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Abstract

Background: Fe3O4 nanoparticles (NPs, also known as iron oxide NPs; IONPs) have high

biocompatibility and low biotoxicity. They are widely used in the field of biotechnology for

targeted delivery, image formation, and photothermal therapy. NP biodistribution is determined by

macrophage capture in vivo, and recently, the induction of macrophage polarization into the M1

phenotype by IONPs has become a hot topic in research. Previous research has shown that IONPs

can induce ferroptosis of ovarian cancer cells and ischemic cardiomyocytes. In this study, we

exposed macrophages to synthesized Fe3O4NPs (100 nm in diameter) and determined the effects of

NPs in inducing cell death by RNA sequencing.
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Results: We observed that after 48 h exposure to NPs, there was a change in the macrophage

phenotype and a reduction in cell viability. Then, we demonstrated that NPs could induce

macrophage cell damage by increasing intracellular reactive oxygen species and by repressing the

mitochondrial membrane potential. Furthermore, we investigated the underlying mechanisms of

ferroptosis of macrophages using RNA sequencing and change in ultrastructural morphology, and

found that ferroptosis was caused by the upregulation of p53 expression and inhibition of SLC7A11

expression, as their protein levels after 48 h exposure to Fe3O4 NPs were consistent with

erastin-induced ferroptosis.

Conclusions: These results provide an insight into the molecular mechanisms underlying

ferroptosis induced by Fe3O4 NPs in macrophages and provide a basis for the biotoxicity study of

Fe3O4 NPs in vivo.
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Background

Fe3O4 NPs are among the most widely used magnetic nanoparticles in the field of biomedicine

owing to their outstanding magnetism, low toxicity, biocompatibility, biodegradability, and easy

aggregation and oxidation. In the medical field, they have used in a variety of applications, such as (i)

targeted delivery of drug or gene [1-3]; (ii) improving the quality of the contrast in magnetic resonance

imaging (MRI) and photothermal therapy [4, 5]; (iii) detection, diagnosis, and radiation treatment of

cancerous cells [6, 7]. Zanganeh et al. discovered that ferumoxytol inhibits cancer growth via the

polarization of tumor-associated macrophages (TAMs) into M1 phenotypes [8]. The repolarization of

TAMs into antitumorigenic macrophages is a potential target for cancer therapy [9-11]; therefore,

Fe3O4NPs have been a major focus of recent research. The NP biodistribution in vivo is determined by
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the capture of macrophage and subsequent degradation by macrophages [12]. However, except

phenotypic changes, the effects of Fe3O4NPs on macrophages remain poorly understood.

Ferroptosis is an oxidative type of regulated cell death caused by a metabolic disorder of

intracellular lipid oxides and morphologically distinct from other forms of cell death. It was first

formally described as an iron-dependent form of erastin-induced non-apoptotic cell death

[13]. Ferroptosis is characterized by abnormal levels of iron ions and excessive reactive oxygen

species (ROS) generation. When the antioxidant capacity of cells is weakened, ROS accumulates,

leading to an imbalance in intracellular redox and the induction of ferroptosis. In addition to

morphological changes, such as the rupture of the outer mitochondrial membrane, small mitochondria

with a condensed membrane, and loss or decrease in mitochondrial cristae are also mediated by

ferroptosis [14]. Ferroptosis induction is associated with multiple diseases and has recently gained

substantial attention as a target for cancer treatment [14]. It is reported that iron oxide NPs induced

ferroptosis in few cancer cells [17, 18] and ischemic cardiomyocytes [19].

With respect to our current understanding of the mechanism underlying ferroptosis, glutathione

peroxidase 4 (GPX4) reduces cytotoxicity by converting glutathione (GSH) to oxidized glutathione

(GSSH), and the inhibition of GPX4 causes accumulation of lipid peroxides induces ferroptosis. The

glutathione peroxidase pathway can directly inhibit GPX4, which is further regulated by system Xc-,

an amino acid anti-transporter composed of heterodimeric disulfide bound to xCT (SLC7A11). GSH

biosynthesis, cysteine availability, and the proper functioning of GPX4 are crucial for regulating

ferroptosis [20, 21]. Jiang et al. found that p53 promotes ferroptosis in fibroblasts, the human breast

cancer cell line MCF7, and the human osteosarcoma cell line U2OS via trans-repression of solute

carrier family 7 member 11 (SLC7A11) expression. This provided the first evidence for the induction
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of p53 in response to ferroptosis [22, 23]. At present, the regulatory effects of p53 in ferroptosis have

only been detected in cancer cells [24, 25].

Herein, we evaluated the effects of Fe3O4 NP treatment on macrophage phenotype. We observed

that treatment with Fe3O4 NPs caused macrophages to polarize into the M1 phenotype, accompanied

with a reduction in cell viability. Using RNA-seq, we found that NPs induced ferroptosis in

macrophages via upregulation of p53 expression and downregulation of SLC7A11 expression. We used

erastin-treated Ana-1 cells as positive control, and the ferroptosis of macrophages was verified by

observing the changes in the ultrastructure of the mitochondria and by assessing the expression levels

of TFR, p53, and xCT. Moreover, we demonstrated p53 regulation of ferroptosis in macrophages; this

is the first evidence of p53 mediated ferroptosis in cells other than cancer cells.

Results

Characterization of Fe3O4NPs and effects on cell viability

Ultramicrographs (TEM, Fig. 1a; SEM, Fig. 1b) show that the NPs were spherical and uniform in

shape. The hydrodynamic diameters of NPs were measured by dynamic light scattering (DLS; Nano

ZS90, Malvern, England), and the average hydrodynamic diameters of NPs (Fig. 1c) were 104 ± 3.25

nm, in good agreement with the TEM results. The zeta potentials (Fig. 1d) were -28.03 ± 1.3 mV.

These results indicated that the NPs had excellent properties and stability in ultrapure water
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Figure 1. Characterization of Fe3O4NPs. (a) Transmission electron micrograph, Ob: 50000×; (b) Scanning electron

micrograph, Ob: 50000×; (c) ζ-potential of NPs in Milli-Q water; (d) determination of NPs size by DLS.

Ana-1 cells were exposed to various concentrations of NPs for 24 and 48 h, and cell viability was

determined. As seen in Fig. 2a, NP treatment inhibited the proliferation of Ana-1 cells in a dose- and

time-dependent manner. When the concentration was less than 400 μg/mL, there was no significant

decrease in cell viability after treatment for 24 h. However, there was an approximately 8–10%

reduction in the viability of cells. In figure 2b, when the exposure time was extended to 48 h, the cell

viability decreased significantly (by approximately 25%) (p < 0.05). Therefore, in subsequent analyses,

400 μg/mL NPs was used. Cell viability was significantly inhibited at higher concentrations (500

μg/mL) (p < 0.01).
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Figure 2. Effects of gradient concentrations of nanoparticles (NPs) on cell viability after (a) 24 h and (b) 48 h.

Control cells cultured in nanoparticle-free medium were processed in parallel with the treatment groups. Results of

the CCK-8 assay are expressed as percentage relative to the control. Data are expressed as means ± SEM, *p <

0.05; **p < 0.01 vs Control.

Effect of Fe3O4NPs on macrophage phenotypes

TAMs can be functionally categorized into M2 macrophages [27]. M1 macrophages are

characterized by a high expression of inducible nitric oxide synthase (iNOS), high levels of arginase-1

(Arg-1) and anti-inflammatory (IL-10) are the markers of M2 macrophages. Ana-1 cell line is an

inactivated bone marrow monocyte-derived macrophage line and is classified as macrophages;

however, its protein expression pattern is similar to that of the M1 phenotype .

Cells were incubated with gradient concentrations of NPs for 24 h and 48 h, while untreated cells

were used as control. As shown in Fig. 3a, Arg-1 expression was extremely low in cells treated with

NPs at concentrations of ≥200 μg/mL (p < 0.001). The expression levels of iNOS in cells treated with

NPs at ≥300 μg/mL were 1.5- to 3-fold higher than those in the control (p < 0.05; p < 0.01). As shown in

Fig. 3b, an RT–qPCR analysis revealed that the mRNA levels of iNOS at ≥400 μg/mL were

significantly higher than those in the untreated cells (p < 0.05; p < 0.01). ARG-1 mRNA levels were

significantly lower in all experimental groups than in the control group (p < 0.001), consistent with the
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results obtained by western blotting. The levels of IL-10 in all groups decreased markedly (p < 0.001),

and low IL-10 expression is a characteristic feature of M1 macrophages. These results suggest that

NPs at ≥300 μg/mL could polarize Ana-1 macrophages to the M1 phenotype, consistent with

previous results [8, 30]. Notably, the protein levels of macrophages treated with NPs for 24 h (Fig S1a)

did not change significantly (p>0.05), suggesting that the macrophage phenotype did not change.

After the construction of the TAM models, they were incubated with or without NPs for another 24

h or 48 h. After incubating for 24 h (Fig S1b), the protein levels did not change significantly. The

proteins in the 48 h group were examined by western blotting (Fig. 3c). Compared to levels in the

control group, which were untreated cells, TAMs showed a significant increase (2- to 2.5-fold) in the

expression of Arg-1 (p < 0.05). The levels of iNOS were lower in TAMs than in the control group, but

the difference was not statistically significant, indicating that the TAM model contained a mixture of

M1/M2 phenotypes [31]. iNOS expression levels in NP-treated TAMs were 4- to 5-fold higher than

those in TAMs (p < 0.01), and Arg-1 expression levels were 5-to 7-fold lower (p < 0.01). We also

examined the mRNA levels of iNOS, Arg-1, and IL-10 (Fig. 3d). Significant reductions in the mRNA

levels of Arg-1/iNOS (1.5- to 2-fold) and IL-10/iNOS levels (55- to 57-fold) were observed in the

NP-treated TAMs compared with the control group (p < 0.01). These genes and protein expression

analyses confirmed the polarizing effect of NPs on TAMs.
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Figure 3. Effect of NPs on the change of macrophages phenotype. (a) Protein levels of iNOS and Arg-1 in Ana-1

cells incubated with 200, 300, 400, and 500 μg/mL NPs examined by western blotting; (b) mRNA levels of iNOS,

Arg-1, and IL-10 in Ana-1 cells treated with various concentrations of NPs; (c) Expression levels of iNOS and

Arg-1 in the tumor-associated macrophage (TAM) model incubated with or without NPs; (d) The ratios of

Arg-1/iNOS and IL-10/iNOS assayed by reverse transcription–quantitative PCR. Protein levels are shown relative

to untreated Ana–1 cells as control. The quantification of protein levels was achieved by calculating the signal

intensity ratio of iNOS and Arg-1 to the internal control (Tubulin); The mRNA levels were normalized to those of

GAPDH. Data from at least three independent experiments were used for quantification. Data are expressed as

means ± SEM, and *p < 0.05; **p < 0.01; ****p < 0.001.

Uptake of intracellular iron
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Ana-1 cells were incubated with NPs for 4, 8, 12, and 24 h at 37°C, and intracellular iron contents

were measured by ICP-ACE (Fig. 4a). In all samples, the uptake of nanoparticles increased

significantly in 8 h (140.29 pg/cell). The rate of uptake gradually slowed and reached a plateau at 12 h

(134.74 pg/cell). This might reflect the depletion of free NPs in the culture medium. At 24 h, the

decrease in the intracellular content may be due to exocytosis. The cellular NP content in the

macrophages was visualized by Prussian blue staining (Fig. 4b), and the expected Prussian blue

reaction was seen. We observed intracellular red fluorescence from lysosomes; the extensive

colocalization of red fluorescence from the probes and NPs can be observed in Fig. 4c and d. These

results indicated that NPs accumulated in lysosomes after internalization.

Figure 4. Quantification of intracellular localization of NPs. (a) Cellular iron contents measured by ICP-ACE; (b)

Presence of iron in cells are visualized by Prussian blue staining; (c, d) Colocalization of intracellular NPs with

lysosomes revealed by staining with Lyso-Tracker Red fluorescence probes; Ob: 200×.
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Mitochondrial damage triggered by Fe3O4NPs

After NPs are degraded into iron ions in lysosomes, iron ions induce oxidative stress by

generating ROS [31]. Ferroptosis is a type of ROS-dependent regulated cell death [31],

mitochondrial damage is the most common feature of this process which caused by intracellular

ROS [18]. As determined by flow cytometry (FCM) (Fig. 5a, b), the intracellular ROS content at 24

h was nearly 20–22% higher than that in the control group, with no significant difference. At 48 h,

the contents were about 12% higher than those at 24 h, and 32-40% higher (p < 0.05). This means

as the exposure time increased, intracellular ROS also increased. As shown in Fig. 5c, we compared

MMP changes by the green/red fluorescence ratio. The 24 h group showed slight mitochondrial

damage and relatively few inactivated cells, the ratio in the 48 h group was significantly higher than

that in the control group (p < 0.005). As seen in Fig. 5, red fluorescence was lower in the 48 h group

(g) than in the control (d) and 24 h group (f), while green fluorescence was similar to that of the

CCCP group (e), consistent with mitochondrial damage. The results shown that as the exposure

time increased to 48 h, more mitochondria were destroyed. Accordingly, the increase in intracellular

ROS was accompanied by the repression of MMP in the 24 h and 48 h groups, indicating that

mitochondrial damage depended on ROS levels in cells.
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Figure 5. Determination of intracellular ROS and MMP levels. (a, b) Trends in ROS generation detected by FCM.

When the MMP is high, the JC-1 probe is dispersed in a multimeric form in the mitochondrial matrix (red

fluorescence; Ex = 585 nm, Em = 590 nm). JC-1 is dispersed in the mitochondrial matrix in a free state when the

MMP is low (green fluorescence; Ex = 514 nm, Em = 529 nm); (c) Graphical representation of the green/red

fluorescence intensity ratios; (d) Untreated cells used as negative control; (e) CCCP treatment for 20 min used as

positive control; JC-1 stained micrographs at 24 h (f) and 48 h (g); Ob: 200×; *p < 0.05; **p < 0.01; ***p < 0.005;

****p < 0.001 vs Control.

Ferroptosis of macrophages induced by Fe3O4NPs

To further explore the influence of NPs on macrophages, the expression levels of all genes

were evaluated by RNA-seq (Fig. 6a). We found that NPs induce ferroptosis by upregulating p53

and downregulating SLC7A11, a key component of the cystine/glutamate transporter. Transferrin
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receptor (TFR) mediates the entry of iron-containing ferritin into cells, and Feng et al. [34] have

shown that TFR accumulation is a hallmark of ferroptosis. According to the RNA-seq results, NPs

increased the level of TFR, consistent with the expression characteristics of ferroptosis.

A previous study has reported that the activation of p53 can induce ferroptosis by inhibiting

system Xc- activity. Erastin is a typical ferroptosis-inducer, an oncogenic RAS-selective lethal small

molecule [35]. Recent findings suggest that erastin can also activate p53 and enhance ferroptosis

[36, 37]. Therefore, we used erastin (25 μM)-treated Ana-1 cells for 24 h as a positive control for

ferroptosis [38]. We determined the protein levels of TFR, p53, and xCT (SLC7A11) by western

blotting to verify the sequencing results and further evaluate the ferroptosis pathway. As shown in

Fig. 6b, TFR levels were approximately 1-fold higher in the erastin group than in the control group

(p < 0.001), indicating that the expression of TFR is an indicator of ferroptosis. The expression levels

of TFR at 24 h and 48 h were significantly higher than those in the control group by approximately

0.75- and 1.1-fold, respectively (p < 0.001). The protein levels of p53 in both the NP-treated group

and erastin group were higher than those in the control group by approximately 1- and 2-fold (p <

0.001). The expression levels of xCT in all treatment groups were significantly lower than those in

the control group (p < 0.005; p < 0.001), consistent with the RNA-seq results and with previous results

for erastin-induced ferroptosis [38].
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Figure 6. RNA-seq, ultrastructural change of mitochondria, and verification of protein expression associated with

ferroptosis. (a) Heat map visualization of the expression of various key genes of the ferroptosis pathway; (b)

Protein levels of TFR, p53, and xCT (SLC7A11) in the 24 h, 48 h, and erastin groups. Untreated Ana-1 cells used

as control; quantification of protein levels was achieved by calculating the signal intensity ratio of target protein

bands to the internal control bands (β-actin). Data are expressed as means ± SEM, and **p < 0.01; ***p < 0.005,

****p < 0.001 vs Control.

Ultrastructure of mitochondria in macrophage

Ultrastructural changes in the mitochondria, such as a volume reduction, outer

mitochondrial membrane disruption, and disappearance of the mitochondrial cristae

[40, 41] are considered as hallmarks of ferroptosis [42]. As shown in Fig. 7b, shrunken

mitochondria and fractured mitochondrial cristae are seen in the erastin-treated cells.

Ferroptosis can be characterized at a morphological level by the presence of shrunken

mitochondria [22]. in addition to the normal mitochondria, ruptured mitochondrial cristae

are also observed in the 24 h group (Fig. 7c). At 48 h (Fig. 7d), we observed
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mitochondrial membrane disruption, disappearance of the mitochondrial cristae, and

size shrinkage.

Figure 7. Morphology of mitochondria (red arrow) in nanoparticle (NP)-treated macrophages. (a–d): Untreated

Ana-1 as control group (a), Ana-1 treated with erastin (25 μM) for 24 h (b); Transmission electron micrographs of

NP treated cells for 24 h (c), 48 h (d). Ob: 2500×.

Discussion

As Fe3O4 NPs show high biodegradability, low biotoxicity, are easy to synthesize, and are

magnetic by nature [43]; owing to these features, they are widely used in biotechnology and medicine.

NPs were originally developed for improving the contrast of MRI [44, 45], that has been partially used

in clinical applications [46]. Fe3O4 NPs are widely used in the magnetic hyperthermia treatment of

tumors because of their high thermal effect in an oscillating magnetic field [47]. Because of their

magnetic properties, NPs are easy to modify, and are therefore commonly used as drugs and gene to

targeted delivery [48]. Notably, Fe3O4 NPs are also the first NPs that were found to have enzymatic

activity [49]. These NPs possess antitumor effects that are mediated via the Fenton reaction [50],

indicating their diverse applications in cancer treatment. Focusing on their ability to alter macrophage

phenotypes, Zanganeh et al. [8] revealed that ferumoxytol inhibits cancer growth by inducing a

pro-inflammatory immune response through M1 polarization. This study provides more evidence to

file:///C:/Program%2520Files%2520(x86)/Youdao/Dict/8.9.6.0/resultui/html/index.html


15

the antitumor activity of Fe3O4 NPs. NPs are usually administered via the intravenous route for clinical

applications [51]. Biodistribution studies have demonstrated that the uptake of NPs by

reticuloendothelial system (RES)macrophages may be the ultimate fate for most NPs, followed by being

dissolved and metabolized in the autolysosomes [51, 52]. Although NPs are so widely used in the field of

biotechnology, their cytotoxicity has not been fully explored.

TAMs can be functionally categorized into mixed type M1 and M2 macrophages, of which M2

accounts for a large proportion [53]. M1 and M2 macrophages are characterized by a high expression

of nitric oxide (NO) producing iNOS and ornithine producing Arg-1, respectively, which correlate to

either cytotoxic or repairing functions. TAMs are also known to express high levels of the

anti-inflammatory cytokine IL-10. In this study, we found that the macrophage phenotypes changed

following 48 h of exposure to NPs (Fig. 3), demonstrating that NPs not only polarized the

macrophages into the M1 type, and also repolarized TAMs into M1 type, corroborating a previous

report [8]. This implies that Fe3O4 NPs can be used for cancer treatment by means of immunotherapy.

Notably, as the exposure time increased from 24 h to 48 h, the viability of the macrophages decreased

with phenotype change (Fig. 2).

In order to evaluate the level of NP uptake, we measured the time gradient change of the

intracellualr NPs (Fig. 4a). Consequently, we found that the cell uptake of NPs was maximum at 8 h,

following which there was no significant increase in the NP content, suggesting that the reduction was

partly mediated by exocytosis. Therefore, it was considered that the decrease in cell viability at 48 h

was not related to the intracellular NP levels. We also found that intracellular NPs and lysosomes were

colocalized and consider that the phagocytic capacity of macrophages and the concentration gradient

between the outer and inner membranes are the underlying reasons for the colocalization. Supposedly,
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NPs entered the Ana-1 cells, where some of them were taken up by lysosomes while some were

degraded into iron ions[54].

Excessive iron ions in cells can cause abnormal iron metabolism and oxidative stress,

accompanying ROS production [32]. We found that the production of intracellular ROS increased

proportionally to the exposure time of NPs, suggesting that the presence of NPs correlates with ROS

production in the cells. ROS has always been known as an important mediator of inducing cell death in

several biological and pathological conditions[55]. Mitochondrial damage often occurrs owing to

ROS production and subsequently causes cell death, where decrease in MMP level is considered a

hallmark in apoptosis or ferroptosis. In this study, we found no prominent change in MMP in the 24 h

group, suggesting that accumulated ROS increased mitochondrial damage and further induced

apoptosis or ferroptosis.

Ferroptosis is a newly described programmed cell death pathway that is iron-dependent and

different from apoptosis, necrosis, and autophagy. Its most important characteristic is the production of

ROS, which is mainly caused by dysregulated iron metabolism. To explore the effects of NPs on the

macrophages, we sequenced the mRNA of the cells exposured to NPs for 24 h and 48 h. According to

the RNA-seq results illustrated in Fig. 6a, NPs activated the ferroptosis pathway by inducing p53

expression after exposure for 48 h. The tumor suppressor gene, p53, plays an important role in the

induction of ferroptosis by inhibiting the transcription of SLC7A11, which encodes the

substrate-specific subunit of system Xc- [56, 57], which is only found in cancer cells [58]. Jiang et al.

[59] showed that p53 inhibits cystine uptake by transcriptionally suppressing SLC7A11 thereby leading

to increased sensitivity of ROS-induced ferroptosis in p53-activated cells.
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Erastin, also known as ferroptosis-inducer, can enhance the sensitivity of cancer cells to

chemotherapy and radiation, suggesting that it can be used as a new anticancer drug [35]. Since erastin

can mediate perroptosis through p53 and other molecules, we used it as a positive control for

ferroptosis in this study. We found that TFR level, which is a marker of ferroptosis, was higher in the

erastin- and NP-treated groups than that in control group, indicating that NP-induced ferroptosis led to

decreased cell activity. The expression levels of p53 and xCT were similar to that of the erastin group,

corroborating p53-mediated ferroptosis of macrophages. Currently, targeting TAMs by either

eliminating them or inducing their repolarization into the M1 (tumor suppressive type) phenotype is

currently a hot topic in antitumor immunotherapy research.

Conclusion

In this study, we found that NPs could induce phenotypic changes and ferroptosis in macrophages.

By analyzing the intracellular ROS levels and changes in MMP and mitochondrial morphology, we

indicated that the ferroptosis-like cell death of macrophage increased as the exposure time increased.

Furthermore, we showed that NPs induced macrophage ferroptosis mediated by p53 using RNA-seq

and western blotting. These results provide a basis for further investigations into the precise molecular

mechanism and related signaling pathways involved in ferroptosis induced by Fe3O4 NPs in

macrophages and allows for the determination of the cytotoxicity of Fe3O4 NPs in vivo. Importantly,

this work can provide a basis for the application of Fe3O4 NPs in the medical field for the inhibition of

tumor cell growth via the induction of ferroptosis in macrophages.

Methods

NP synthesis and characterization
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Fe3O4 NPs (100 nm diameter) were fabricated by a hydrothermal method using FeCl3 and

NaAc·3H2O. Briefly, FeCl3 was added to the solvent containing diethylene glycol and dissolved by

ultrasonication. Then, NaAc·3H2O was added to this mixture and completely dissolved. The solution

was autoclaved at 200°C for 12 h. Then the reactants were dried at 65°C after washed. The

morphology and diameter of the NPs were determined using a transmission electron microscope (TEM

Tecnai G2F30 S-TWIN; Hillsboro, NC, USA) and a scanning electron microscope (SEM S-4800;

Hitachi, Tokyo, Japan). The particle size and zeta potentials of the NPs were measured using dynamic

light scattering (Nano ZS90; Malvern, Inc., Malvern, UK).

Cell culturing

The mouse macrophage cell lines Ana-1 and lung cancer cell lines LLC (Lewis lung cancer cells)

were obtained from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China). Both cells

were grown in RPMI 1640 (Gibco, New York, USA) culture medium supplemented with 10% FBS

(Gibco) in a humidified atmosphere of 5% CO2 at 37°C.

Cell viability analysis

Cultured Ana-1 cells were centrifuged at 400 ×g for 5min, and counted. One hundred microliters

of cell suspension (1 × 105 cells/mL) was prepared, added to a 96-well plate. NPs at concentrations of

200, 300, 400 and 500 µg/mL were added to the cultures. After 24 and 48 h of co-incubation, 10 μL of

CCK-8 solution and 100 μL of culture solution were added to each well and incubated at 37°C for 1 h.

The absorbance of the solution was measured using a microplate reader (Epoch, Biotek, Winooski, VT,

USA) at 450 nm.

Analysis of the effect of Fe3O4NPs on macrophage phenotypes
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To determine the effect of NPs on macrophages phenotypes. Ana-1 cells (1 × 106 cells/well) were

seeded in 6-well plates and incubated for 12 h. Cells were collected for further analyses after exposed

to 400 μg/mL NPs for 24 h and 48 h.

Construction of TAM model

The methods described by Wu et al. [60, 61] were used to construct the TAM model. When

LLC cells reached 70% confluence, the conditioned medium (CM) was stored at -80°C after harvested

and centrifuged at 1000 × g for 5 min. Next, after 12 h incubation of Ana-1 cells (1 × 106 cells/well) in

6-well plates, the culture medium was replaced with CM (2 mL/well), followed by incubation for 48 h,

after which Ana-1 cells became TAMs. Finally, TAMs were incubated with 400 μg/mL NPs in 2 mL

of fresh culture medium. After exposure for another 24 h and 48 h, the cells were harvested for further

analyses.

Uptake of Fe3O4NPs

NP uptake was analyzed by measuring intracellular iron by inductively coupled plasma-atomic

emission spectrometry (ICP-ACE Optima 7300 DV; PerkinElmer, Waltham, MA, USA). Briefly,

Ana-1 cells and NP solution were co-cultured for 2, 4, 8, 12, and 24 h. After washing with PBS three

times to remove free NPs, the cells were collected and counted in each sample, followed by cell

pelleting by centrifugate at 400g ×g for 5min. Dry the pellets and dissolved them in 100 µL of 65%

nitric acid for 2 h at 70°C. Then, 900 µL of distilled water was added, and the emission spectra of

samples were analyzed.

Intracellular localization of Fe3O4NPs
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Ana-1 cells were seeded in 12-well plates with slides and incubated with a fresh cell culture

medium containing NPs (400 μg/mL) for up to 8 h. following incubation, cellular NPs were visualized

and localized using Prussian blue staining (Solarbio, Beijing, China) and Lyso-Tracker Red fluorescent

probes (Beyotime, Shanghai, China) according to the manufacturers’ instructions.

For Prussian blue staining, the cells were washed with PBS two times to remove the free NPs.

The slides with NP-loaded Ana-1 cells were immersed in ddH20 for 5 min before incubation in

Prussian blue dying solution for 20 min. The slides were washed and counterstained with neutral red

for 2 min before washing and mounting in an aqueous fixative. Images of slides were obtained using a

light microscope (CX23; Olympus, Tokyo, Japan). The Lyso-Tracker Red staining for NPs

intracellular localization, slides were incubated with 1 mL of Hank's balanced salt solution (HBSS,

Beyotime) containing 50 nM Lyso-Tracker Red, which efficiently diffuses into living cells to visually

detect lysosomes. Images were obtained using a fluorescence microscope (ELOS FL Auto; Thermo

Fisher, Waltham, MA, USA).

Detection of ROS

Intracellular ROS was detected using the fluorescent probe DCFH-DA in the ROS Detection kit

(Beyotime). The cells were collected by centrifugated at 400g × for 5min, resuspended in diluted

DCFH-DA, and incubated at 37°C for 20 min. Cells were resuspended in PBS after centrifugated, the

fluorescence intensity of the cells was analyzed using a flow cytometer (FCM LSRFormanc; BD,

Franklin Lakes, NJ, USA). Rosup is a compound mixture with a concentration of 50mg/ mL which

treated the cells for 20 min as a positive control reagent to facilitate the detection of ROS.

Analysis of mitochondrial damage

file:///C:/Program%2520Files%2520(x86)/Youdao/Dict/8.9.6.0/resultui/html/index.html
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MMP was measured using an MMP Assay Kit (Solarbio) of tetraethylbenzimidazolyl

carbocyanineiodide (JC-1). The cell suspension (1 × 106 cells/mL, 0.5 mL) supplemented. The cells

were incubated with 0.5 mL of JC-1 at 37°C for 20 min. Based on the color change, MMP was

detected using a fluorescence microscope, and the ratio of red/green fluorescence intensity was

evaluated using a microplate reader (SYNERGY2, Bio-Tek, Winooski, VT, USA) to determine the

degree of mitochondrial damage. Untreated cells were exposed to 10 μM carbonyl

cyano-p-chlorophenylhydrazone (CCCP) for 20 min as a positive control; CCCP causes the complete

loss of MMP.

RNA-sequencing

After cells were harvested, intracellular RNA was extracted using the TRIzol reagent (Takara,

Tokyo, Japan), and RNA samples were analyzed by high-throughput transcriptome sequencing

technology in Science and technology company (E-gene, Shenzhen, China).

Ultramicroscopic analysis of cells

The microstructure of the NP-treated Ana-1 cells were observed by a TEM. Briefly, Ana-1 cells

were treated with NPs (400 μg/mL) for 24 h and 48 h or Erastin (25 μM; MCE, Princeton, NJ, USA)

for 24 h. Cells were fixed in 4% glutaraldehyde for an additional 12-24 h followed by 4°C. Next, the

cells were post-fixed with 1% OsO4 and embedded in Epon. Ultrathin sections were visualized using a

Hitachi-7500 TEM (Hitachi, Tokyo, Japan). Erastin, an inducer of ferroptosis, was used as a positive

control for induce of ferroptosis.

Western blotting

file:///C:/Program%2520Files%2520(x86)/Youdao/Dict/8.9.6.0/resultui/html/index.html
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After cell lysis and protein extraction by total protein extraction kit (KeyGEN, Jiangsu, China).

The PVDF membrane with proteins was incubated with primary rabbit antibody specific for iNOS,

Arg-1 (CST, Massachusetts, USA), TFR, p53, xCT (Abcam, Massachusetts, USA)and respective

secondary antibody (1:4000). This was followed by visualization using an ECL system. Protein

expression levels were standardized using tubulin or β-actin.

Reverse transcription–quantitative PCR (RT–qPCR)

The purified RNA was reverse transcribed using the Transcriptor cDNA Synthesis Kit (TaKara,

Tokyo, Japan). The resultant cDNA was subjected to qPCR using the Light Cycler 96 (Roche, Basel,

Switzerland). GAPDH used as a reference gene to analyze the iNOS, Arg-1, IL-10 gene quantitatively.

Relative gene expression was quantified using the 2−∆∆Ct method.

Statistical analysis

Data are expressed as means ± standard error of mean (SEM) and all statistical analyses were

performed using GraphPad Prism 8 (La Jolla, CA, USA). All reactions were performed in triplicate,

and each experiment was repeated three times. Results were analyzed by a two-way anova.
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