UNIQUELY CIRCULAR COLOURABLE AND UNIQUELY FRACTIONAL COLOURABLE GRAPHS OF LARGE GIRTH

SHUYUAN LIN AND XUDING ZHU

ABSTRACT. Given any rational numbers \(r \geq r' > 2 \) and an integer \(g \), we prove that there is a graph \(G \) of girth at least \(g \), which is uniquely circular \(r \)-colourable and uniquely fractional \(r' \)-colourable. Moreover, the graph \(G \) has maximum degree bounded by a number which depends on \(r \) and \(r' \) but does not depend on \(g \).

1. INTRODUCTION

Suppose \(G \) is a graph with at least one edge and \(r \geq 2 \) is a rational number. A circular \(r \)-colouring of \(G \) is a mapping \(f : V(G) \to [0, r) \) such that for any edge \(xy \) of \(G \), \(1 \leq |f(x) - f(y)| \leq r - 1 \). We say \(G \) is circular \(r \)-colourable if there is a circular \(r \)-colouring of \(G \). The circular chromatic number of \(G \) is defined as

\[
\chi_c(G) = \inf \{ r : G \text{ is circular } r \text{-colourable} \}.
\]

It is known that for any graph \(G \), \(\chi(G) = \lceil \chi_c(G) \rceil \). Hence the circular chromatic number of a graph is a refinement of its chromatic number.

Suppose \(f \) is a circular \(r \)-colouring of \(G \). Then for any \(c \in [0, r) \) and for \(\tau \in \{1, -1\} \), \(g : V(G) \to [0, r) \) defined as \(g(x) = [c + \tau f(x)]_r \) is also a circular \(r \)-colouring of \(G \). (For a real number \(x \) and a positive real number \(r \), we denote by \([x]_r \) the remainder of \(x \) dividing \(r \), i.e., \([x]_r \in [0, r) \) is the unique number for which \(x - [x]_r \) is a multiple of \(r \).) If \(f \) and \(g \) are \(r \)-colourings of \(G \) such that \(g(x) = [c + \tau f(x)]_r \) for some \(c \in [0, r) \) and \(\tau \in \{1, -1\} \), then we say \(f \) and \(g \) are equivalent circular \(r \)-colourings of \(G \), written as \(f \cong g \). It is obvious that ‘\(\cong \)’ is an equivalence relation. A graph \(G \) is called uniquely circular \(r \)-colourable if up to equivalence, there is only one circular \(r \)-colouring of \(G \). It is proved in [10] that for any rational \(r \geq 2 \), for any integer \(g \), there is a graph \(G \) of girth at least \(g \) which is uniquely circular \(r \)-colourable.

Received by the editors May 5, 2005, and in revised form, Nov. 30, 2005.

2000 Mathematics Subject Classification. 05C15.

Key words and phrases. Uniquely circular \(r \)-colourable graphs, uniquely fractional \(r' \)-colourable graphs, graph homomorphism, graph product.

This research is partially supported by the National Science Council under grant NSC92-2115-M-110-007.
Let \(I(G) \) be the family of independent sets of \(G \). A fractional colouring \(f \) of \(G \) is an assignment of nonnegative weights to independent sets of \(G \), i.e., a mapping \(f : I(G) \to \mathbb{R}^{\geq 0} \), such that for each \(x \in V(G) \), \(\sum_{I \in I(G)} f(I) = 1 \).

A fractional colouring \(f \) is called a fractional \(r \)-colouring of \(G \) if the sum \(\sum_{I \in I} f(I) \) is equal to \(r \). The fractional chromatic number of \(G \), denoted by \(\chi_f(G) \), is the least \(r \) such that \(G \) has a fractional \(r \)-colouring. We say that a graph \(G \) is uniquely fractional \(r \)-colourable if there is exactly one fractional \(r \)-colouring of \(G \). I.e., there is a fractional \(r \)-colouring \(f \) of \(G \) and if \(f' \) is a fractional \(r \)-colouring of \(G \), then \(f(I) = f'(I) \) for all \(I \in I(G) \). It is proved in [5] that for any rational \(r \geq 2 \), there is a uniquely fractional \(r \)-colourable graph of girth at least \(g \).

In this paper, we consider unique circular colourability and unique fractional colourability simultaneously. It is known [12] that for any graph \(G \), \(\chi_f(G) \leq \chi_c(G) \). On the other hand, it is not difficult to show that for any rationals \(2 < r' \leq r \), there is a graph \(G \) with \(\chi_f(G) = r' \) and \(\chi_c(G) = r \). In this paper, we prove that for any rationals \(2 < r' \leq r \), for any integer \(g \), there is a graph \(G \) of girth at least \(g \) such that \(G \) is uniquely fractional \(r' \)-colourable, and at the same time, uniquely circular \(r \)-colourable. In particular, \(\chi_f(G) = r' \) and \(\chi_c(G) = r \).

Both circular chromatic number and fractional chromatic number of a graph can be defined through graph homomorphisms. Suppose \(G \) and \(H \) are graphs. A homomorphism of \(G \) to \(H \) is a mapping \(f : V(G) \to V(H) \) such that \(\{ f(x), f(y) \} \in E(H) \) whenever \(\{ x, y \} \in E(G) \). A homomorphism of \(G \) to \(H \) is also called an \(H \)-colouring of \(G \). A graph \(G \) is said to be \(H \)-colourable if there exists a homomorphism of \(G \) to \(H \). A graph \(G \) is said to be uniquely \(H \)-colourable, if there exists an \(H \)-colouring \(f \) of \(G \) such that \(f \) is an onto homomorphism and for any other \(H \)-colouring \(f' \) of \(G \), \(f' \) is the composition \(f \circ \sigma \) of \(f \) with an automorphism \(\sigma \) of \(H \).

Note that a \(K_n \)-colouring of \(G \) is equivalent to an \(n \)-colouring of \(G \), and unique \(n \)-colourability of \(G \) is equivalent to unique \(K_n \)-colourability of \(G \). So the study of the chromatic number of a graph and unique colourability of a graph can be carried out in terms of graph homomorphisms. The same is true for the circular colouring.

For a pair of positive integers \(p, q \) such that \(p \geq 2q \). Let \(K_p^q \) be the graph which has vertices \(\{0, \cdots, p-1\} \) and in which \(\{i,j\} \) is an edge if and only if \(q \leq |i-j| \leq p-q \). A \(K_p^q \)-colouring of a graph \(G \) is also called a \((p,q) \)-colouring of \(G \). It is known [12] and easy to see that for any graph \(G \), \(\chi_c(G) = \inf \{ \frac{p}{q} : G \text{ is } K_p^q \text{-colourable} \} \). It is also easy to show that a graph \(G \) is uniquely \(\frac{p}{q} \)-colourable if and only if it is uniquely \(K_p^q \)-colourable.

The fractional chromatic number of a graph can be defined through graph homomorphisms to Kneser graphs. Suppose \(n \geq 2k \) are positive integers. Let \([n] = \{0,1,2,\cdots,n-1\} \) and denote by \(\binom{[n]}{k} \) the set of all \(k \)-subsets of \([n]\). The Kneser graph \(K(n,k) \) has vertex set \(V = \binom{[n]}{k} \) in which two vertices
A and B are adjacent if, when regarded as subsets of $[n]$, they do not intersect, i.e., $A \cap B = \emptyset$. A homomorphism f from a graph G to $K(n,k)$ is also called a k-tuple n-colouring of G. Such a homomorphism f assigns to each vertex x of G a set $f(x)$ of k colours, and if x and y are adjacent, then $f(x) \cap f(y) = \emptyset$, i.e., no colour is assigned to two adjacent vertices. It is known [9] that the fractional chromatic number of G is $\chi_f(G) = \min\{\frac{n}{r} : G$ is $K(n,k)$-colourable $\}$. However, unique fractional p/q-colourability is different from unique H-colourability for any graph H [5]. In particular, a uniquely $K(n,k)$-colourable graph G may not be uniquely fractional n/k-colourable. This is due to the fact that a fractional n/k-colourable graph may not be $K(n,k)$-colourable. On the other hand, it is proved in [5] that if a graph G is uniquely $K(pt,qt)$-colourable for some integer t, and moreover, for any integer t', if G is $K(pt',qt')$-colourable, then G is uniquely $K(pt',qt')$-colourable, then G is uniquely fractional p/q-colourable.

The purpose of this paper is to construct, for any $2 < \frac{p'}{q'} \leq \frac{p}{q}$, for any integer g, a graph G of girth at least g such that (1): G is uniquely circular $\frac{p}{q}$-colourable, and (2): G is uniquely fractional $\frac{p'}{q'}$-colourable.

2. MAIN RESULT AND SOME PRELIMINARIES

The main result of this paper is the following theorem:

Theorem 1. Given any two rational numbers $2 < r' \leq r$, for any integer g, there is a graph G of girth at least g such that G is uniquely circular r-colourable and uniquely fractional r'-colourable. Moreover, the graph G has maximum degree bounded by a number which depends on r and r' but does not depend on g.

To prove Theorem 1, we shall first relax the condition on large girth and prove that for any $2 < r' \leq r$, there is a graph G' which is uniquely circular r-colourable, and also uniquely fractional r'-colourable. Assume $r = \frac{p}{q}$ and $r' = \frac{p'}{q'}$. If $\frac{p}{q} = \frac{p'}{q'}$, then $G' = K_{\frac{p}{q}}$ is uniquely circular r-colourable and uniquely fractional r'-colourable. Assume $\frac{p}{q} > \frac{p'}{q'}$. The graph which is uniquely circular r-colourable, and also uniquely fractional r'-colourable is constructed through graph product. For graphs G and H, the categorical product $G \times H$ has vertex set $\{(x, y) : x \in V(G), y \in V(H)\}$. Two vertices (x, y) and (x', y') are adjacent in $G \times H$ if and only if x and x' are adjacent in G, y and y' are adjacent in G. We shall prove that if t is a large enough integer, then the categorical product graph $K(p't, q't) \times K_{\frac{p}{q}}$ is uniquely circular r-colourable and uniquely fractional r'-colourable. The following lemma is easy.

Lemma 2. For any $2 < \frac{p'}{q'} \leq \frac{p}{q}$, if t is a large enough integer, then $K(p't, q't) \times K_{\frac{p}{q}}$ is uniquely circular $\frac{p}{q}$-colourable.
Lemma 4 to show that up to equivalence, \(f \) is a maximum independent set. By Lemma 4, \(g \) is a core graph and no vertex \(f \) of \(C(H) \) is an automorphism, the graph \(C(H) \) is loopless. It is proved in [10] that if \(\chi(G) > \chi(C(H)) \) then \(G \times H \) is uniquely \(H \)-colourable. As \(\chi(C(K(p',q')t)) = (p' - 2q't) + 2 \) [6], it follows that if \(t > (\chi(C(K_q)) - 2) / (p' - 2q') \), then \(K(p',q')t \times K_q \) is uniquely \(K_q \)-colourable, and hence uniquely circular \(\frac{p'}{q'} \)-colourable.

Lemma 3. For any \(2 < \frac{p'}{q'} < \frac{p}{q} \) and for any integer \(t \), \(K(p',q')t \times K_q \) is uniquely fractional \(\frac{p'}{q'} \)-colourable.

Proof. For each \(i \in \{0, 1, \cdots , p't - 1\} \), let \(I_i = \{x \in V(K(p',q't)) : i \in x\} \) (recall that each vertex of \(K(p',q't) \) is a \(q't \)-subset of \(\{0, 1, \cdots , p't - 1\} \)). Then \(I_i \) is a maximum independent set of \(K(p',q't) \) and \(I_i \times V(K_q) \) is an independent set of \(K(p',q't) \times K_q \). Let \(f : I(K(p',q't) \times K_q) \to [0, 1] \) be defined as \(f(I_i \times V(K_q)) = 1/q't \) for each \(i \in \{0, 1, \cdots , p't - 1\} \) and \(f(I) = 0 \) for any other independent set \(I \) of \(K(p',q't) \times K_q \). Then \(f \) is a \(\frac{p'}{q'} \)-fractional colouring of \(K(p',q't) \times K_q \). We need to prove that, up to equivalence, \(f \) is the unique fractional \(\frac{p'}{q'} \)-colouring of \(K(p',q't) \times K_q \).

Lemma 4. The independent sets \(I_i \times V(K_q) \) for \(i = 0, 1, \cdots , p't - 1 \) are the only maximum independent sets of \(K(p',q't) \times K_q \).

We shall delay the proof of Lemma 4 for a little while. Now we use Lemma 4 to show that up to equivalence, \(f \) is the unique fractional \(\frac{p'}{q'} \)-colouring of \(K(p',q't) \times K_q \).

Assume \(g \) is a fractional \(\frac{p'}{q'} \)-coloring of \(K(p',q't) \times K_q \). We need to prove that for any independent set \(U \) of \(K(p',q't) \times K_q \),

\[
g(U) = \begin{cases}
1/q't & \text{if } U = I_i \times V(K_q) \text{ for some } i \in \{0, 1, \cdots , p't - 1\} \\
0 & \text{otherwise}.
\end{cases}
\]

It is well-known [9] that for any vertex transitive graph \(G \), \(\chi_f(G) = \frac{|V(G)|}{\alpha(G)} \) and for any optimal fractional colouring \(f \) of \(G \), \(f(I) = 0 \) if \(I \) is not a maximum independent set. By Lemma 4, \(I_i \times V(K_q) \) for \(i = 0, 1, \cdots , p't - 1 \) are the only maximum independent sets. Therefore \(g(I) = 0 \) if \(I \neq I_i \times V(K_q) \) for some \(i \in \{0, 1, \cdots , p't - 1\} \).
Assume there exists I_i such that $g(I_i \times V(K_{\frac{q}{p}})) \neq 1/q't$. Without loss of generality, assume $g(I_i \times V(K_{\frac{q}{p}})) > 1/q't$. Since $\sum_{i=0}^{p't-1} g(I_i \times V(K_{\frac{q}{p}})) = \frac{p'}{q}$, there exist $I_{i_1} \times V(K_{\frac{q}{p}}), I_{i_2} \times V(K_{\frac{q}{p}}), \ldots, I_{i_{q'}} \times V(K_{\frac{q}{p}})$ such that $\sum_{i=1}^{q'} g(I_i \times V(K_{\frac{q}{p}})) < 1$. Let $x = \{i_1, \ldots, i_{q'}\} \in V(K(p't,q't))$. Since $I_{i_1} \times V(K_{\frac{q}{p}}), I_{i_2} \times V(K_{\frac{q}{p}}), \ldots, I_{i_{q'}} \times V(K_{\frac{q}{p}})$ are the only maximum independent sets containing (x,a) for any $a \in V(K_{\frac{q}{p}})$, it follows that $\sum_{(x,a) \in I} g(I) = \sum_{i=1}^{q'} g(I_i \times V(K_{\frac{q}{p}})) < 1$, in contrary to the assumption that g is a fractional colouring of $K(p't,q't) \times K_{\frac{q}{p}}$. Therefore,

$$g(I) = \begin{cases} 1/q't & \text{if } I = I_i \times V(K_{\frac{q}{p}}) \text{ for some } i \in \{0,1,\ldots,p't-1\} \\ 0 & \text{otherwise.} \end{cases}$$

i.e., $K(p't,q't) \times K_{\frac{q}{p}}$ is uniquely fractional $\frac{p'}{q}$-colourable.

\[\square\]

3. The proof of Lemma 4

Problems concerning independent sets of the categorical product of graphs have been studied in many papers. For example, Frankl [3] determined the maximum size of independent set of the categorical product of Kneser graphs. Ahlswede, Aydinian and Khachatrian [1] determined the size of the maximum independent set of the categorical product of certain generalized Kneser graphs. The size of the maximum independent set of the categorical product of a Kneser graph with a circular complete graph also follows from a result in [13] concerning the fractional chromatic number of such graphs. In Lemma 4, besides the size of a maximum independent set, we need to determine the structure of all maximum independent sets of the product of a Kneser graph with a circular complete graph. The proof given below is a refinement of the corresponding argument in [13].

Assume that U is a maximum independent set of $K(p't,q't) \times K_{\frac{q}{p}}$ and $U \neq I_i \times K_{\frac{q}{p}}$ for any $i \in \{0,1,\ldots,p't-1\}$.

For each vertex x of $K(p't,q't)$, let $U_x = \{y \in K_{\frac{q}{p}} : (x,y) \in U\}$.

Claim 1. If $\{x,x'\} \in E(K(p't,q't))$ and $U_x \neq \emptyset$, $U_{x'} \neq \emptyset$, then $|U_x| + |U_{x'}| \leq 2q$.

Proof. Assume $\{x,x'\} \in E(K(p't,q't))$ and $|U_x| + |U_{x'}| > 2q$. Since $U_x \neq \emptyset$ and $U_{x'} \neq \emptyset$, it is known [13] and easily to verify directly that there exist $a \in U_x$ and $b \in U_{x'}$ such that $\{a,b\} \in E(K_{\frac{q}{p}})$. Then $\{(x,a), (x',b)\} \in E(K(p't,q't) \times K_{\frac{q}{p}})$, in contrary to the assumption that U is an independent set of $K(p't,q't) \times K_{\frac{q}{p}}$. \[\square\]
Claim 2. For any vertex x of $K(p't, q't)$, either $|U_x| < 2q$ or $|U_x| = p$.

Proof. Assume to the contrary that there exists $x \in V(K(p't, q't))$ such that $2q \leq |U_x| < p$. By Claim 1, for all $y \in N(x)$, $U_y = \emptyset$. Therefore $U' = U \cup \{(x, a) : a \in K_{\frac{q'}{q}} - U_x\}$ is an independent set of $K(p't, q't) \times K_{\frac{q'}{q}}$. Since $|U_x| < p$, U' is strictly larger than U. This is in contrary to our assumption that U is a maximum independent set.

Claim 3. For any vertex x of $K(p't, q't)$, either $U_x = V(K_{\frac{q'}{q}})$ or $U_x = \emptyset$.

Proof. Let $Y = \{x \in V(K(p't, q't)) : U_x = V(K_{\frac{q'}{q}})\}$. By Claim 1, for all $x \in N(Y)$, $U_x = \emptyset$. Let

$$U^* = U \cap (V(K(p't, q't)) - N[Y]) \times V(K_{\frac{q'}{q}}).$$

Then U^* is an independent set of $(K(p't, q't) - N[Y]) \times K_{\frac{q'}{q}}$. If $U^* = \emptyset$, then we are done. Assume $U^* \neq \emptyset$.

For each independent set Z of $K(p't, q't) - N[Y]$, $Z \cup Y$ is an independent set of $K(p't, q't)$, and hence has cardinality $|Z| + |Y| \leq \left\lfloor \frac{q't - 1}{q' - 1} \right\rfloor$. Therefore $\alpha(K(p't, q't) - N[Y]) \leq \left\lfloor \frac{q't - 1}{q' - 1} \right\rfloor - |Y|$. Since $\chi_f(K(p't, q't) - N[Y]) \leq \chi_f(K(p't, q't)) = \frac{p'}{q'}$, it follows that

$$|V(K(p't, q't) - N[Y])| \leq \alpha(K(p't, q't) - N[Y])\chi_f(K(p't, q't) - N[Y]) \leq \left(\frac{p't - 1}{q't - 1} \right) - |Y| \frac{p'}{q'}.$$

Since $\frac{p'}{q'} < \frac{p}{q}$, this implies that

$$|V(K(p't, q't) - N[Y])| q + |Y| p < \left(\frac{p't - 1}{q't - 1} \right) p = |I_i \times V(K_{\frac{q'}{q}})|. \quad (1)$$

Let $\kappa = \max\{|U_x| : x \in K(p't, q't) - N[Y]\}$. By Claim 2 and the definition of Y, we know that $\kappa < 2q$. If $\kappa \leq q$, then by (1),

$$|U| \leq |V(K(p't, q't) - N[Y])| q + |Y| p < |I_i \times V(K_{\frac{q'}{q}})|.$$

This is in contrary to the assumption that U is a maximum independent set of $K(p't, q't) \times K_{\frac{q'}{q}}$.

Thus we may assume that $q < \kappa < 2q$. For $s = q + 1, q + 2, \ldots, 2q - 1$, let $Y_s = \{x \in V(K(p't, q't)) - N[Y] : |U_x| = s\}$.

Let $q + 1 \leq s_0 < s_1 < \cdots < s_m < 2q$ be the integers such that either $Y_{s_i} \neq \emptyset$ or $Y_{2q - s_i} \neq \emptyset$.

And let $Z_{s_i} = \{x \in V(K(p't, q't)) - N[Y] : |U_x| = 2q - s_i\}$

and $B = \{x \in V(K(p't, q't)) - N[Y] : |U_x| = q\}$.

Then
\[|U| = |Y|p + |B|q + \sum_{i=0}^{m} (|Y_{s_i}| + |Z_{s_i}|)q - \sum_{i=0}^{m} (|Z_{s_i}| - |Y_{s_i}|)(s_i - q). \]

Now we need the following lemma which is slightly different from Lemma 4.5 of [13], but can be proved the same way.

Lemma 5. Suppose \(a_0, \ldots, a_m\) and \(\beta_0, \ldots, \beta_m\) are real numbers such that \(\frac{\beta_0}{a_0} \geq \frac{\beta_{i+1}}{a_{i+1}}\) for \(i = 0, \ldots, m - 1\). If \(a_0, \ldots, a_m\) are real numbers satisfying \(\sum_{j=0}^{i} a_j x_j > 0\) for all \(0 \leq i \leq m\), then \(\sum_{j=0}^{i} \beta_j x_j > 0\) for all \(0 \leq i \leq m\).

Let \(x_i = |Z_{s_i}| - |Y_{s_i}|\), \(\beta_i = s_i - q\), \(\alpha_i = 2q - s_i\). Then \(\beta_i > 0\) and \(\alpha_i > 0\) for all \(i = 0, \ldots, m\) and
\[|U| = |Y|p + |B|q + \sum_{i=0}^{m} (|Y_{s_i}| + |Z_{s_i}|)q - \sum_{j=0}^{m} \beta_j x_j. \]

If \(\sum_{j=0}^{i} \alpha_j x_j > 0\) for all \(i\), then by Lemma 5, \(\sum_{j=0}^{i} \beta_j x_j > 0\). This implies that
\[|U| = |Y|p + |B|q + \sum_{i=0}^{m} (|Y_{s_i}| + |Z_{s_i}|)q - \sum_{j=0}^{m} \beta_j x_j \]
\[< |Y|p + |B|q + \sum_{i=0}^{m} (|Y_{s_i}| + |Z_{s_i}|)q \]
\[\leq |Y|p + |B|q + N(Y) \sum_{j=0}^{m} \beta_j x_j < |I| \times V(K_{p', q't}). \]

This is in contrary to the assumption that \(U\) is a maximum independent set of \(K(p', q't) \times K_{\frac{q}{4}}\).

Thus we assume that \(\sum_{j=0}^{i} \alpha_j x_j \leq 0\) for some \(0 \leq i \leq m\). Let \(U'\) the independent set of \(K(p', q't) \times K_{\frac{q}{4}}\) defined as
\begin{itemize}
 \item \(U'_x = V(K_{\frac{q}{4}})\) if \(x \in Y_{s_i}\) for some \(j \leq i\);
 \item \(U'_x = \emptyset\) if \(x \in Z_{s_j}\) for some \(j \leq i\);
 \item \(U'_x = U_x\) otherwise.
\end{itemize}

Then \(U'\) is an independent set of \(K(p', q't) \times K_{\frac{q}{4}}\) and
\[|U'| = |U| - \sum_{j=0}^{i} |Z_{s_j}|(2q - s_j) + \sum_{j=0}^{i} |Y_{s_i}|(p - s_j) \]
\[> |U| - \sum_{j=0}^{i} |Z_{s_j}|(2q - s_j) + \sum_{j=0}^{i} |Y_{s_i}|(2q - s_j) \]
\[\geq |U|. \]

This is again in contrary to the assumption that \(U\) is a maximum independent set of \(K(p', q't) \times K_{\frac{q}{4}}\).

It follows from Lemma 3 that \(U = I \times V(K_{\frac{q}{4}})\) for some independent set \(I\) of \(K(p', q't)\). Since \(U\) is a maximum independent set of \(K(p', q't) \times K_{\frac{q}{4}}\), we conclude that \(I\) is a maximum independent set of \(K(p', q't)\) and hence \(I = \)
For arbitrary core graphs H, uniquely H-colourable graphs of large girth have been studied in many papers. As observed before, unique circular p/q-colourability of a graph is equivalent to the unique $K_{p/q}$-colourability of the graph. However, unique fractional p'/q'-colourability is not equivalent to unique H-colourability for any graph H. As noted in [5], if t is large enough, then $K(p't, q't) \times K(p', q')$ is uniquely $K(p', q')$-colourable but not uniquely fractional p'/q'-colourable. For this reason, the existing results concerning uniquely H-colourable graphs of large girth cannot be applied directly to obtain Theorem 1. Nevertheless, the proof of Theorem 1 below is parallel to the existing probabilistic proofs concerning uniquely H-colourable graphs of large girth.

Suppose F is an n vertex graph with vertices $0, 1, \ldots, n - 1$. Given a positive integer m, we denote by $F[m] = F[K_m]$ the lexicographic product of F and K_m. In other words, for each vertex v of F, let $v[m]$ be a set of cardinality m. Then $F[m]$ has vertex set $\cup_{v \in V(F)} v[m]$ such that $x \in v[m]$ is adjacent to $x' \in v'[m]$ if and only if $\{v, v'\}$ is an edge of F.

It is proved in [9, 5] that for any integer g, there exists an integer m, such that $F[m]$ has a spanning subgraph G of girth at least g for which $V(G) = W_0 \cup W_1 \cup \cdots \cup W_{n-1}$ where $W_i = i[m]$ for each $i \in V(F)$.

1. For any edge $\{v, v'\}$ of F, for any $X \subseteq v[m]$, $Y \subseteq v'[m]$, if $|X| \geq m/40n$ and $|Y| \geq m/40n$, then there is an edge (G) between X and Y.

2. For any edge $\{v, v'\}$ of F, for any $X \subseteq v[m]$, $Y \subseteq v'[m]$ with $n \leq |X| = n|Y| \leq m/40$, there are less than $|Y|n^{10}/2$ edges between X and Y.

3. For any edge $\{v, v'\}$ of F, for any vertex $x \in v[m]$, x has at least $n^{10}/2$ neighbours in $v'[m]$.

4. Each vertex of G has degree at most $5|V(F)|^{13}$.

If $\frac{p'}{q'} = \frac{p}{q}$, then let $F = K_{q'}$. If $2 < \frac{p'}{q'} < \frac{p}{q}$, then let $F = K(p't, q't) \times K_{q'}$, where t is large enough so that F is uniquely circular $\frac{p}{q}$-colourable. To prove Theorem 1, we shall prove that the spanning subgraph G of $F[m]$ with properties (1) and (4) listed above is uniquely circular $\frac{p}{q}$-colourable and also uniquely fractional $\frac{p'}{q'}$-colourable. Property (5) implies that the maximum degree of G is bounded by a number which does not depends on g (but depends on p/q and p'/q'). As unique circular $\frac{p}{q}$-colourability
is equivalent to unique $K_{p/q}$-colourability, the following lemma is a special case of Theorem 4 in [4].

Lemma 6. Suppose G is a spanning subgraph of $F[m]$ with properties (1)-(4) listed above. Then G is uniquely circular $\frac{p}{q}$-colourable.

Lemma 7. Suppose G is a spanning subgraph of $F[m]$ with properties (1)-(4) listed above. Then G is uniquely fractional $\frac{p}{q}$-colourable.

Proof. Since $G \subseteq F[m]$ and F is fractional $\frac{p}{q}$-colourable, it follows that G is fractional $\frac{p}{q}$-colourable. To prove that G is uniquely fractional $\frac{p}{q}$-colourable, it suffices to show that each maximum independent set of G is of the form $I[m]$ for a maximum independent set of I of F.

Let α_F and α_G be the size of the maximum independent set of F and G, respectively.

Since G is a spanning subgraph of $F[m]$, we have $\alpha_G \geq \alpha_F m$. Assume $J \in I(G)$, $|J| = \alpha_G \geq \alpha_F m$. Let v be a vertex of F, we denote by $\phi(v)$ the size of $v[m] \cap J$, i.e., $\phi(v) = |J \cap v[m]|$. Then, there exists an order of $V(F)$, \{v_1, v_2, \ldots, v_n\}, such that $\phi(v_1) \geq \phi(v_2) \geq \cdots \phi(v_n) \geq 0$. Since $\sum_{i=1}^n \phi(v_i) \geq \alpha_F m$, we have $\phi(v_1) \geq \frac{\alpha_F m}{m}, \phi(v_2) \geq \frac{\alpha_F m - m}{m}, \cdots, \phi(v_n) \geq \frac{\alpha_F m - (\alpha_F - 1)m}{m}$.

Let $I = \{v_1, v_2, \ldots, v_{\alpha_F}\}$. First we show that I is an independent set of F.

If not, then there exists $v_i, v_j \in I$ such that $v_i, v_j \in E(F)$. Since $v_i[m] \cap J$ has size $\phi(v_i) \geq \frac{m}{m}$ and $v_j[m] \cap J$ has size $\phi(v_j) \geq \frac{m}{m}$, there are subsets U of $v_i[m] \cap J$ and W of $v_j[m] \cap J$ such that $|U| = |W| = \lceil \frac{m}{m} \rceil$. However, by Property (2), there exists an edge between U and W, contrary to the assumption that J is an independent set of G.

Next we show that $\phi(x_{\beta+1}) = 0$. Assume to the contrary that if $\phi(x_{\beta+1}) \neq 0$, i.e., $v_{\alpha_F+1}[m] \cap J \neq \emptyset$. Since $I \cup v_{\alpha_F+1}$ is not independent set of F, there exists a $v_i \in I$ such that $\{v_i, v_{\alpha_F+1}\}$ is an edge of F. By Property (3), each vertex in $J \cap v_{\alpha_F+1}[m]$ has at least $n^{10}/2$ neighbours in $v_i[m]$. As $J \cap v_{\alpha_F+1}[m] \neq \emptyset$ and J is independent in G, it follows that $|v_i[m] - J| \geq n^{10}/2$. Let $W = v_i[m] - J$ and let $\beta = |W|$. Let $\ell = \phi(v_{\alpha_F+1})$. Since $\phi(v_{\alpha_F+1}) \geq \phi(v_j)$ for $j = \beta + 1, \ldots, n$, it follows that $\beta \leq \ell \cdot (n - \alpha) \leq \ell \cdot n$. So $\ell \geq \beta/n$.

Let $U \subseteq v_{\alpha_F+1}[m] \cap J$ be a subset of size β/n. Since each vertex of U has at least n^{10}/m neighbours in $v_i[m] - J = W$, we conclude that there are at least $\frac{n^{10}}{m}|U|$ edges between U and W. This is in contrary to Property (3). Therefore $\phi(v_{\alpha_F+1}) = 0$, i.e., if J is a maximum independent set of G, then $J = I[m]$ for some maximum independent set I of F. And we have $I_i \times K_{p/q}$ for $i = 0, 1, \cdots, p't - 1$ are the only maximum independent set of F with size $\lceil \frac{p't-1}{q} \rceil p$. Therefore, $J = (I_i \times K_{p/q})[m]$ for some $i = 0, 1, \cdots, p't - 1$.

Since G is a spanning subgraph of $F[m]$, G is fractional $\frac{p'}{q'}$-colourable.

As $|V(F)| = \left(\frac{p'}{q'}t\right)p$, we have $|V(G)| = m\left(\frac{p'}{q'}t\right)p$, $\alpha_G = \alpha_F m = \left(\frac{p'}{q'}t-1\right)pm$, so $\chi_f(G) \geq \frac{|V(G)|}{\alpha_G} = \frac{p'}{q'}$. Thus we know that $\chi_f(G) = \frac{p'}{q'}$. Let J_i be the maximum independent set of G such that $J_i = (I_i \times K_{p'})[m]$ for $i = 0, 1, \ldots, p't - 1$.

Let $f : I(G) \to [0, 1]$ such that

$$f(U) = \begin{cases} 1/q't & \text{if } U = J_i \text{ for some } i \in \{0, 1, \ldots, p't - 1\}, \\ 0 & \text{otherwise.} \end{cases}$$

then we know that f is a proper fractional $\frac{p'}{q'}$-colouring of G.

Next we want to show that for any fractional $\frac{p'}{q'}$-colouring g of G, $g(I) = f(I)$ for any independent set I of G. As $\chi_f(G) = \frac{|V(G)|}{\alpha_G}$, for any optimal fractional colouring g of G, $g(I) = 0$ if I is not a maximum independent set. As J_i for $i = 0, 1, \ldots, p't - 1$ are the only maximum independent sets of G, we have $g(I) = 0$ if $I \neq J_i$ for some $i \in \{0, 1, \ldots, p't - 1\}$. It remains to show that for any fractional $\frac{p'}{q'}$-colouring g of G,

$$g(U) = \begin{cases} 1/q't & \text{if } U = J_i \text{ for some } i \in \{0, 1, \ldots, p't - 1\}, \\ 0 & \text{otherwise.} \end{cases}$$

This part is similar to the proof of Lemma 3 and omitted. \qed

REFERENCES

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL SUN YAT-SEN UNIVERSITY, KA-
OHSIUNG 80424, TAIWAN

E-mail address: zhu@math.nsysu.edu.tw

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL SUN YAT-SEN UNIVERSITY, KA-
OHSIUNG 80424, TAIWAN, AND NATIONAL CENTER FOR THEORETICAL SCIENCES, ROC

E-mail address: zhu@math.nsysu.edu.tw