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The majority of computer vision applications assumes that the camera adheres to the pinhole camera
model. However, most optical systems will introduce undesirable effects. By far, the most evident of these
effects is radial lensing, which is particularly noticeable in fish-eye camera systems, where the effect is
relatively extreme. Several authors have developed models of fish-eye lenses that can be used to describe
the fish-eye displacement. Our aim is to evaluate the accuracy of several of these models. Thus, we pre-
sent a method by which the lens curve of a fish-eye camera can be extracted using well-founded assump-
tions and perspective methods. Several of the models from the literature are examined against this
empirically derived curve. © 2010 Optical Society of America
OCIS codes: 100.2980, 100.4994, 110.6980, 150.1488.

1. Introduction

The rectilinear pinhole camera model is typically
considered the ideal and intuitive model, whereby
straight lines in the real world aremapped to straight
lines in the image generated by the camera. However,
most real optical systems will introduce some unde-
sirable effects, rendering the assumption of the pin-
hole camera model inaccurate. The most evident of
these effects is radial barrel distortion, particularly
noticeable in fish-eye camera systems,where the level
of this distortion is relatively extreme.This radial dis-
tortion causes points on the image plane to be shifted
from their ideal position in the rectilinear pinhole
camera model, along a radial axis from the principal
point in the fish-eye image plane. The visual effect of
this displacement in fish-eye optics is that the image
will have a higher resolution in the foveal areas, with
the resolution decreasing nonlinearly toward the per-
ipheral areas of the image. The considerable advan-
tage of using fish-eye cameras is that a far greater
portion of the scene is imaged than with the standard
field-of-view (FOV) camera.

In order to examine the accuracy of the models, we
present a method by which the radial fish-eye lens
curve can be extracted using a set of well-founded as-
sumptions and perspective principles. The lens curve
extraction uses a planar calibration grid. Themethod
is nonparametric, and does not assume any particu-
lar fish-eye lens model. We use this extracted curve
as the basis of a metric by which various fish-eye lens
models can be compared.

A. Previous Work

There has beenmuchwork done in the area of camera
calibration to remove radial lens displacement.
Brown [1] described radial distortion using an odd-
order polynomial model, and Tsai [2] provided one
of the seminal works in modern camera calibration
using thismodel.Many other authors have calibrated
cameras using thismodel to remove the radial lensing
effect (e.g., Zhang [3]). However, due to the particu-
larly high levels of radial displacement present in
fish-eye cameras, it is generally considered that the
odd-order polynomial model cannot sufficiently com-
pensate for the radial displacement present in these
cameras. There have been several alternative models
developed to dealwith fish-eye cameras, including the
fish-eye transform (FET) [4], the polynomial fish-eye
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transform (PFET) [5], the FOV model [5], and the di-
visionmodel [6,7]. It is these models that we examine
in this paper.

On the validation and comparison of fish-eye lens
models, there has been little research done, with the
exception of work published by Schneider et al. [8]. In
their work, Schneider et al. examine the accuracy of
the various fish-eye projection functions using spa-
tial resection and bundle adjustment. However, we
do not limit our examination to the fish-eye projec-
tion functions, because we also include other fish-eye
models in our comparisons.

B. Assumptions

In this paper, we concentrate solely on the accuracy of
radial lens models. Thus, we assume a priori knowl-
edge of the camera principal point. The principal
point can be determined using one of a number of
methods [9–11]. We also assume that tangential (de-
centering) distortion is negligible. There are two pri-
mary causes of tangential distortion: inaccurate
distortion center estimation, and thin prism distor-
tion. Thin prism distortion arises from imperfections
in lens design, manufacturing, and camera assembly,
which causes a degree of both radial and tangential
distortion [12]. It hasbeendemonstrated that thevast
majority of tangential distortion can be compensated
for just by using distortion center estimation [13].
Several other researchers havemade the assumption
that other causes of tangential distortion are negligi-
ble [2,3,5,10]. We also assume that there is zero skew
(shear) and unit aspect ratio (affinity) [14,15].

When it comes to the fish-eye lens displacement
curve, we make only two assumptions regarding its
form:

• The lens displacement curve of the camera is a
monotonically increasing function, with respect to
distance from the principal point.

• The curve approximates a linear function in
the foveal areas of the image near the principal point.

The monotonicity of the lens displacement curve is
necessary, because it ensures that every point in a
scene maps to at most one point on the image plane
and preserves the order of points in terms of their
distance from the principal point [10]. The second as-
sumption is supported by the fact that for low values
of incident angle θ, all of the fish-eye projection func-
tions described in the next section can be approxi-
mated as a linear function.

2. Fish-Eye Projection Functions and Models

Rectilinear (pinhole) projection is so called because it
preserves the rectilinearity of the projected scene
(i.e., straight lines in the scene are projected as
straight lines on the image plane). The rectilinear
projection mapping function is given as [16]

ru ¼ f tanðθÞ; ð1Þ
where f is the distance between the principal point
and the image plane, θ is the incident angle (in ra-

dians) of the projected ray to the optical axis of the
camera, and ru is the projected radial distance from
the principal point on the image plane [Fig. 1]. How-
ever, for wide FOV cameras, under rectilinear projec-
tion, the size of the projected image becomes very
large, increasing to infinity at a FOV of 180°.

A. Fish-Eye Projection Functions

Fish-eye projection functions are designed such that a
greater portion of the scene is projected onto the im-
age sensor on the image plane, at the expense of intro-
ducing (often considerable) radial distortion. There
are several different fish-eye projection functions
[16]. Figure 2 gives representations of each of the
types of fish-eye projection as spherical projections.

1. Equidistant Projection Function

In equidistant projection, the radial distance rd on
the image plane is directly proportional to the angle
of the incident ray, and is equivalent to the length of
the arc segment between the z axis and the projection
ray of point P on the sphere [Fig. 2(a)]. Thus, the pro-
jection function is

rd ¼ f θ: ð2Þ
To determine the distortion function (i.e., the func-
tion that converts a rectilinear point to its equidi-
stant fish-eye equivalent) we solve Eqs. (1) and (2)
in terms of θ and equate to get

rd ¼ f arctan
�
ru
f

�
: ð3Þ

The inverse is

ru ¼ f tan
�
rd
f

�
: ð4Þ

These equations describe the conversion between
rectilinear image space and the equidistant fish-eye
image space, and vice versa.

2. Equisolid Projection Function

In equisolid projection, the projected distance is
equivalent to the length of the chord on the projection
sphere between the z axis and the projection of point
P onto the sphere [Fig. 2(b)]. The projection func-
tion is

Fig. 1. Rectilinear projection representation.
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rd ¼ 2f sin
�θ
2

�
: ð5Þ

Thus, the equisolid lens distortion function is

rd ¼ 2f sin
�
arctanðru=f Þ

2

�
: ð6Þ

And the inverse is

ru ¼ f tan
�
2arcsin

�
rd
2f

��
: ð7Þ

Equisolid projection is also known as equal-area pro-
jection, as the ratio of an incident solid angle and its
resulting area in an image is constant.

3. Orthographic Projection Function

Orthographic projection is formed from the direct per-
pendicular projection of the point of the ray intersec-
tion with the projection sphere to the image plane
[Fig. 2(c)]. The projection function is

rd ¼ f sinðθÞ: ð8Þ

The orthographic lens distortion function simplifies
to

rd ¼ ru�
1þ r2u

f 2

�
1=2

: ð9Þ

The inverse is a function of similar form:

ru ¼ rd�
1 −

r2d
f 2

�
1=2

: ð10Þ

Orthographic projection is not commonly used in fish-
eye designs because, as can be seen from Fig. 2(c),
points beyond 90° to the optical axis cannot be pro-
jected onto the image plane. Additionally, such lenses
suffer from greater radial distortion in the extremi-
ties of the image than either equidistant or equisolid
projections.

It should be noted that the term “orthographic pro-
jection” here does not refer to the typical meaning,
i.e., we are not referring to the orthographic projec-
tion where the point of projection is at infinity (such
as is used in, for example, cartography); rather, we
use the term to denote the specific spherical projec-
tion described in this subsection.

Fig. 2. Fish-eye projection function representations, showing the projection of the point P to the projection sphere and
then the reprojection of the point on the projection sphere to the image plane: (a) equidistant, (b) equisolid, (c) orthographic, and
(d) stereographic.
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4. Stereographic Projection

In stereographic projection, as with the other projec-
tion functions, the center of projection of a 3D point to
the projection sphere is the center of the projection
sphere [Fig. 2(d)]. However, the center of reprojection
of that point onto the image plane is the opposite
of the tangential point [Fig. 2(d)]. The projection
function is

rd ¼ 2f tan
�θ
2

�
: ð11Þ

Thus, the stereographic lens distortion function is

rd ¼ 2f tan

 
arctan

�
ru
f

�
2

!
: ð12Þ

The inverse is

ru ¼ f tan
�
2 arctan

�
rd
2f

��
: ð13Þ

Through elementary trigonometric properties, Eq.
(13) reduces to

rd ¼ ru

1 −

r2u
4f 2

: ð14Þ

This is recognizable as being in the form of the divi-
sion model, introduced almost simultaneously, and
apparently independently, by Bräuer-Burchardt and
Voss [6] and Fitzgibbon [7]. The first-order division
model is

rd ¼ ru
1 − λr2u

: ð15Þ

Thus, the stereographic function and the first-order
division model amount to the same function, where
λ ¼ 1=4f 2.

B. Fish-Eye Radial Lens Models

Other than the projection functions, several models
of fish-eye lenses have been proposed.

1. Polynomial Fish-Eye Transform

A polynomial that uses both odd and even coeffi-
cients has been proposed, and has been referred to
as the PFET [4,17]:

rd ¼
X∞
n¼1

κnrnu ¼ κ1ru þ κ2r2u þ…þ κnrnu þ…: ð16Þ

This polynomial model was used as it makes the
model independent of the underlying fish-eye map-
ping function and can take errors in the manufacture
of fish-eye lenses into account. It has been suggested
that a fifth-order form of the model is adequate to si-
mulate the radial displacement introduced by fish-
eye lenses [4].

2. Fish-Eye Transform

A logarithmic function, known as the FET, has also
been proposed [4]. The model is described by

rd ¼ s lnð1þ λruÞ; ð17Þ
where s is a simple scalar and λ controls the amount
of displacement across the image. The inverse of this
model is

ru ¼ expðrd=sÞ − 1
λ : ð18Þ

3. Field-of-View Model

The FOV model, based on a simple optical model of a
fish-eye lens, is described as [5]

rd ¼ 1
ω arctan

�
2ru tan

�ω
2

��
: ð19Þ

The inverse is

ru ¼ tanðrdωÞ
2 tan

�
ω
2

� ; ð20Þ

where ω is the FOV of the camera.

C. Radial Distortion Parameters

Fish-eye lens manufacturers typically attempt to
design lenses in which the distortion curves fol-
low one of the projection functions described in
Subsection 2.A. However, due to tolerances in the
manufacturing process, fish-eye lenses can often de-
viate from the projection function they are designed
to adhere to. To model this potential deviation, it has
been proposed that the distortion function can be ap-
pended with polynomial elements to account for the
deviations of the lens from the projection function
[5,8]:

Δrd ¼ A1r3u þ A2r5u þ A3r7u; ð21Þ
where An are the additional radial distortion coeffi-
cients.Δrd is simply added to the distortion function.
For example, Eq. (3) becomes

rd ¼ f arctan
�
ru
f

�
þΔrd: ð22Þ

The basic fish-eye lensmodel essentially becomes the
first-order parameter. We have found in our work
that considering coefficients beyond the seventh re-
turns a negligible improvement in the results (this is
examined in more detail in Section 4 and Table 4).

3. Lens Curve Acquisition

Here, a method of extracting the radial fish-eye dis-
placement curve is described. This curve describes
the radial displacement of points from the rectilinear
image plane to the fish-eye image plane for all points
at any given radial distance from the principal point.
The basis of the method is to find the straight lines
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on the rectilinear image plane that correspond to
each edge in the fish-eye image plane. Given these
straight lines, the rectilinear edge grid that corre-
sponds to the fish-eye checkerboard image can be
reconstructed using perspective principles. An over-
view of the algorithm is as follows:

1. An image of the checkerboard diagram is
captured.

2. The edges are separated into their vertical and
horizontal edges using the Sobel operator.

3. Using the points of convergence of the two
lines nearest to the center in the image, the putative
vanishing points are determined.

4. Using basic perspective principles and the pu-
tative vanishing points, two values for the slopes of
the each line in the image are determined.

5. Ideally, these slope values will be the same for
each line, but in practice, there will be error that
needs to be minimized. The Levenberg–Marquardt
algorithm is used to complete the minimization.

6. The distorted corners are extracted from the
original checkerboard image, and the corresponding
undistorted corners are determined as the intersec-
tion points of the lines extracted in step 5. Thus the
radial displacement curve is extracted.

7. The extracted curve is smoothed using the
LOESS algorithm to reduce the effect any error in
the extraction of the corners.

8. Steps 1 to 6 are repeated a number of times, to
improve the accuracy of the extracted curve.

A. Separating Edges

Given a calibration image of a checkerboard dia-
gram, the horizontal and vertical edges on the check-
erboard are identified and independently grouped.
After applying a Gaussian smoothing to reduce the
impact of any noise, we used an optimized Sobel edge
detection to extract the edges [18]. The gradient in-
formation from the edge detection was used to sepa-
rate the edges into their horizontal and vertical sets.
Even though in the presence of distortion the gradi-
ent of a single line will change over the length of that
line, the difference in gradients between the horizon-
tal and vertical lines is still great enough that this
separation is possible. Discontinuities in lines caused
by corners in the grid are detected using a suitable
corner detection method, e.g., [19], and thus cor-
rected. Figures 5(a) and 5(b) show edges extracted
from the distorted checkerboard test image, for a ty-
pical camera (Sony DSC 3) with a 103° FOV.

B. Determining Putative Vanishing Points

Prior to performing a nonlinear optimization of the
vanishing points v1 and v2, a pair of putative vanish-
ing points (or initial guess) is useful. The basis of the
putative vanishing point estimation is as follows: if a
line is projected to the rectilinear image plane, the
nearest point on that line to the principal point is
the point of intersection of that line with the perpen-
dicular through the principal point. Because of the
assumption that the lens displacement function is

monotonic, the displaced equivalent of the point of
intersection will remain the closest point on the pro-
jected line to the principal point. Thus, given the pro-
jection of a line in the fish-eye image, the slope of the
equivalent line in the rectilinear image can be deter-
mined by finding the line of minimum distance be-
tween the principal point and the fish-eye line. The
slope of the rectilinear line is perpendicular to the
slope of the line of minimum distance. That is, the
slope of the tangent to the fish-eye line at the point
of minimum distance to the principal point is equal to
the slope of the equivalent rectilinear line. This is de-
monstrated in Fig. 3.

Additionally, in the region of the principal point,
the fish-eye displacement curve can be considered to
be linear. Thus, the area around the principal point
approximates a rectilinear projection. Therefore, the
point on the line in the fish-eye image that is nearest
the principal point can be considered coincident with
the equivalent point on the line in the rectilinear im-
age. Even if this is not an exactly precise assumption,
the result will be a scaled version of the true fish-eye
displacement curve, i.e., the characteristics of the
curve will remain the same. Thus, taking the two
lines nearest the principal point in the fish-eye
image, the equivalent rectilinear lines can be con-
structed from the extracted slopes and points of
intersection.

Figures 5(a) and 5(b) show the constructed lines for
the horizontal and vertical line sets. The two puta-
tive vanishing points can be determined as the inter-
secting points of these lines. Figure 4(a) shows the
determination of the putative vanishing points.

C. Nonlinear Optimization of Vanishing Points

The slopes of the remainder of the lines can be deter-
mined in two ways. First, the set of slopes mi, where
i ¼ 1…n is the number of lines, can be determined as

Fig. 3. Point of minimum distance between the distortion center
and the distorted line lies on the line perpendicular to the undis-
torted line through the distortion center.
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described in the previous section: the slopes are
equal to the slopes of the tangent to the radially dis-
placed line at the point of minimum distance to the
principal point. Second, we define the ground line as
being parallel to the horizon line and intersecting the
principal point. The set of parallel lines will intersect
the ground line at equal distances, as shown in
Fig. 4(b). Thus, the second set of slopes si can be
determined.

Theoretically, sn andmn should be equal. However,
in the presence of noise, there will be deviations that
should be minimized. Thus, to achieve the result
with least error, the vanishing point must be chosen
such that the following error function ξ is minimized,
where s and m are given in terms of angles against
the x axis in the range ½−π=2; π=2Þ:

ξ ¼
Xn
i¼1

jΔsij; ð23Þ

where Δs is the acute angle formed by the two lines
described by the slopes s and m:

Δs ¼
�

m − s; jm − sj < π=2
π − ðm − sÞ; jm − sj > π=2 : ð24Þ

To achieve this, a nonlinear optimization algorithm
can be used, such as Levenberg–Marquardt [20].
Thus, the vanishing points are chosen such that
the error between the calculations of the slopes using
the two methods is minimized. This is repeated for

Fig. 4. Two-point perspective: (a) shows how to find the vanishing
points, horizon line, and ground line (which is parallel to the hor-
izon line) and (b) shows how parallel lines in 3D space converge at
a single point in perspective and cross the ground line at equal
distances (marked as d in the figure).

Fig. 5. (Color online) Curves in undistorted space overlaid on the corresponding curves in distorted space for the (a) horizontal lines, (b)
vertical lines, and (c) both sets of lines. (d) Shows the corners in the distorted space connected to the corners in the undistorted space and (e)
shows the extracted points with locally weighted scatterplot smoothing (LOESS) applied.
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both the horizontal and vertical sets of lines, and the
two vanishing points are estimated.

D. Estimating Radial Displacement Curve

For each line in the fish-eye image, the equivalent rec-
tilinear line can be recreated, given the vanishing
points and the slopes [Figs. 5(a)–5(c)]. From the lines
in the fish-eye space, a set of corners Pd can be ex-
tracted, usinga suitable cornerdetectionmethod, e.g.,
[19]. From the set of lines in rectilinear space, a cor-
responding set of corners Pu can also be extracted.
Thus, each corner in Pd has a corresponding corner in
Pu, as demonstrated inFig. 5(d).Each corner inPu has
a rectilinear radial distance ru, and each corner in Pd
has a displaced radial distance rd, and so a radial dis-
placement curve can be created [Fig. 5(e)]. To improve
accuracy, multiple images of the calibration diagram
can be used. For the results presented in this paper, a
set of ten images was used for each camera.

Additionally, to reduce error in the feature extrac-
tions, the resultant curve is smoothed using a quad-
ratic locally weighted scatterplot smoothing (LOESS)
algorithm [21]. This regression is used, as it does not
assume any underlying function model of the data. If
the error were not reduced, the results would include
the error in the corner extraction, instead of the result
ideally being just the error in the fit of the givenmodel
to the extracted distortion curve (Section 4). The cor-
ner error reduction is not critical for a comparative
examination of themodels to a particular fish-eye dis-
tortion curve, as the portion of the RMSE introduced
by the corner errorwill remain constant for each of the
model fits. However, corner error reductionwill result
in truer RMSE results for each of the model fits. A
span of 20% was used for the LOESS smoothing for
the results presented in this paper, as it seemed to re-
move the majority of the noise without distorting the
shape of the underlying distortion curve [Fig. 5(e)].

Finally, the radial displacement curve is normal-
ized on both axes by dividing by the maximum image
sensor radial distance from the principal point in
pixels, to ensure that the curve is independent of
image sensor sample resolution.

4. Results

Typically, fish-eye lenses are constructedwith the aim
of complying with the equidistant and equisolid pro-
jection function, and more rarely the orthographic
function. The stereographic projection function in
lenses is very uncommon, though in the guise of the
division model, it has gained popularity in recent lit-
erature. In this sectionweexamine the accuracy of the
fish-eye lens models over a set of fish-eye cameras. To
examine the accuracy for a range of cameras, the ra-
dial distortion curve for each camera considered is ex-
tracted using a standard checkerboard calibration
diagram, as described in the previous section. Then,
each fish-eye lens model is fitted to each of the ex-
tracted curves, using the Levenberg–Marquardt non-
linear least-mean-squares fit algorithm [20]. The
fitting of the model functions to the radial displace-
ment curve is completed using the MATLAB cftool
function (MathWorks MATLAB R2009a, Curve Fit-
ting Toolbox). Because of the fact that speed of opera-
tion was not a consideration in this implementation,
the maximum number of functional evaluations was
set to 60,000, the maximum number of iterations to
40,000, and the minimum change of error to 10−12.
For each of the models, an appropriate starting point
was chosen. For example, for each of the lenses, an ap-
proximation of the FOV was known. For the equidi-
stant model, the parameter f could be determined
as f ¼ ðFOV=2Þ−1, and the additional radial distortion
parameters were initially set to zero.

The RMSE is used to determine the accuracy of the
fit. Themodels and FOVs of the five cameras used are
listed in Table 1 (for convenience, the cameras are

Table 1. List of Tested Cameras

Make and Model FOV

Camera 1 Micron MI-0343 Evaluation Module 170°
Camera 2 OmniVision OV7710 Evaluation Module 178°
Camera 3 OmniVision OV7710 Evaluation Module 170°
Camera 4 Sony DSC C3 103°
Camera 5 Minolta DiMAGE 7 90°

Table 2. RMSE of the Functions Fitted to the Distortion Curves Extracted from Each of the Camerasa

×10−3 Camera 1 Camera 2 Camera 3 Camera 4 Camera 5

Equidistant 9.156 6.992 9.908 10.202 8.237
þdistortion parameters 2.550 4.991 2.827 3.852 3.382
Equisolid 12.764 8.301 13.997 12.811 9.704
þdistortion parameters 2.542 4.843 2.818 3.852 3.382
Orthographic 15.884 14.546 17.649 14.443 10.221
þdistortion parameters 2.561 5.306 2.858 3.852 3.382
Stereographic 10.107 8.624 10.301 11.201 9.176
þdistortion parameters 2.529 4.393 2.775 3.852 3.382
PFET (fifth order) 2.669 6.842 2.921 4.070 3.631
FET 19.465 33.211 21.978 15.528 12.394
þdistortion parameters 3.369 8.870 3.571 4.311 3.959
FOV model 21.341 32.496 18.689 13.996 11.348
þdistortion parameters 3.554 7.985 3.828 4.455 3.982

aThe values are in terms of the maximum image sensor radial distance from the principal point in pixels, to ensure that the data
presented are independent of image sensor sample resolution.
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referred to as camera 1 to camera 5), while the cor-
responding errors are detailed in Tables 2 to 5 and
Figs. 6 and 7, which are now discussed in detail. The
error of such fits can then be used as a measure by
which comparisons in terms of accuracy can be made.

It can be seen from Table 2 that the basic equidi-
stant model returns the lowest error of the basic
models (i.e., without additional parameters), with the
exception of the PFET, for the set of cameras exam-
ined. With the additional radial distortion para-
meters, the error in cameras 1, 3, 4, and 5 are similar
for all models, as the additional parameters compen-
sate for any error in the basic model. The basic FET
and theFOVmodels consistently returnhigher errors
than the other models. This is particularly evident
with camera 2, which is a strong fish-eye camera,
where the errors are significantly higher than the
other functions. The fifth-order PFET returns the
lowest error for all but the highest FOV cameras,

which is expected, as it is the model with the greatest
number of parameters.

With camera 2, the error results suggest that allow-
ing the displacement functions to operate as the first-
order parameter returns a smaller error than the
fifth-order PFET. That is, for this fish-eye camera, a
better result can be obtained by first using the displa-
cement functions and then modeling the difference
using the additional radial distortion parameters.
Conversely, for cameras with lower FOVs, the best re-
sults seem to be obtained by using the polynomial
model. Naturally, however, adding more parameters
to the PFET reduces the error, as shown in Table 3.
Table 4 shows that there is a minimal decrease in
the returned error if additional radial distortion para-
meters beyond the seventh order are considered. If an
image sensor sample pixel resolution of 640 × 480 is
assumed (and thus a maximum radial distance of
400 pixels), the maximum error for the fits to each
of the cameras in terms of pixel error is shown in
Table 5.

Table 3. RMSE of Fits to Camera 2 for PFET of Various Ordersa

Order Third Fourth Fifth Sixth Seventh

RMSE × 10−3 11.801 11.671 6.842 4.909 2.328
aThe values are in terms of the maximum image sensor radial

distance from the principal point in pixels, to ensure that the data
presented is independent of image sensor sample resolution.

Table 4. RMSE of Fits to Camera 5 for Equidistant Model with
Additional Radial Distortion Parameters of Various Orders

Order Third Fifth Seventh Ninth Eleventh

RMSE × 10−3 5.984 4.653 3.382 3.313 3.299

Fig. 6. Residuals after the fitting of each of the models to camera 1: (a) equidistant, equisolid, orthographic, and stereographic projection
functions, (b) PFET, FET, and FOV models, and (c) all of the models with the additional radial distortion parameters included. In (c), the
projection functions with the additional parameters are almost coincident. Note the change in scales between the graphs.

Table 5. Maximum Error of Various Models Fitted to Various Cameras, in Terms of Pixels
(Assuming an Image Sensor Pixel Sample Resolution of 640 × 480)

Camera 1 Camera 2 Camera 3 Camera 4 Camera 5

Equidistant 3.7496 2.81 3.9892 4.1284 3.3352
þdistortion parameters 1.0204 1.9948 1.13 1.5412 1.3528
Equisolid 5.1244 3.3376 5.6216 5.1328 3.9044
þdistortion parameters 1.018 1.9388 1.1248 1.5412 1.3528
Orthographic 6.3728 5.8852 7.0952 5.7848 4.1444
þdistortion parameters 1.0124 2.1228 1.1424 1.5412 1.3528
Stereographic 4.0532 3.4752 4.1372 4.4852 3.6804
þdistortion parameters 1.0124 1.7588 1.11 1.5412 1.3528
PFET (fifth order) 1.0684 2.736 1.1696 1.6268 1.4532
FET 7.8044 13.3568 8.8452 6.2324 4.9648
þdistortion parameters 1.3504 3.5448 1.4308 1.726 1.582
FOV model 8.5656 12.9736 7.452 5.5804 4.5532
þdistortion parameters 1.4204 3.1948 1.53 1.7812 1.5928
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Figures 6 and 7 show the residuals of the various
model fits for camera one and camera two, respec-
tively. For camera 1, the residuals of the projection
functions (equidistant, equisolid, orthographic, and
stereographic) show similar form, but different am-
plitudes. In correlation with the results in Table 2,
the equidistant and stereographic functions display
the lowest amplitude in the residuals. The PFET,
FET, and FOV models show very different residual
forms, with the PFET being closest to zero. Finally,
the functions that include the additional radial dis-
tortion parameters are shown in Fig. 6(c). The equi-
distant, equisolid, and stereographic errors with the
additional parameters are indiscernible from one an-
other (and are under the trace of the equidistant
model), while the orthographic plus additional para-
meters error shows a slight difference from the other
projection function errors at high values of ru. The
FOVand FET model errors with the additional para-
meters are significantly different from the other
projection functions.

In all of the graphs in Fig. 6, the noise is of similar
amplitude and location. This indicates that the
source of the noise is in the extracted radial displace-
ment curve and, thus, the corner extraction de-
scribed in Section 3 and is independent of the model
that is fitted. The fact that the amplitude of the noise
is considerably smaller than the overall residual am-
plitude also indicates that the residuals for themodel
fits are primarily based on the adequacy of the model
rather than noise in the corner extraction.

Figure 7 shows the residuals of the model fits to
camera 2. Again, in Fig. 7(c), the equidistant, equiso-
lid, stereographic, and orthographic projection func-
tions are practically coincident and are all graphed
under the trace of the equidistant function. The
FOV and FET model errors follow a similar dorm,
but are discernible from the others. The results show
that noise is a larger contributing factor to the resi-
dual than the previous camera. The increase in noise
is likely due to the fact that, with increasing radial
lens displacement, the magnitude and shape of the
corners in the calibration image will vary signifi-
cantly. Additionally, in the extremities of the calibra-
tion image, there will be a reduced spatial resolution.
These factors mean that the corners are extracted
with greater error, which is reflected in the noise

in the graphs of the residuals. However, even though
the noise is a considerable factor for the residuals in
camera 2, the dominant factor is still the adequacy of
the models.

5. Conclusions

In this paper, we have examined several fish-eye lens
models and have compared each model with the ex-
tracted radial displacement curves of several differ-
ent FOV cameras. The comparison was based upon
quantitative differences between the models. While
the choice of model is dependent upon the implemen-
tation constraints and the requirements for the final
output image, this paper has discussed ways in
which this choice can be objectively made.

To achieve this comparison, we presented a non-
parametric, model-independent method by which
the radial displacement curve of a given camera can
be extracted. This method was based only on some
well-established assumptions about the shape and
form of radial displacement curves. We used this
curve as the basis of a metric to compare the various
radial lens models.

Depending on the manufacturing process, some
particularly inexpensive lens elements can cause a
deviation in their displacement curve from the map-
ping function they were designed to adhere to. To
model this deviation, additional polynomial distor-
tion parameters can be added to the radial displace-
ment functions. The results presented here show a
significant improvement when these parameters
are used as described in Section 2.C, with up to a fi-
vefold decrease in the returned error over the stan-
dard fish-eye functions.

This paper has examined the various fish-eye mod-
els, using a heuristic optimization procedure to deter-
mine the parameters of themodels from the extracted
radial displacement curves. It has not examined the
numerous calibration methods that exist to deter-
mine the parameters of the models, though it is
possible the method presented within this paper
could be extended to provide an objective comparison
of fish-eye calibration methods.

A potential issue with the proposed method lies in
the use of the Sobel operator to extract edges in the
fish-eye image, which displays variable spatial reso-
lution across the image. In particular, this will cause

Fig. 7. Residuals after the fitting of each of the models to camera 2: (a) equidistant, equisolid, orthographic, and stereographic projection
functions, (b) PFET, FET, and FOV models, and (c) all of the models with the additional radial distortion parameters included. In (c), the
projection functions with the additional parameters are almost coincident. Note the change in scales between the graphs.
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the biggest issue in the periphery of the image, which
is arguably the most important region for describing
the fish-eye function of a given camera. This was evi-
dent in the results for camera 2 shown in Fig. 7. Fu-
ture work would address this issue; perhaps via the
adaptation of a scale-invariant feature transform
[22] for this particular application (which may also
overcome orientation and approximate affine trans-
forms of features in these regions).

This research is funded by Enterprise Ireland and
Valeo Vision Systems (formerly Connaught Electro-
nics Limited) under the Enterprise Ireland Innova-
tion Partnerships Scheme (grant IP/2004/0244).
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