IV. RESULTS AND DISCUSSION

A. Algorithm comparisons

Figure 2~results for omnidirectional and cardioid micro
phones, left channel! and Fig. 3~results for KEMAR micro-
phones, both channels! show the average SNROUT produced
by the algorithms after processing. The SNRIN, as received
by the omnidirectional, cardioid, and KEMAR~ER-1! micro-
phones, is labeled as~SNR, omni!, ~SNR, card!, and~SNR,
ER-1!, respectively. To facilitate the comparisons in Se
IV C, ~SNR, omni! is also shown with the results for th
cardioid and KEMAR microphones. In all three rooms a
for all microphone types, the FMV and P–K algorithms co
sistently outperform the Frost and GSC algorithms in ter
of SNROUT for all test configurations with more than on

FIG. 2. ~A!, ~C!, ~E! Processed and unprocessed SNR values for the
omnidirectional microphone data in rooms 1, 2, and 3, respectively.~B!, ~D!,
~F! Processed and unprocessed SNR values for the left cardioid microp
data in rooms 1, 2, and 3, respectively.
J. Acoust. Soc. Am., Vol. 115, No. 1, January 2004
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interfering source~configurations 5–11!. This is the main
advantage conferred by the frequency-domain algorithms

For the one-interferer tests~configurations 1–4!, the
FMV and P–K algorithms perform better than the tim
domain algorithms in terms of SNROUT for configurations 1
and 2. For configurations 3 and 4, the time-domain al
rithms perform similarly or slightly better in room 1, and i
room 2 with cardioid microphones.~Though the algorithm
parameters were not optimized for these one-interferer te
the improvement in performance that can be obtained
optimizing the parameters for these tests is not very larg!

The FMV and P–K algorithms perform similarly in

FIG. 4. ~A!, ~D!, ~G! Target distortion for omnidirectional microphones i
rooms 1, 2, and 3, respectively.~B!, ~E!, ~H! Target distortion from cardioid
microphones in rooms 1, 2, and 3, respectively.~C!, ~F!, ~I! Target distortion
for KEMAR microphones in rooms 1, 2, and 3, respectively.

ft

ne

FIG. 3. ~A!, ~C!, ~E! Processed and unprocessed SNR values for left K
MAR microphone data in rooms 1, 2, and 3, respectively.~B!, ~D!, ~F!
Processed and unprocessed SNR values for right KEMAR microphone
in rooms 1, 2, and 3, respectively.
385Lockwood et al.: Performance of beamformers
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terms of SNROUT, but the P–K produces more target disto
tion, as can be seen in Fig. 4. This is to be expected, as
FMV algorithm uses constrained spatial filtering to remo
interference without distorting the target signal~with
matched sensors and no reverberation!, while the P–K algo-
rithm simply attenuates frequency bands that appear to
dominated by interference. Therefore, target distortion is
cepted in exchange for an improved SNROUT.

The differences between the GSC and the Frost a
rithm are generally small. Griffiths and Jim@1982# showed
that their GSC structure converges to the same solution
the Frost beamformer, although their paths to converge
may be different. In the tests conducted here, the GSC a
rithm appears to have a slight performance advantage
the Frost algorithm for the single-interferer tests, while t
Frost algorithm appears to perform better than the GSC
the number of interferers rises. This difference is more
parent with the KEMAR microphones~Fig. 3!, for which the
GSC has a more pronounced advantage in the one-inter
tests~up to 3 dB! and for which the Frost algorithm perform
better in the multiple-interferer tests~by up to 2 dB!. The
cause of these differences is not known.

The FMV and GSC algorithms generally produce le
distortion~Fig. 4! of the target signal than the Frost and P–
algorithms. The FMV and GSC distortion figures are oft
comparable, but the FMV has an advantage in the more
verberant environments. The high distortion figures of
P–K algorithm are expected, but those for the Frost al
rithm are not. They suggest that the Frost algorithm is m
sensitive to the amount of reverberation and the type of
crophone being used than the GSC or FMV algorithms a

The conventional beamformer, which averages the
inputs, performs more poorly than all other algorithms,
shown in Figs. 2 and 3.

B. Effects of reverberation

The performance, in terms of SNROUT ~Figs. 2 and 3!, of
all algorithms generally decreases by 1 dB or less for
tests in room 2~RT50.37 s! as compared to room 1~RT
50.10 s!. This decrease is fairly consistent across the diff
ent types of microphones. Performance differences betw
room 2 and room 3~RT50.65 s! are slightly more pro-
nounced, including a drop of 1–2 dB for the FMV and P–
algorithms across all configurations. Frost and GSC al
rithm performance is reduced by a similar amount.

In general, the performance of all algorithms is d
creased by similar amounts as the reverberation time of
room increases. Importantly, this implies that the perf
mance advantage of the frequency-domain algorithms
maintained as the reverberation time increases. For the
interferer configurations, the advantage of the frequen
domain algorithms actually increases with reverberat
time; this implies that the advantages of these algorithms
not limited to the configurations in which there are mo
sources than sensors.

It is important to point out that distortion fo
distortionless-response beamformers~FMV, Frost, GSC! is
due to sensor mismatch~including mis-steering! and rever-
386 J. Acoust. Soc. Am., Vol. 115, No. 1, January 2004
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beration. The matching filters were chosen carefully, but th
were kept sufficiently short so that they did not compens
for reflections and reverberation. Therefore, the distort
figures generally reveal how sensitive the algorithms are
reverberation.

Increasing the amount of reverberation consistently
creases target distortion. Figure 4 reveals that the target
tortion for the FMV, Frost, and GSC algorithms approx
mately doubles from room 1 to room 2, and doubles ag
from room 2 to room 3. The FMV and GSC generally ha
the lowest distortion for all rooms. The distortion of the P–
algorithm rises by approximately 0.05 for both rooms 2 a
3. The P–K algorithm has by far the highest distortion
rooms 1 and 2 with omnidirectional and cardioid micr
phones; Frost has the second highest. The distortion of
Frost algorithm is comparable to that of the P–K algorith
for room 3. While the FMV, Frost, and GSC algorithms a
pear to be more sensitive to increases in reverberation
than the P–K algorithm, for the range of RTs used in t
study, the distortion of the FMV and GSC algorithms is s
notably less than that of the P–K algorithm.

C. Microphone effects

The directionality of the cardioid microphones accoun
for up to a 3-dB improvement in the SNRIN ~SNR, card! over
that of the omnidirectional microphones~SNR, omni!, as can
be seen in Fig. 2. This appears to account for the appr
mately 1–2-dB improvement in the SNROUT that is observed
for all algorithms for the multiple-interferer tests in all thre
rooms. Overall, the FMV algorithm with cardioid micro
phones performs best, albeit by a small margin.

The KEMAR microphones~Fig. 3! cause a reduction in
the SNRIN for the left channel and an increase in the SNRIN

~SNR, ER-1! for the right channel for single-interferer test
This is because the interfering source for these tests is f
the left of the array, at160° or 120°, and thus the interfer
ence is stronger in the left ear of the KEMAR than the rig
For multiple interferer tests, the SNRIN is lower than with the
other microphones. Thus, processing the KEMAR sign
yields 1–2-dB lower SNROUT than with omnidirectional or
cardioid microphones. Another notable effect of the KEMA
microphones is the dramatic increase in distortion@Figs.
4~c!,~f!,~i!# for the Frost algorithm, likely caused by sensiti
ity to reverberation or microphone mismatch. The distorti
for the GSC algorithm remains low.

For the experiments in this study, all sound sources w
placed in the front half-plane. This reduced the benefits
tained by using the cardioid or KEMAR microphones.
sources had been placed in the back half-plane, using t
microphones would have resulted in higher values of SNRIN.
However, for this study, the effect of the directionality of th
microphones that is most interesting is the ability to redu
the reverberation in the recorded signals. It was hoped
the directional microphones would make all algorithms mo
robust to reverberation effects. Compared to the proces
signals from the omnidirectional microphones, process
the signals from the cardioid microphones produces a so
what higher output SNR~for all three rooms! and generally
lower target distortion, while processing signals from t
Lockwood et al.: Performance of beamformers
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TABLE III. Frequencies of sinusoidal interferers and positions as a function of time.

Time
interval Sinusoid frequencies~Hz!

500 611 682 769 921 1016 1095 1187 1331 144

Azimuth angles

0.00–
0.75 s

265° 255° 245° 235° 225° 20° 30° 40° 50° 60°

0.75–
1.50 s

20° 30° 40° 50° 60° 265° 255° 245° 235° 225°

1.50–
2.25 s

60° 50° 40° 30° 20° 225° 235° 245° 255° 265°
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KEMAR microphones produces slightly lower SNRs a
higher distortion. Overall, the performances of the alg
rithms were improved by the use of the cardioid directio
microphones, and only slightly reduced by the KEMAR m
crophones.

D. Best parameter sets

The optimal parameter sets for each algorithm~Table I!
were found to be the same for both omnidirectional and c
dioid microphones, but different for the KEMAR micro
phones. As compared to the best parameter sets for the
field microphones, the FMV algorithm performs best with
larger regularization valueM, the GSC algorithm requires
smaller step sizea to remain stable in multiple interfere
tests, and the P–K algorithm performs best with values oc1

and c2 that weight the amplitude difference most heav
instead of the phase difference.

V. TIME-VERSUS FREQUENCY-DOMAIN MVDR
BEAMFORMERS

A. Overview

The results in Sec. IV show the performance advant
of the FMV over conventional time-domain algorithms. T
Frost and GSC algorithms differ from the FMV in that the
are iterative-adaptive time-domain techniques, while
FMV calculates optimal solutions directly for many fre
quency bands. However, all are classified as MVDR bea
formers, because they have identical optimization goals
constraints~minimize output power, pass target source und
torted!. These MVDR beamformers~time- and frequency-
domain! will all asymptotically converge to identical solu
tions for inputs that are stationary random process
Therefore, differences in SNR performance are due to dif
ent adaptation characteristics in the presence of nonsta
ary signals such as speech.

Using specific simulated signals, we now examine
reasons for the performance advantage of the FMV over
other algorithms. The test signals are not true binaural
cordings as in the previous experiments, rather they
simulated. The signals for each source in each channel d
only by time delay. Therefore, no sensor mismatch is pres
the FMV, Frost, and GSC algorithms produce no target d
tortion, and performance differences result only from t
varying adaptation characteristics of the algorithms. The
, Vol. 115, No. 1, January 2004
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sence of sensor mismatch also allows accurate beam pat
to be calculated to observe these characteristics.

The algorithms were all optimized to produce the b
SNR gain for the simulated signals. The first example illu
trates the behavior of MVDR beamformers with statistica
stationary interference. The second example shows that
FMV is able to adapt more quickly and accurately to rap
changes in interfering sound sources, and thus it more ef
tively attenuates multiple-interfering sound sources.

B. Simulation example 1: Multiple spatially separated
sinusoidal interferers

MVDR beamforming algorithms may, in theory, atten
ate multiple, statistically stationary narrow-band interferen
signals at different frequencies. To demonstrate this, a t
channel test signal was synthesized containing a single
axis speech source and ten off-axis sinusoidal signals, e
with a different frequency and azimuth. The sinusoid fr
quencies ranged from 500 to 1450 Hz, with approximat
100-Hz spacing. Neglecting frequency smearing due to w

FIG. 5. ~A! Spectrogram of the target speech signal in example 1~‘‘The war
was fought with armored tanks.’’! before processing.~B! Spectrogram of the
combined target and sinusoidal interference signals in example 1 be
processing. The target signal is at 0° azimuth, and ten sinusoidal interfe
originate from angles between665° azimuth.~C!, ~D! Spectrograms of
example 1 after processing with the FMV algorithm~C! and the Frost algo-
rithm ~D!.
387Lockwood et al.: Performance of beamformers
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dowing, there is no spatial or frequency overlap of the int
ferers. So that the adaptation rate of both algorithms can
observed, the sinusoids instantaneously change location
0.75 and 1.5 s. The sinusoid frequencies and azimuths
function of time are listed in Table III.

Spectrograms of the target and combined signals be
processing are shown in Figs. 5~a! and~b!, respectively. The
SNR before processing is27.35 dB. The spectrograms o
the processed output from the FMV and Frost algorithms
shown in Figs. 5~c! and~d!, respectively, and the SNR gain
were 18.56 and 16.14 dB, respectively.

While processing this signal, all of the frequenc
domain weights calculated by the FMV algorithm for th
FFT bin centered on 925 Hz were recorded. All of the tim
domain filter coefficients from the Frost algorithm we
transformed to frequency-domain coefficients and record
Using these coefficients, the beam pattern for the 925
FFT bin ~the gain, in decibels, for signals as a function
azimuth angle and time! was calculated for both algorithms
and is shown in Fig. 6~a!. A two-element beamformer~with a
constraint! can place at most one spatial null per frequen
band, and the null direction changes with time as it adapt
the input signal. The null is easily visible, occurring at225°,
near 60°, and at 20° for time intervals@0.0, 0.75 s#, @0.75, 1.5
s#, and @1.5, 2.25 s#, respectively. Table III shows that
sinusoidal interferer with a frequency of 921 Hz was at th
locations at the above time intervals.

Figure 6~a! also shows that the FMV algorithm null de
viates from the direction of the interferer between 0.75 a
1.5 s. Examining Fig. 5~b! reveals that the spectra of th
target~speech! and interference~sinusoidal! sources overlap
in the 925-Hz FFT bin between 0.75 and 1.5 s. The optim
filter weights are calculated assuming that there is no co
lation between target and interfering sources; in practice,
is rarely true over short time intervals. Thus, the correlat
matrix estimates contain some error.~To reduce this error,

FIG. 6. ~A! Magnitude~in decibels! of the beam pattern for the FMV algo
rithm for the 925-Hz FFT bin. Note the null at225° (t50.00 to 0.75 s!,
'60° (t50.75 to 1.50 s!, and 20° (t51.50 to 2.25 s!. ~B! Magnitude~in
decibels! of the beam pattern for the Frost algorithm for the 925-Hz F
bin. The null location varies considerably, but on average is near225° (t
50.00 to 0.75 s!, 60° (t50.75 to 1.50 s!, and 20° (t51.50 to 2.25 s!.
388 J. Acoust. Soc. Am., Vol. 115, No. 1, January 2004
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correlation matrices may be formed using data from lon
time intervals with the trade-off of slower adaptation.!

Figure 6~b! shows the beam pattern for the Frost alg
rithm for the 925-Hz FFT bin. The direction of the nu
placed by the Frost algorithm is erratic when the sign
overlap ~between 0.75 and 1.5 s!. This occurs because
noisy time-domain estimate of the gradient is used to ad
the filter weights. This misadjustment error can be redu
by lowering the adaptation rate, but only at the expense
slower convergence, thus leading to poorer performanc
the presence of multiple interferers.

In this example the FMV and Frost algorithms sho
nonideal effects when target and interference signals over
However, both algorithms effectively attenuate multip
nonoverlapping statistically stationary interferers using s
nals from two sensors.

C. Simulation example 2: Multiple speech interferers

This example uses statistically nonstationary interf
ence sources~speech! to compare the speed and accuracy
convergence of the FMV, Frost, and GSC algorithms.
on-axis speech source and two off-axis interfering spe
sources~at 645°! are simulated. Figures 7~a! and ~b! show

FIG. 7. ~A! Spectrogram of target speech signal in example 2~‘‘He killed
the dragon with his sword.’’! before processing.~B! Spectrogram of com-
bined target and two interfering speech signals in example 2, before
cessing. The target signal is at 0° azimuth and the interference sources
645°. ~C!, ~D!, ~E! Spectrogram of example 2 after processing with t
FMV ~C!, Frost~D!, and GSC~E! algorithms.
Lockwood et al.: Performance of beamformers
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the spectrograms of the target and target plus interfere
signals, respectively. The SNR gains produced by proces
with the FMV, Frost, and GSC algorithms are 9.14, 5.41, a
4.30 dB, respectively, indicating that the FMV most effe

FIG. 8. ~A!, ~B!, ~C! Magnitude~in decibels! of the beam patterns for the
FMV ~A!, Frost~B!, and GSC~C! algorithms for the 800-Hz FFT bin. Nulls
near645° correspond to cancellation of interfering speech sources at645°.
~D!, ~E!, ~F! Magnitude~in decibels! of the beam patterns att50.6875 s for
the FMV ~D!, Frost~E!, and GSC~F! algorithms.
J. Acoust. Soc. Am., Vol. 115, No. 1, January 2004
ce
ng
d
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tively reduced the interference. This is supported by Fi
7~c!–~e!, which show the spectrograms of the outputs of t
FMV, Frost, and GSC algorithms, respectively. It is evide
that the FMV output@Fig. 7~c!# more closely resembles th
target signal@Fig. 7~a!#.

The better performance of the FMV in terms of the SN
gain may be explained by examining the time-varying be
patterns for the FMV, Frost, and GSC algorithms, shown
Figs. 8~a!, ~b!, and~c!, respectively. The nulls placed by th
FMV converge consistently and quickly to645°. In contrast,
the Frost algorithm’s nulls rarely converge to exact the dir
tions of the interference sources, and the GSC algorith
convergence is even less precise. Figures 8~d!, ~e!, and ~f!
show instantaneous beam patterns for the FMV, Frost,
GSC algorithms. At this point in time, the FMV algorithm
placed nulls closer to the directions of the interferers~at
645°!, especially for the245° source between 2300 an
5000 Hz.

This example illustrates the typical behavior of the alg
rithms for signals containing multiple speech sources. Wh
compared to the Frost and GSC algorithms, the FMV al
rithm exhibits faster, more accurate adaptation. This res
in better interference cancellation.

D. Computational complexity

The computational complexity of the FMV algorithm
derived after some simplifications of the computation. Tim
domain microphone data are real-valued, so weights for o
N/211 frequency bins are calculated~whereN is the number
of FFT bins!, and the remainingN/221 bins are obtained by
utilizing the conjugate-symmetry property of the FF
Because cross-correlation terms inR are conjugate symmet
ric, only three of the four terms need to be calculated. F
an n-microphone system, weights for onlyn21 channels
TABLE IV. Computational expense for various parts of the FMV algorithm.

Part of
algorithm Complex adds

Complex
multiplies

Complex
divisions

Real
multiplies Time

Windowinga 0 0 0 n•N
L

fs

FFTs ~n11!•
N

2
log2 N ~n11!•

N

4
log2 N 0 0

L

fs

Correlation ~n21n!SN2 11D
2

~n21n!SN2 11D
2

0 0
L

fs

Weight
application ~n21!SN2 11D nSN2 11D 0 0

L

fs

Matrix inversion
n3

3

n3

3
0 0

BL

fs

Weight
calculation~not
including matrix
inversion!

~n21n22!SN2 11D ~n21n!SN2 11D ~n21!SN2 11D 0
BL

fs

aFor example, the windowing operation requiresn•N real multiplies everyL/ f s seconds, whereL is the number
of samples between FFTs, andf s is the sampling rate in Hz.
389Lockwood et al.: Performance of beamformers
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need be calculated using Eq.~4!, because Eq.~3b! may
be utilized to obtain weights for thenth channel with less
computation.

The computational complexity of the FMV is a functio
of f s , the sampling frequency,n, the number of sensors,B,
the block length~the number of FFTs, for a single channe
that are calculated between each computation of new fi
weights!, N, the number of points in the FFT, andL, the
number of output samples obtained from each IFFT.~It is
assumed that there is no overlap of groups of out
samples.! Assumptions made for this analysis are:~1! a
radix-2-real-valued FFT is calculated everyL samples;~2!
calculating a matrix inverse requiresn3/3 complex multipli-
cations andn3/3 complex additions; and~3! the second
weight is obtained using Eq.~3b!.

Table IV summarizes the costs of each part of the al
rithm in terms of complex additions, complex multiplica
tions, complex divisions, real multiplications, and the time
which each must be completed. These cost estimates do
include the cost of overhead within a computer progra
such as retrieving data from memory; they reflect only
mathematical operations required to execute the algorith

Assuming that two real additions for each complex a
dition, four real multiplications and two real additions fo
each complex multiplication, and two complex multiplic
tions and two real divisions for each complex division a
required, the total number of operations per second~OPS!
required for the algorithm is

OPS5
f s

L FNS n1
5

2
~n11!log2 ND1~N12!S 4

3B
n3

1S 21
4

BDn21S 201
4

BDn2152
2

BD G . ~12!

Additionally, the cost of the Frost and GSC algorithm
are, respectively,

OPSF5 f s•~2KF14KF•n!, ~13!

OPSGSC5 f s•~n214KGSC•~n21!!. ~14!

For the best parameter sets, the FMV and P–K al
rithms require 178 million OPS, the Frost algorithm requir
88 million OPS, and the GSC requires 36 million OPS.
implemented, the FMV requires about five times more co
putation than the GSC and about twice as much as the F
By increasingL from 16 to 32 in the FMV and P–K algo
rithms, the cost is roughly cut in half. In practice, we ha
found that by increasing the interval between calculation
FFTs, the computational cost of the FMV algorithm can
made approximately equal to that of the GSC or Frost al
rithms with only a small decrease in performance.

The P–K algorithm implementation was very similar
that of the FMV, because it also performs FFTs periodica
and uses correlation matrices and frequency-domain filter
Its cost was considered to be comparable to that of the F
algorithm. Thus, with similar computational cost, the FM
and P–K algorithms provide performance superior to tha
the Frost and GSC algorithms in terms of SNR gain.
comparison, the cost of the direct inversion of a time-dom
390 J. Acoust. Soc. Am., Vol. 115, No. 1, January 2004
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correlation matrix~as per Capon@1969#! of dimension 401
~the length of the Frost and GSC filters!, done every 32
samples~as with the calculation of the FMV weights!, is
approximately 15 billion OPS.

VI. CONCLUSION

Test signals containing multiple speech sources w
created from recordings made with three different types
two-microphone arrays in three rooms with varying rev
beration times. The performance of a frequency-dom
minimum-variance distortionless-response~FMV! beam-
former, the Frost adaptive beamformer, the generalized s
lobe canceler~GSC!, and an implementation of the Peissig
Kollmeier ~P–K! binaural algorithm were evaluated. Th
FMV and P–K algorithms outperform the time-domain Fro
and GSC algorithms in terms of output SNR. A pair of ca
dioid microphones yields the best performance and low
target distortion. A pair of omnidirectional microphones pe
forms almost as well, followed by microphones mounted
each of the ear canals of a KEMAR.

The performances of the FMV and P–K algorithms a
very similar in terms of the SNR of the output signal, but t
P–K algorithm generates significantly more distortion of t
target signal. In the tests conducted in this study, filters w
used to match approximately the response of the mic
phones for sounds received from the target direction,
some inherent error is still present in the test signals. T
error means that even the distortionless response beamf
ers could distort the target signal, as is evidenced in the p
of the target distortion.~This issue has been addressed
Elledge @2000#.! The FMV generally produces the smalle
amount of distortion, while the Frost and P–K algorithm
generally produce the largest distortion figures. The imp
of the distortion on speech perception and quality has
been determined with human listeners.

Informal observations indicate that the P–K algorith
as implemented here, produces highly intelligible, thou
distorted output. This suggests that if distortionless respo
is a requirement~such as in a high-fidelity hearing aid!, then
the FMV algorithm is preferred, but if maximal intelligibility
is the principal goal, then the P–K algorithm~as imple-
mented here! is also promising. A hybridization of the FMV
and P–K algorithms may prove beneficial if it can prese
some of the benefits of each approach.

The two-channel FMV has been implemented in a re
time system@Elledge et al., 2000#. Preliminary tests show
that the real-time system helps normal-hearing listeners
derstand an on-axis talker amidst many interfering source
controlled environments as compared to conditions with
chotic unprocessed signals and diotic signals~channels
summed! @Larsenet al., 2001; Feng, 2002#. Informal tests
indicate that the FMV improves intelligibility in rooms tha
vary widely in size and reverberation characteristics. T
output of the real-time system sounds natural and is of h
fidelity.

This study uses recordings that were made at a dista
of 75 cm from the loudspeaker, where the direct-
reverberant ratio is relatively high. Even though reverbe
tion was not dominant, the performance of all the algorith
Lockwood et al.: Performance of beamformers
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is compromised to varying degrees, with the FMV and P
algorithms showing the smallest degradation. Our goal
the present study was to determine the relative effectiven
of these algorithms in rooms having different reverber
characteristics, but not to quantify the effect of the reverbe
tion per se. Future work is required to evaluate the perfo
mance of the algorithms with microphones farther from
sources where the direct-to-reverberant ratio is lower. Ad
tionally, the 7.6-cm-diameter loudspeakers in the array
quite directional at high frequencies due to the directivity
the driver, thereby reducing the amount of high-frequen
reverberation. In the future, loudspeakers with less dir
tional responses should be used in tests that involve sou
at greater distances.
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