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Abstract. Argument mining, a subfield of natural language processing and text
mining, is a process of extracting argumentative text portions and identifying the
role the selected texts play. Legal argument mining targets the argumentative parts
of a legal text. In order to better understand how to apply legal argument mining as
a step toward improving case summarization, we have assembled a sizeable set of
cases and human-expert-prepared summaries annotated in terms of legal argument
triples that capture the most important skeletal argument structures in a case. We
report the results of applying multiple machine learning techniques to demonstrate
and analyze the advantages and disadvantages of different methods to identify sen-
tence components of these legal argument triples.
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1. Introduction

Case summaries can assist legal professionals more easily to identify relevant cases and
assess whether to read their full texts. As a more accessible means for the general public
to gain some insights into what legal cases contain, summaries may also increase access
to justice. A good case summary should include some key information: 1) major issues

a court addressed in the case, 2) the court’s conclusion with respect to each issue, and
3) a characterization of the court’s reasons for reaching the conclusion. We refer to this
key information as legal argument triples (IRC triples). These triples capture a skeletal
structure of the legal arguments in a case.

Our ultimate goal is to extract the most important legal argument triples and use
them to create succinct, three-sentence summaries that could enable legal researchers to
better and more quickly assess what a case is really about and whether it is worth study-
ing in detail. As a step in that direction, we conducted an empirical study of whether a
machine learning (ML) model can identify the components of legal argument triples in
case summaries prepared by human experts. The human summarizers are legal profes-
sionals charged with capturing the most important information in the cases. While their
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summaries are still too long for our intended information retrieval (IR) use case, they
appear to contain the most important issues raised, the conclusions reached, and a reason
connecting them. Since the experts act as a well-informed filter on importance, it makes
sense to capture this information by annotating the summaries rather than the full texts.
A more ambitious goal, however, is to generate the triples automatically from the full
case texts.

Having developed a detailed annotation scheme, we annotated a sizable set of case
summaries in terms of argument triples and also used those annotated summaries to help
annotate the corresponding sentences in the full texts. We then applied various traditional
ML algorithms and deep neural network models to identify the sentence components of
IRC triples in corpora of legal summaries and of the corresponding full text decisions.
We explored the use of different sampling strategies with the algorithms. We report the
results and compare the advantages and disadvantages of the different methods.

2. Related Work

In order to summarize texts automatically, researchers have applied either abstractive
[1,2] or extractive techniques. In summarizing legal texts, researchers have applied
mainly the latter. See [3] for a recent survey. These extractive techniques have included:
graph-based methods to cluster sentences by topics [4], by similarity based on repetition
of legal phrases [5], or by unsupervised learning [6], machine learning classification of
rhetorical roles of sentences in legal cases (e.g., FACT, BACKGROUND) [7,8,9], the-
matic structure [10,6], the rhetorical status of sentences in judgments of the UK House
of Lords, [11], or catchphrases [12].

In [13] Zhong, et al. used machine learning to select which sentences in the decision
are predictive of the case outcome. The summarizer computes the relative importance of
sentences in a legal case document, as measured by their predictiveness and chooses a
subset to generate the summary. They partitioned acceptable sentences as classified by
type (i.e., Reasoning or Evidential Support sentence) and chose a set of summary sen-
tences using maximum marginal relevance. They concluded, based on a detailed error
analysis, that argument mining techniques would be required to identify more conceptual
aspects of the decisions. Our focus on identifying legal argument triples is intended to do
exactly that. In recent work, Yamada, et al. [14] have applied a similar approach to sum-
marizing Japanese judgments by extracting issues, conclusions, and framings. Our legal
argument triples, however, are simpler types, not tailored to Japanese legal judgements.
Here, we provide evidence that machine learning can extract the argument triple cases
from case summaries and full case texts based on a training set of expert summaries, a
resource not available in the cited work.

Argument mining is “the automatic discovery of an argumentative text portion, and
the identification of the relevant components of the argument presented there.” [15]. Ar-
gument mining research has developed techniques to automatically identify argument
components (e.g., premises, claims) in text and argumentative relations (e.g., support, at-
tack) between components in contexts such as document summarization [16], legal infor-
mation systems [17], and policy modeling platforms [18]. Argumentative relation mining
involves determining if a relation holds among particular argument components and clas-
sifying the argumentative function of the relation (e.g., support vs. attack). Prior research
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Table 1. Annotated data set summary.

Sentence length (mean token count)
Count # Sentences Issue Reason Conclusion non-IRC

Summaries 574 7,484 26.0 24.6 18.1 19.5
Full texts 109 23,653 35.5 26.7 25.7 16.8

has dealt with predicting argumentative relationship labels between pairs of argument
components, e.g., attachment [19], support vs. non-support [20,21,22], {implicit, ex-
plicit}x{support, attack} [23,24] and verifiability of support [25]. In the legal domain, ar-
gument mining research has focused on extracting argumentative propositions, premises
and conclusions, and nested arguments [26], arguments by example and other argument
schemes [27], the rhetorical and other roles that sentences play in legal arguments [8,28],
legal factors in domains like trade secret law [29], cited facts and principles (i.e., reasons
or warrants) [30], functional and issue-related parts (including analysis and conclusions)
[31], segments by topic [32] and segments by linguistic analysis [33,10,34].

3. Data Set

The Canadian Legal Information Institute (CanLII), a non-profit organization created
and funded by the Federation of Law Societies of Canada3 provided 28,733 paired cases
and human-prepared summaries. The cases cover different kinds of legal claims and
issues presented before Canadian courts. The summaries of those cases were prepared
by members of Canadian legal societies.

Two annotators, both second year law students at the University of Pittsburgh, clas-
sified sentences from the summaries in terms of three types (i.e., issue, reason, conclu-
sion), which together form “legal argument triples,” and a catch-all category (for all the
other sentences):

1. Issue – Legal question which a court addressed in the case.
2. Conclusion – Court’s decision for the corresponding issue.
3. Reason – Sentences that elaborate on why the court reached the Conclusion.
4. Non-IRC– Sentences that do not qualify as either of the three types.

For annotation, we randomly selected 574 pairs from the 28,733 case/summary
pairs. Annotators were asked to annotate all 574 summaries. After resolving all the an-
notation disagreements between annotators, we asked them to annotate the full texts cor-
responding to 109 summaries. Table 1 reports some key statistics about our annotated
data set. The statistics of the mean sentence length reveal something of how the sum-
maries are created. The IRC sentences are shorter in the summaries as compared to the
corresponding sentences in the full texts. This likely reflects the fact that after selecting
a sentence a human expert typically removes anything extraneous for the summary. The
opposite holds for the non-IRC sentences, which suggests that the full texts have many
short sentences not suitable for summaries (e.g., headings).

The third author, who is a law professor, provided a detailed annotation guideline
for student annotators to identify sentences in the summaries that are instances of the

3CanLII’s website is https://www.canlii.org/en/.
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Table 2. Mean and median Cohen’s kappa scores for each sentence type in summaries and full texts. Different
degrees of agreement strength correspond to ranges of kappa: values ≤ 0.00 as poor agreement; value 0.00−
0.20 indicates slight agreement; value 0.21−0.40 as fair agreement; value 0.41−0.60 as moderate agreement;
value 0.61−0.80 as substantial agreement and value 0.81−1.00 as almost perfect agreement.

Summary Full text
Issue Reason Concl. Overall Issue Reason Concl. Overall

Mean κ 0.698 0.602 0.698 0.709 0.598 0.591 0.616 0.773
Median κ 1.000 0.700 1.000 0.740 0.780 0.820 0.750 0.860

three categories (i.e., issue, conclusion, and reason). Both annotators attended all the
sessions. During those sessions, we did not notice any problems with American law
school students working with Canadian cases.

The student annotators employed an online tool, Gloss (developed by the second
author), to facilitate the annotation procedure. The annotators then proceeded over a
period of several weeks to annotate successive batches of twelve case summaries at a
time. After annotating each batch of twelve, the annotators and the first and third authors
met via Zoom to resolve any differences and assign the final labels via consensus of both
annotators in consultation with the third author.

The procedure for annotating full texts is different from that for summaries. We
leveraged the existing summary annotations by allowing the student annotators to quickly
target the sentences that are most similar to the annotated summary sentences: for each
annotated sentence in a summary, annotators pick up some keywords and utilize them as
pointers to locate corresponding sentences in the full text. This process does not require
the annotators to read and understand the whole full texts and expedited the process of
full text annotation. We believe that finding the triples in the summaries is considerably
easier than doing so in the full texts. We hope to develop a strategy for inexpensively
annotating full texts of cases that will enable us to amass a sizeable data set (something
nonexistent in legal text summarization as of now). Eventually, we hope to project the
annotations from the summaries to the full texts automatically. At the moment, however,
this is done manually by the annotators. This paper could be understood as a first step
toward the desired automation.

We use Cohen’s κ [35] to measure the degree of agreement between the two an-
notators after their independent annotations of each batch of twelve summaries. They
annotated N items into C mutually exclusive categories. In our case, there are three mu-
tually exclusive categories — issue, conclusion and reason and the number of items are
the number of sentences of each summary. The results of the inter-annotator agreement
study are presented in Table 2. The mean Cohen’s κ coefficients across all types is 0.716
which indicates a substantial agreement about the nature of the sentence types according
to [36]. As shown in the table, the mean of Conclusion agreement scores is the highest
whereas the mean of Reason’s is the lowest. Reasons are clearly the most challenging
since they are always entwined with facts. The other two types are easier because the
courts are more explicit in identifying their Issues and the Conclusions. The feedback
from the student annotators confirms this observation.

Figure 1 reports the distribution of the final consensus labels of summaries and full
texts. Non-IRC is the most frequent label across all the summaries. The reason label is
the second most frequent label, while the issue and conclusion labels are less frequent.
This result is attuned to our intuition since more valuable sentences (IRC triples in our
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Figure 1. Distribution of annotated IRC type sentences in 574 summaries (left) and in 109 full texts (right).
(The total number of full text IRC type sentences is lower because fewer full texts have been annotated than
summaries.)

Table 3. Number of summaries that contain issue, reason and conclusion

Issue Reason Conclusion
Count 557 531 574
Ratio 0.970 0.925 1.00

case) are much rarer than less valuable (Non-IRC) sentences. Table 3 reports the number
of summaries that contain issue, reason and conclusion sentences. The statistics show
that all summaries contain conclusions and well over 90% of summaries have issues
(97%) and reasons (93%). This confirms our hypothesis that these sentence types are
foundations for a good summary of a legal case.

4. Experiments

As discussed in Section 2, supervised learning techniques with labeled data are fre-
quently used for argument mining. The performance of supervised learning techniques
depends, among other things, on the quantity and quality of the annotated data. If the data
set is too small, supervised learning algorithms will not have enough data to learn; if the
quality of the annotation is not good, the algorithms will not be properly trained despite
a large data set. As a result, a sizeable data set with consistent high quality annotation is
fundamental for this study.

In order to fully assess the performance of our models, we undertook four types
of experiments: Four-way classification on summary only (IRC types and the non-IRC
type), four-way classification on full texts, binary classification on summaries (IRC vs
non-IRC) and binary classification on full texts. Four-way classification on summaries
takes annotated summaries as the training set and tests on unseen summaries. Four-way
classification on full texts takes part of the annotated summaries as the training set and
tests on full texts. Binary classification requires label transforming, which means we take
annotated IRC labeled sentences as one group and the non-labeled sentences (Non-IRC)
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as the other group. After transforming the labels, we use label-transformed summaries
for training and testing on full texts. For four-way and binary summary classifications, we
took 50% of our annotated summaries as the training set, 25% of them as the validation
set and the rest 25% as the test set. Since the full texts are used as the test set, 75% of
annotated summaries are being used as the training set and the rest of them are treated as
the validation set. We carefully designed four-way and binary classification experiments
on the full texts by excluding corresponding summaries from the training set to prevent
leakage of test data into our training.

4.1. Traditional Machine Learning

From traditional ML we work with random forest as one of the most successful algo-
rithms. A random forest algorithm (composed of multiple decision trees) was proposed
in [37]. Instead of dealing with a single tree classifier, the random forest is an ensemble
of trees and the final result depends on the majority vote. This algorithm significantly
improves the classification accuracy because of the randomness of feature selection.

We use TF-IDF values of unigrams, bigrams and POS tags as features for the clas-
sifier. We utilize grid search to find the best parameters for this model. Grid search picks
the parameters with the best validation accuracy. As [37] mentioned, there is a high prob-
ability that random forest will under perform in an extremely imbalanced data set since
a bootstrap sample will contain only few or no instances of the minority classes. We
observe that the non-IRC sentences are the majority in both summaries and full texts.
Some research shows that down-sampling the majority class or over-sampling the minor-
ity class are effective ways to boost the performance of tree classifiers. We investigated
different sampling strategies along with the random forest classifier and compared the
final results: naive over- and under-sampling, performing over-sampling using synthetic
minority over-sampling (SMOTE) and down-sampling by using edited nearest neighbor
(ENN) [38], and SMOTE and down-sampling using TomekLinks [39].

4.2. Deep Neural Networks

Deep neural network techniques have been widely used for the text classification task
because of their high performance. We leverage the power of deep learning to pick the ar-
gument triple components. We performed experiments with a Recurrent Neural Network
(RNN) based model and a Convolutional Neural Network (CNN) based model.

RNN-based models take text as a sequence of words and are intended to capture the
dependencies between words and text structures [40]. We use a variation of this RNN
architecture—Long Short-Term Memory (LSTM) network. LSTM performs generally
better than vanilla RNNs since LSTM addresses the vanishing gradient problem by in-
troducing multiple gates to control the information flow into and out of the neural cells
[40]. In our experiments, we use glove pre-trained word embedding. Those vectors were
trained on 6 billion tokens and have 100 dimensions.

CNN-based models are often used for analyzing images. They utilize several filters
to extract important features across several convolutional layers [41]. In text classifica-
tion problems, a CNN model can use different filters looking at different word lengths in
a piece of text. We use glove pre-trained word embedding for these experiments, as well.
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4.3. FastText

In [42] a computationally efficient method for text classification is proposed. This model
has only two layers, the embedding layer and linear layer. It has fewer parameters than
most deep learning models. The embedding layer is used for calculating the word em-
bedding, and taking the average of all the word embebddings. The average is stored in
a variable and fed to the linear layer. Glove pre-trained word embedding is used for
calculating the average in our experiments.

5. Results

The results of experiments described in Section 4 are presented in Tables 4 and 5. Table
4 reports the results of four-way classification on summaries and full texts. Here, CNN
achieves the highest F1 scores on IRC types. FastText performs best on picking up is-
sue and conclusion sentences in full texts. We found that the neural models perform bet-
ter than the random forest model in terms of identifying components of legal argument
triples in summaries. Our results also suggest that the different filters of a CNN model
pick up more semantic cues regarding the sentence types than RNN models.

Table 5 reports the results of binary classification on summaries and full texts. For
summary-only binary classification, we combined all the annotated IRC type sentences
into one group. This significantly increases the ratio of majority and minority classes of
our training set. Even though the random forest algorithm achieves some highest scores,
the neural models and FastText have more stable performances than random forest for
picking IRC type sentences in summaries: they all achieve 0.75 or above while the ran-
dom forest model with naive random under-sampling, SMOTTENN, and SMOTETomek
score less than 0.75. The only exception is random forest with oversampling technique.

Since full texts are significantly longer than summaries, the Non-IRC sentences are
still significantly more numerous than IRC sentences even though we combine all three
types of sentences. Training on an extremely imbalanced data set, random forest with
different sampling techniques has a slight competitive edge over neural networks and
FastText in classifying unseen samples. Random forest with sampling techniques score
over 0.83 on Non-IRC recognition while neural models and FastText score less than
0.82. The performance of the neural models, however, is on par with random forest in
picking IRC sentences. This result suggests that random forest may be a better choice for
retrieving components of legal argument triples.

6. Discussion

We confirmed that classification techniques are able to extract the components of legal
argument triples from summaries and full texts. We performed experiments using ran-
dom forest and several deep neural network models. Those classifiers performed well
on summary-only data. We observed that issue, conclusion, and non-IRC sentences are
easier to classify correctly than reason sentences. This observation is aligned with the
experience from the annotation phase: issue and conclusion sentences were easier for the
human annotators to identify. This indicates that legal common knowledge is embedded

H. Xu et al. / Using Argument Mining for Legal Text Summarization190



Table 4. F1 scores for the four-way classification on only-summary by using random forest (RF), LSTM, CNN
and FastText. The weighted F1 is the average of F1 scores of each type weighted by its support. The suffixes
are -O(over-sampling), -U(under-sampling), -w.o.r.(without replacement), - w.r.(with replacement).

Issue Reason Conclusion Non-IRC Weighted F1
Sum. Full Sum. Full Sum. Full Sum. Full Sum. Full

RF 0.48 0.19 0.39 0.10 0.58 0.23 0.67 0.95 0.56 0.91

RF-O 0.56 0.23 0.46 0.08 0.61 0.20 0.65 0.91 0.58 0.88
RF-U(w.o.r.) 0.55 0.15 0.48 0.07 0.59 0.15 0.58 0.80 0.55 0.77
RF-U(w.r.) 0.52 0.10 0.50 0.08 0.63 0.17 0.56 0.81 0.55 0.77
RF-SMOTEENN 0.49 0.14 0.09 0.08 0.58 0.21 0.66 0.92 0.48 0.89
RF-SMOTETomek 0.57 0.23 0.46 0.09 0.61 0.24 0.66 0.92 0.59 0.89
LSTM 0.59 0.13 0.52 0.09 0.67 0.17 0.68 0.85 0.62 0.82
CNN 0.64 0.23 0.54 0.10 0.67 0.20 0.66 0.85 0.63 0.82
FastText 0.59 0.27 0.52 0.14 0.67 0.22 0.69 0.89 0.63 0.86

Table 5. F1 scores for the binary classification on summaries and full texts by using random forest (RF),
LSTM, CNN and FastText.

IRC Non-IRC Weighted F1
Sum. Full Sum. Full Sum. Full

RF 0.76 0.16 0.59 0.80 0.69 0.78
RF-O 0.76 0.15 0.59 0.83 0.70 0.80
RF-U(w.o.r.) 0.71 0.16 0.63 0.87 0.68 0.84
RF-U(w.r.) 0.70 0.17 0.64 0.92 0.67 0.89
RF-SMOTEENN 0.17 0.05 0.62 0.98 0.48 0.94

RF-SMOTETomek 0.75 0.16 0.63 0.80 0.70 0.77
LSTM 0.75 0.16 0.58 0.82 0.68 0.79
CNN 0.75 0.16 0.62 0.78 0.69 0.72
FastText 0.76 0.18 0.65 0.82 0.72 0.79

in the usage of semantic tokens and that classifiers can recognize them by training on a
sizeable data set.

The more challenging task is migrating semantic cues of these sentence types to the
broader context of full texts. Performance drops significantly when classifying sentences
in full texts. One reason could be that the number of IRC sentences is still too few for
training an ML classifier. We discovered that some sampling techniques helped to ad-
dress the problem of imbalance; the combination of over-sampling and under-sampling
techniques in SMOTETomek performed better than the others.

7. Conclusions and Future Work

We experimented with several ML models to identify components of legal argument
triples by utilizing annotated human-generated summaries. We confirmed that classifica-
tion techniques can extract components of these triples in both summaries and full texts.
Based on the detailed discussion and evaluation, we found that neural models and Fast-
Text show promising results and some sampling techniques could be useful for boosting
the performance of random forest.
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In the future, we plan to increase the size of the annotated data set. The total number
of case summaries is 574. We have used only 465 of them as a training set for our full text
sentence classification because we needed to prevent our models from getting any cues
from annotations of corresponding summaries. The data set supported our experiments in
evaluating if ML techniques could identify components of legal argument triples and in
recognizing challenges faced in this task. The data size, however, is still not large enough
to draw finer conclusions in terms of comparing performance of different models where
they reach similar levels of performance. A larger data set will also be helpful for testing
on models that require careful hyperparameter tuning.

After improving a system’s ability to identify sentence components of IRC triples,
we will explore how best to identify related issues, conclusions, and reasons and to com-
bine and present them as effective extractive case summaries.
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