SHORT COMMUNICATION

A FUNCTIONAL INTERACTION BETWEEN GABA AND 5-HT IN INHIBITING PICROTOXIN-INDUCED MYOCLONUS IN RATS

VANAJA PAUL* AND M. S. KRISHNAMOORTHY

Department of Pharmacology & Environmental Toxicology,
Dr. A. L. M. Postgraduate Institute of Basic Medical Sciences,
University of Madras, Taramani, Madras - 600 113

Abstract: Pretreatment with S-hydroxytryptophan (S-HTP), a precursor of S-HT, antagonised while pre-treatment with p-chlorophenylalanine (pCPA), a S-HT depletor, potentiated the myoclonus induced by picrotoxin, a GABA antagonist. Pretreatment with aminooxyacetic acid (AOAA), a GABA transaminase inhibitor, antagonised picrotoxin-induced myoclonus. The combined effect of the least protective doses of AOAA and S-HTP was greater than the sum of their individual inhibitory effects on picrotoxin-induced myoclonus. Further, AOAA failed to inhibit picrotoxin-induced myoclonus in PCPA pretreated rats. These findings suggest that the central 5-HT-ergic system exerts a facilitatory influence on the GABA-ergic system and thus it is involved in the antmyoclonic action of GABA.

Key words: GABA 5HT picrotoxin AOAA S-HTP myoclonus

INTRODUCTION

Clinical findings reveal that malfunctioning of gamma aminobutyric acid (GABA) and 5-hydroxytryptaminergic (5-HT) mechanisms is casually related to myoclonic syndrome and agents which enhance the activities of these neuronal systems are therapeutically effective (1, 2, 3, 4, 5, 6). However, it is yet to be investigated whether a functional interaction exists between these neurotransmitters in alleviating myoclonic movements. The present study evaluates the relationship between GABA and 5-HT in inhibiting experimentally-induced myoclonus in rats. Since jerky movements induced by the GABA antagonist, picrotoxin (7) are reminiscent of human myoclonic syndrome (8), this model has been chosen for the present study. In order to investigate the interaction, the individual antmyoclonic effects of a GABA degradation inhibitor, aminooxyacetic acid (AOAA) and the 5-HT precursor, 5-hydroxytryptophan (5-HTP), which are known to inhibit myoclonic convulsions by elevating the brain levels of GABA (9) and 5-HT (10) respectively, were compared with that produced by them concomitantly. The effect of AOAA was then tested in rats pre-treated with p-chlorophenylalanine (PCPA), a 5-HT depletor (11).

METHODS

Adult Wistar strain male albino rats weighing 150-200 g were used. Picrotoxin, AOAA, 5-HTP and PCPA (Sigma, U.S.A.) were dissolved in distilled water. Gentle heating was required to dissolve 5-HTP. All solutions were freshly prepared and injected (ip) in a volume of 0.2 ml/100 g. Control rats received the vehicle at corresponding time interval. All experiments were conducted on fresh groups of rats at a room temperature of 30-35°C.

* Corresponding Author
In the first set of experiments, groups of rats were treated with graded doses of AOAA and 6 hr later challenged with the myoclonic dose of picrotoxin (3 mg/kg). Picrotoxin was administered 6 h after AOAA as a correlation between a rise in synaptosomal GABA content and an inhibition of convulsive responses has been reported to occur 6 hr after AOAA administration (9).

In the second set, groups of rats received graded doses of 5-HTP 30 min prior to picrotoxin (3 mg/kg).

In the third set, the animals received the minimum effective dose of AOAA (2 mg/kg) followed 5.5 hr later by the minimum effective dose of 5-HTP (25 mg/kg). Thirty min after 5-HTP treatment they were challenged with picrotoxin (3 mg/kg).

In the fourth set, the animals received PCPA (100 mg/kg daily for 3 days). Twenty four hr after the third injection of PCPA, the animals were challenged with picrotoxin (3 mg/kg).

In the fifth set, 24 hr after the third injection of PCPA the animals were treated with a protective dose of AOAA (4 mg/kg) and 6 hr later were challenged with picrotoxin (3 mg/kg).

Picrotoxin challenged animals were caged singly and observed for 1 hr. The onset of the first jerky movement (myoclonic latency) was recorded in each rat. Myoclonus appeared intermittently

Table I

<table>
<thead>
<tr>
<th>Treatment (mg/kg)</th>
<th>Myoclonic latency (min) (Mean ± SEM)</th>
<th>Myoclonic score (Mean ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10-20</td>
<td>30-40</td>
</tr>
<tr>
<td>A. Control</td>
<td>9.6 ± 0.5</td>
<td>3.0 ± 0.3</td>
</tr>
<tr>
<td>2.0 AOAA</td>
<td>11.3 ± 1.0+</td>
<td>3.0 ± 0.3</td>
</tr>
<tr>
<td>4.0 AOAA</td>
<td>13.1 ± 1.1+</td>
<td>3.0 ± 0.3</td>
</tr>
<tr>
<td>8.0 AOAA</td>
<td>21.3 ± 1.0+</td>
<td>3.0 ± 0.3</td>
</tr>
</tbody>
</table>

B. AOAA 2.0 + 5-HTP 25

C. PCPA 25 + AOAA 4.0

+P<0.05, ++ P<0.01 compared to control value (t-test)
*P<0.05, ** P<0.01 compared to control value (Mann-Whitney U-test)
†P<0.05, †† P<0.01 compared to that produced by the same dose of AOAA alone (Mann-Whitney U-test).
every 5-10 min. Each animal was, therefore, observed for 10 min at 10 min intervals (10-20, 30-40 and 50-60 min) and the intensity of myoclonic movements was scored as described by Slater and Dickinson (12); no jerking = 0, weak occasional jerking = 1, mild intermittent jerking of head and forelimbs = 2, pronounced jerking of head and forelimbs = 3 and a short period of myoclonic convulsions = 4. The number of rats not responding to picrotoxin (total protection during the test period) was also recorded.

Student’s t-test was used to analyze the latency data. Scoring data was analyzed using the Mann-Whitney U-test.

RESULTS

Both AOAA and 5-HTP were effective in a dose-dependent manner against picrotoxin-induced myoclonus (Table I A). Concurrent administration of them in their least protective doses resulted in a powerful inhibition of myoclonic movements. This combination afforded total protection to 4 rats in the group (n = 6) and markedly inhibited myoclonic scorings of the other rats (Table I B). The data presented in Table I C show that PCPA pretreatment has shortened myoclonic latency indicating a potentiation of picrotoxin-induced myoclonus. An effective dose of AOAA (4 mg/kg) failed to protect these animals. All of them responded to picrotoxin with a shortening of the myoclonic latency and an enhancement of myoclonic scorings than that recorded in animals treated with the same dose of AOAA alone.

DISCUSSION

In the present study, drugs which influence the central 5-HT-ergic mechanism have been found to affect the myoclonus induced by the GABA antagonist, picrotoxin. 5-HTP, a precursor of 5-HT, antagonized while PCPA, a 5-HT depletor, potentiated picrotoxin-induced myoclonus. Further, the combined effect of the least protective doses of AOAA and 5-HTP was greater than the sum of their individual inhibitory effects on picrotoxin-induced myoclonus in 5-HT depleted rats. Taken together, our findings suggest that the central 5-HT-ergic system exerts a facilitatory influence on the GABA-ergic system and is involved in the antitymoclonic action of GABA. Supportive to our contention are the recent immunohisto-chemical, radiographic and immunocytochemical studies which have demonstrated a co-occurrence of GABA and 5-HT in central neurons (13, 14) and the report stating that GABA mediated synaptic action is facilitated by endogenously released 5-HT (15).

REFERENCES

