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1. Introduction

Several technical problems stand in the way of shared, reusable knowledge-based
software.  Like conventional applications, knowledge-based systems are based on
heterogeneous hardware platforms, programming languages, and network protocols.
However, knowledge-based systems pose special requirements for interoperability.  Such
systems operate on and communicate using statements in a formal knowledge
representation.  They ask queries and give answers.  They take “background knowledge”
as an input.  And as agents in a distributed AI environment, they negotiate and exchange
knowledge.  For such knowledge-level communication, we need conventions at three
levels: representation language format, agent communication protocol, and specification
of the content of shared knowledge.  Proposals for standard knowledge representation
formats (Fulton, 1992; Genesereth & Fikes, 1992; Morik, Causse, & Boswell, 1991) and
agent communication languages (Finin et al., 1992) are independent of the content of
knowledge being exchanged or communicated.  For establishing agreements about
knowledge, such as shared assumptions and models of the world, ontologies can play a
software specification role (Gruber, 1991).

Current research is exploring the use of formal ontologies for specifying content-
specific agreements for a variety of knowledge-sharing activities (Allen & Lehrer, 1992;
Cutkosky et al., 1993; Fikes, Cutkosky, Gruber, & van Baalen, 1991; Genesereth, 1992;
Gruber, Tenenbaum, & Weber, 1992; Neches et al., 1991; Patil et al., 1992; Walther,
Eriksson, & Musen, 1992).  A long-term objective of such work is to enable libraries of
reusable knowledge components and knowledge-based services that can be invoked over
networks. We believe the success of these efforts depends on the development of an
engineering discipline for ontology design, akin to software engineering for conventional
software.

This paper is an analysis of design requirements for shared ontologies and a proposal
for design criteria to guide the development of ontologies for knowledge-sharing
purposes. Section 2 describes a usage model for ontologies in knowledge sharing.
Section 3 proposes some design criteria based on the requirements of this usage model.
Section 4 shows how these criteria are applied in ontologies designed explicitly for the
purpose of knowledge sharing.

2. Ontologies as a specification mechanism

A body of formally represented knowledge is based on a conceptualization: the objects,
concepts, and other entities that are assumed to exist in some area of interest and the
relationships that hold among them (Genesereth & Nilsson, 1987).  A conceptualization
is an abstract, simplified view of the world that we wish to represent for some purpose.
Every knowledge base, knowledge-based system, or knowledge-level agent is committed
to some conceptualization, explicitly or implicitly.

An ontology is an explicit specification of a conceptualization. The term is borrowed
from philosophy, where an Ontology is a systematic account of Existence.  For AI
systems, what “exists” is that which can be represented. When the knowledge of a
domain is represented in a declarative formalism, the set of objects that can be
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represented is called the universe of discourse.  This set of objects, and the describable
relationships among them, are reflected in the representational vocabulary with which a
knowledge-based program represents knowledge.  Thus, in the context of AI, we can
describe the ontology of a program by defining a set of representational terms.  In such an
ontology, definitions associate the names of entities in the universe of discourse (e.g.,
classes, relations, functions, or other objects) with human-readable text describing what
the names mean, and formal axioms that constrain the interpretation and well-formed use
of these terms.  Formally, an ontology is the statement of a logical theory.1

We use common ontologies to describe ontological commitments for a set of agents
so that they can communicate about a domain of discourse without necessarily operating
on a globally shared theory.   We say that an agent commits to an ontology if its
observable actions are consistent with the definitions in the ontology.  The idea of
ontological commitments is based on the Knowledge-Level perspective (Newell, 1982).
The Knowledge Level is a level of description of the knowledge of an agent that is
independent of the symbol-level representation used internally by the agent.  Knowledge
is attributed to agents by observing their actions; an agent “knows” something if it acts as
if it had the information and is acting rationally to achieve its goals.  The “actions” of
agents—including knowledge base servers and knowledge-based systems—can be seen
through a tell and ask functional interface (Levesque, 1984), where a client interacts with
an agent by making logical assertions (tell), and posing queries (ask).

Pragmatically, a common ontology defines the vocabulary with which queries and
assertions are exchanged among agents.  Ontological commitments are agreements to use
the shared vocabulary in a coherent and consistent manner.  The agents sharing a
vocabulary need not share a knowledge base; each knows things the other does not, and
an agent that commits to an ontology is not required to answer all queries that can be
formulated in the shared vocabulary.

In short, a commitment to a common ontology is a guarantee of consistency, but not
completeness, with respect to queries and assertions using the vocabulary defined in the
ontology.

3. Design criteria for ontologies

Formal ontologies are designed.  When we choose how to represent something in an
ontology, we are making design decisions.  To guide and evaluate our designs, we need
objective criteria that are founded on the purpose of the resulting artifact, rather than
based on a priori notions of naturalness or Truth.  Here we propose a preliminary set of
design criteria for ontologies whose purpose is knowledge sharing and interoperation
among programs based on a shared conceptualization.

1. Clarity: An ontology should effectively communicate the intended meaning of
defined terms.  Definitions should be objective.  While the motivation for defining a

1Ontologies are  often equated with taxonomic hierarchies of classes, but class definitions, and the
subsumption relation, but ontologies need not be limited to these forms.  Ontologies are also  not limited to
conservative definitions, that is, definitions in the traditional logic sense that only introduce terminology
and do not add any knowledge about the world (Enderton, 1972). To specify a conceptualization one needs
to state axioms that do constrain the possible interpretations for the defined terms.
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concept might arise from social situations or computational requirements, the
definition should be independent of social or computational context.  Formalism is
a means to this end. When a definition can be stated in logical axioms, it should be.
Where possible, a complete definition (a predicate defined by necessary and
sufficient conditions) is preferred over a partial definition (defined by only
necessary or sufficient conditions).  All definitions should be documented with
natural language.

2. Coherence: An ontology should be coherent: that is, it should sanction inferences
that are consistent with the definitions.  At the least, the defining axioms should be
logically consistent.  Coherence should also apply to the concepts that are defined
informally, such as those described in natural language documentation and
examples.  If a sentence that can be inferred from the axioms contradicts a
definition or example given informally, then the ontology is incoherent.

3. Extendibility: An ontology should be designed to anticipate the uses of the shared
vocabulary. It should offer a conceptual foundation for a range of anticipated tasks,
and the representation should be crafted so that one can extend and specialize the
ontology monotonically.  In other words, one should be able to define new terms for
special uses based on the existing vocabulary, in a way that does not require the
revision of the existing definitions.

4. Minimal encoding bias: The conceptualization should be specified at the
knowledge level without depending on a particular symbol-level encoding.  An
encoding bias results when a representation choices are made purely for the
convenience of notation or implementation. Encoding bias should be minimized,
because knowledge-sharing agents may be implemented in different representation
systems and styles of representation.

5. Minimal ontological commitment: An ontology should require the minimal
ontological commitment sufficient to support the intended knowledge sharing
activities.  An ontology should make as few claims as possible about the world
being modeled, allowing the parties committed to the ontology freedom to
specialize and instantiate the ontology as needed.  Since ontological commitment is
based on consistent use of vocabulary, ontological commitment can be minimized
by specifying the weakest theory (allowing the most models) and defining only
those terms that are essential to the communication of knowledge consistent with
that theory.2

Tradeoffs

Ontology design, like most design problems, will require making tradeoffs among the
criteria.  However, the criteria are not inherently at odds.  For example, in the interest of
clarity, definitions should restrict the possible interpretations of terms.  Minimizing
ontological commitment, however, means specifying a weak theory, admitting many

2An ontology serves a different purpose than a knowledge base, and therefore a different notion of
representational adequacy (McCarthy & Hayes, 1969) applies.  A shared ontology need only describe a
vocabulary for talking about a domain, whereas a knowledge base may include the knowledge needed to
solve a problem or answer arbitrary queries about a domain.
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possible models.  These two goals are not in opposition.  The clarity criterion talks about
definitions of terms, whereas ontological commitment is about the conceptualization
being described.  Having decided that a distinction is worth making, one should give the
tightest possible definition of it.

Another apparent contradiction is between extendibility and ontological
commitment.  An ontology that anticipates a range of tasks need not include vocabulary
sufficient to express all the knowledge relevant to those tasks (requiring an increased
commitment to that larger vocabulary). An extensible ontology may specify a very
general theory, but include the representational machinery to define the required
specializations.

Extendibility and ontological commitment both include a notion of sufficiency or
adequacy.  Since an ontology serves a different purpose than a knowledge base, the
concept of representational adequacy (McCarthy & Hayes, 1969) differs.  A shared
ontology need only describe a vocabulary for talking about a domain, whereas a
knowledge base may include the knowledge needed to solve a problem or answer
arbitrary queries about a domain.

To see how these abstract criteria can be used guide ontology design, we will
consider two case studies.  In each, we will discuss selected design decisions, evaluating
alternative representation choices against the proposed criteria.

4. Case studies in ontology design

In this section we discuss the design of two ontologies.  In conventional data modeling,
one would define ontologies with data-type declarations or a database schema.  Since we
wish to write knowledge-level specifications, independent of particular data or
programming languages, we use the knowledge interchange format KIF (Genesereth &
Fikes, 1992)3  Each ontology defines a set of classes, relations, functions, and object
constants for some domain of discourse, and includes an axiomatization to constrain the
interpretation.  The resulting language (the basic logic from KIF + the vocabulary and
theory from the ontologies) is a domain-specific specification of a conceptualization.

4.1 A quick overview of KIF

KIF is a prefix notation for predicate calculus with functional terms and equality.  Free
variables, which start with the prefix ?, are universally quantified.  Material implication is
indicated with the =>, <=, and <=> operators.  Equality between terms is denoted by the =
relation.  The member relation indicates set-membership, and setof is the set construction
operator.  Relations are first-class objects in the universe of discourse, defined as sets of
tuples.  Relations are denoted by constants that serve as both predicate symbols and as
terms denoting the relations as objects.  Functions are a special case of relations, where a
function of N arguments is equivalent to a relation of N+1 arguments whose last
argument is the value of the function on the first N arguments.  Classes are represented
with unary relations.  For example, the sentence (C ?q) means ?q is an instance of the
class C.  Definitions are given by the KIF definitional operators defrelation,

3To support development, we used a set of KIF-based analysis and translation tools provided by the
Ontolingua system (Gruber, 1992; Gruber, 1993).
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deffunction, and defobject, which associate a relation, function, or object constant
with the set of axioms that follow.  In the style of Lisp syntax, case is not significant in
constants and the text following a semicolon on the same line is ignored.

4.2 Case 1: Physical quantities, units of measure, and algebra for engineering
models

In the first case study, we consider the problem of representing mathematical models of
engineered systems.  Engineers use mathematical models, such as sets of equations, to
analyze the behavior of physical systems.  The conventional notations for formatting
mathematical expressions in textbooks and the engineering literature usually implicit
many of the details required to understand the equations.  For instance, it is not clear from
the expression f = kx+c which symbols are variables or constants; whether they represent
numbers or quantities (e.g., forces, lengths); whether the numbers are reals or vectors;
whether the quantities are static values, functions of time, or functions of time and space;
and the units of measure assumed.  The reader must interpret these notations using
background knowledge and context.

To build libraries of reusable engineering models, it is important to have a notation
based on a formal language with a well-defined, context-independent interpretation.  For
this purpose, Greg Olsen and I have developed a family of formal ontologies for
engineering modeling.  Our goal was to define the vocabulary and conceptual foundation
necessary for sharing mathematical models of device behavior among computer
programs.  These ontologies can then be used as a language for communication among
engineering tools in a distributed, heterogeneous environment (Gruber, Tenenbaum, &
Weber, 1992; McGuire et al., 1992).

The most important concepts in the ontologies are physical-quantity (e.g., 3 meters,
80 kilometers/hour), physical-dimension (length, length/time), unit-of-measure (meters,
kilometers/hour), magnitudes of various orders (scalars, vectors, tensors, and functions
thereof), algebras for describing mathematical constraints (e.g., operators for products,
sums, exponentiations, and derivatives), and the concepts at a metalinguistic level to
describe mathematical expressions as objects in the universe of discourse (e.g., to reason
about whether an expression is in closed form or to describe the dependent variables in
system of equations).

We now focus on the representation of physical quantities in engineering models.
Engineers often use the word “quantity” to refer to both the thing-in-the-world, such as
the length of some segment of railway track (about 3 meters), and the thing-in-the-
equation, such as the parameter X in an equation model denoting the position of a car
along the track.  In the engineering ontologies, we distinguish these two notions.  A
physical-quantity is the extent of some property in the world independent of how it is
represented or measured (e.g., the length that is 3 meters long).  The symbol X is an
expression that denotes a physical quantity.  A representation of X is at the metalinguistic
level, where parameters and equations in an engineering model are treated as special
cases of terms and sentences in the logic.  The treatment of the metalinguistic level is
beyond the scope of this paper, so we will concentrate on the object level representation
of physical-quantity.
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Version 1

Consider a straw-man proposal, which we will criticize and revise.   We will start with a
straightforward definition of a physical quantity: a pair comprising a number and a unit of
measure.  The KIF form below defines a physical-quantity as an object consisting of a
magnitude and a unit, which are given by the unary functions quantity.magnitude and
quantity.unit.  The definition says that the magnitude of a physical quantity must
exist4 and be of type double-float and its unit must be a member of the standard set of
units.  These constraints are analogous to slot value restrictions in object-centered
languages.  Since the definition is an if-and-only-if (<=>) condition, it also says that every
pair of such magnitudes and units defines a quantity.

(defrelation PHYSICAL-QUANTITY
  (<=> (PHYSICAL-QUANTITY ?q)
       (and (defined (quantity.magnitude ?q))
            (double-float (quantity.magnitude ?q))
            (defined (quantity.unit ?q))
            (member (quantity.unit ?q)
                    (setof meter second kilogram
                           ampere kelvin mole candela)))

Physical-quantity is a class (i.e., a unary relation that holds over instances of the
class).  For describing individual instances of the class, we define a constructor function
called the-quantity.  The term expression (the-quantity ?m ?u) denotes a physical
quantity ?q whose magnitude is ?m and unit is ?u.

(deffunction THE-QUANTITY
  (<=> (and (defined (THE-QUANTITY ?m ?u))
            (= (THE-QUANTITY ?m ?u) ?q))
       (and (physical-quantity ?q)
            (= (quantity.magnitude ?q) ?m)
            (= (quantity.unit ?q) ?u))))

The definition of physical-quantity already stated that all quantities are determined by
the values of their magnitudes and units; this definition simply adds vocabulary to be able
to denote a specific quantity with a term.  For example, the following states that X is the
quantity 3 meters, where meter is one of the possible units of measure.

(= X (the-quantity 3 meter))

Analysis

Our original proposal satisfies some of the design criteria for ontologies.  The definition
of physical-quantity is specified declaratively—its meaning is independent of any
program. It is internally consistent, and simple enough to be clear.  However, it falls short
on some of the other criteria.  First, the double-float constraint, while familiar to data
definitions, is a specification of the precision of the encoding of numbers rather than the
concept of physical quantities.  This is an instance of encoding bias because it reflects an
implementation detail (bits of precision) rather than the knowledge-level commitments of

4In KIF, functions may be partial (only defined for some arguments).  The predicate defined is used to
indicate that a function has a value for a particular sequence of arguments.  In relational terminology,
(defined (f x)) implies that there exists a y such that, for the function F viewed as a binary relation,
F(x, y) holds.  In slot-value terminology, it means that slot f has exactly one value on object x.
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parties to the ontology.  It would be better to say that the magnitude of such a quantity is
a real number, acknowledging that all computer programs must approximate the reals.5

Second, the concept of units of measure is defined as a set of possible values for the
quantity.unit function.  This is also a specification of the encoding rather than the
world, although it is not as obvious as the double-float vs. real-number example.  What
we mean by physical quantity does not depend on a commitment to a particular set of
units.  Therefore, the set of possible units should not be part of the definition of physical-
quantity.

Third, fixing the set of possible units is a limit on extendibility.  The world has
many standards for units of measure, and the purposes of this ontology (sharing
engineering models and theories across people, domains, and tools) do not sanction a
preference for one standard.  Therefore, the ontology should allow for the definition of
alternate sets of units, and a way to relate them to existing units.

Version 2

Consider how we could modify the initial proposal to remove these inadequacies.  First,
we can reformulate the definition of physical-quantity so that the concepts of magnitude
and unit of measure are made explicit as independent classes, magnitude and unit-of-
measure.

(defrelation PHYSICAL-QUANTITY
  (<=> (PHYSICAL-QUANTITY ?q)
       (and (defined (quantity.magnitude ?q))
            (magnitude (quantity.magnitude ?q))
            (defined (quantity.unit ?q))
            (unit-of-measure (quantity.unit ?q))))))

Now we can define the class magnitude to include the class of all real  numbers,
rather than the class of numbers encodable in floating point format.  The class real-
number comes from KIF’s number ontology.

(defrelation MAGNITUDE
  (<= (MAGNITUDE ?x)
      (real-number ?x)))

Note that the definition above is incomplete.  A complete definition of a relation
includes necessary and sufficient conditions for the relation to hold.  The definition above
gives sufficient conditions for being a member of the class—that all real numbers are
magnitudes—but not necessary conditions.  This is done in anticipation that there will be
other sorts of magnitudes in engineering models.

The complete family of engineering math ontologies includes separate theories for
vector and tensor quantities.  These specialized theories inherit from parent theories all
the above axioms about quantities and magnitudes, and add axioms stating that vectors
and tensors are also magnitudes.

5For sharing knowledge about discrete approximation, such as theories of error bounds on numeric
computation, axioms about precision could be written without encoding bias.
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Decoupling the ontologies in this way helps to minimize ontological commitment.
An agent can commit to the basic theory of real-valued quantities without any
commitment to higher order magnitudes.  The rationale for minimizing commitment is
the assumption that greater commitment implies a more complex agent.

To accommodate alternate sets of units, we define a class for units of measure, and
provide vocabulary with which to define new units.  We start with a class called unit-
of-measure, which is a primitive.6

(defrelation UNIT-OF-MEASURE
  (class UNIT-OF-MEASURE))

To allow the user to extend the set of units we define a basis set called basic-unit
(a subclass of unit-of-measure) and operators called unit* and unit^ for building new
units from existing ones. Unit* is analogous to multiplication and unit^ is analogous to
exponentiation to a real power.7   In an engineering equation, if two quantities are
multiplied, their product can be expressed as the quantity whose magnitude is the
arithmetic product of the magnitudes of the quantities and whose unit of measure is the
unit* of the units of the two quantities.  The analogous relationship holds for
exponentiation, which introduces division through negative exponents.

(defrelation BASIC-UNIT
  (=> (BASIC-UNIT ?u)         ; basic units are distinguished
      (unit-of-measure ?u)))  ; units of measure

(deffunction UNIT*
  ; Unit* maps all pairs of units to units
  (=> (and (unit-of-measure ?u1)
           (unit-of-measure ?u2))
      (and (defined (UNIT* ?u1 ?u2))
           (unit-of-measure (UNIT* ?u1 ?u2))))
  ; It is commutative
  (= (UNIT* ?u1 ?u2) (UNIT* ?u2 ?u1))
  ; It is associative
  (= (UNIT* ?u1 (UNIT* ?u2 ?u3))
     (UNIT* (UNIT* ?u1 ?u2) ?u3)))

6A primitive term is one for which we are not able to give a complete axiomatic definition.  We must rely
on textual documentation and a background of knowledge shared with the reader to convey the meanings of
primitives.  Technically, all terms with incomplete definitions are primitives.  Some, like magnitude can
be strengthened with further conditions to become complete (e.g., magnitude could be made equivalent
to real-number).  Others, like unit-of-measure, must get their meaning from human interpretation
(the meter is a unit of measure purely by convention).
7In a later revision of the physical quantities theory, we defined units as special cases of quantities.  We
also included real numbers as quantities with an identity dimension.  Since quantities became a
generalization of numbers, we extended KIF’s * and expt functions with polymorphic definitions for each
subclass of quantities, including units of measure. This allowed us to eliminate unit* and unit^, and
substitute * and expt throughout. In this formulation, the-quantity reduces to *.
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(deffunction UNIT^
  ; Unit^  maps all units and reals to units
  (=> (and (unit-of-measure ?u)
           (real-number ?r))
      (and (defined (UNIT^ ?u ?r))
           (unit-of-measure (UNIT^ ?u ?r))))
  ; It has the algebraic properties of exponentiation
  (= (UNIT^ ?u 1) ?u)
  (= (unit* (UNIT^ ?u ?r1) (UNIT^ ?u ?r2))
     (UNIT^ ?u (+ ?r1 ?r2)))
  (= (UNIT^ (unit* ?u1 ?u2) ?r)
     (unit* (UNIT^ ?u1 ?r) (UNIT^ ?u2 ?r)))

For example, one can define meters as a basic-unit for length and seconds as a basic unit
for time.  We then define a unit for velocity called meters/second using the combination
operators.  We can use this new unit to denote a specific quantity of velocity.

(defobject METER
  (basic-unit METER))

(defobject SECOND
  (basic-unit SECOND))

(defobject METER/SECOND
  (= METER/SECOND
     (unit* meter (unit^ second -1))))

(= REAL-FAST (the-quantity 10000 meter/second))

Analysis of Version 2

This new axiomatization of quantities, magnitudes, and units is extensible, but it turns out
to be incoherent.  Six feet and two yards are both descriptions of the same length, but if
we use the definition above for physical quantities, treating them as pairs of magnitudes
and units, then <6 feet> and <2 yards> are not the same quantity!  This is easily proved:
If

(= (quantity.unit (the-quantity 6 foot)) foot)
(= (quantity.unit (the-quantity 2 yard) yard)

and

(not (= foot yard))

then

(not (= (the-quantity 6 foot) (the-quantity 2 yard))).

This conclusion is consistent with (and follows from) the axiomatic definitions.
However, in our conceptualization, these quantities are lengths in the world, independent
of how they are measured.  Thus 6 feet and 2 yards should be equal, and our proof has
revealed a problem.  If the representation allows one to infer something that is not true in
the conceptualization then the ontology is incoherent.8

8Of course we have no means of mechanically verifying coherence with the conceptualization.  We do have
means of deriving consequences of the axioms, which we must interpret with respect to the intended
conceptualization.
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Version 3

The original representation for quantities as aggregates with magnitude and unit
components reflects a style encouraged by object-oriented data modeling techniques.
Objects are entities whose state is given by instance variables or methods.  One can
imagine implementing quantities as tuples of numbers and units.  But in this domain, this
image led us astray.  If we abstract away from the implementation, we can solve the
problem of equivalent quantities by changing the definitions of the functions that relate
quantities to magnitudes and units.  In the next version, we say that the magnitude of a
quantity depends on the unit in which it is requested.  This dependency is reflected in the
definition below, in which quantity.magnitude becomes a binary function that maps
quantities and units to magnitudes. With this definition, we avoid the incoherence; it is
possible for two quantities specified in different units to be equal.

(deffunction QUANTITY.MAGNITUDE
  (=> (and (defined (QUANTITY.MAGNITUDE ?q ?u))
           (= (QUANTITY.MAGNITUDE ?q ?u) ?m))
      (and (physical-quantity ?q)
           (unit-of-measure ?u)
           (magnitude ?m))))

So far we have provided a formal mechanism to describe new units and physical
quantities, but have not said enough about the semantics of quantities with respect to
units and other quantities.  This is an issue of clarity.  Can any combination of quantities
be compared on magnitudes, or added?  Which units make sense for which quantities?
How is 1000 meter/second like 1 mile/hour but unlike 6 meters?  The missing link is the
notion of physical dimension.  Length, time, and velocity are physical dimensions.  Both
units and physical quantities are associated with physical dimensions, and the units used
to specify a quantity must be of the same dimension as the quantity.  Only quantities of
the same dimension can be added or compared.

We can define a primitive class called physical-dimension (e.g., length, velocity),
and say that a unit-of-measure must be associated with a single physical dimension.  The
definition of unit-of-measure below states the latter constraint with a total functional
mapping (via the function unit.dimension) from units to physical dimensions.

(defrelation PHYSICAL-DIMENSION
  (class PHYSICAL-DIMENSION))

(defrelation UNIT-OF-MEASURE
  (=> (UNIT-OF-MEASURE ?u)
      (and (defined (unit.dimension ?u))
           (physical-dimension (unit.dimension ?u)))))

Similarly, we can define the function quantity.dimension mapping all quantities to
their dimensions.

(deffunction QUANTITY.DIMENSION
  (=> (physical-quantity ?q)
      (and (defined (QUANTITY.DIMENSION ?q))
           (physical-dimension (QUANTITY.DIMENSION ?q)))))

We now have a notion of “compatibility” among quantities and units (i.e., equal
dimensions).  We can specify this by strengthening the definition of the function
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quantity.magnitude, adding the constraint (underlined below) that the dimensions of
the quantity and unit must be the same.

(deffunction QUANTITY.MAGNITUDE
  (=> (and (defined (QUANTITY.MAGNITUDE ?q ?u))
           (= (QUANTITY.MAGNITUDE ?q ?u) ?m))
      (and (physical-quantity ?q)
           (unit-of-measure ?u)
           (magnitude ?m)
           (= (quantity.dimension ?q)
              (unit.dimension ?u)))))

By introducing the concept of physical dimension, we have been able to add more
axiomatic constraints to the definitions (increasing clarity) without changing the
ontological commitment.  It doesn't make any sense to ask for the magnitude of a length
in seconds; these constraints just make this understanding explicit.

One final extension of the ontology does increase the ontological commitment, but is
consistent with the existing definitions and makes the theory more useful for sharing
engineering models.  In the extension, we say that the magnitudes of any two quantities
of the same dimension can be compared, regardless of the units in which they were
originally specified.  We can state this formally by making the function
quantity.magnitude total for all quantities and units of the same dimension, adding
another axiom to the definition of quantity.magnitude.

(deffunction QUANTITY.MAGNITUDE
  (=> (and (defined (QUANTITY.MAGNITUDE ?q ?u))
           (= (QUANTITY.MAGNITUDE ?q ?u) ?m))
      (and (physical-quantity ?q)
           (unit-of-measure ?u)
           (magnitude ?m)
           (= (quantity.dimension ?q)
              (unit.dimension ?u)))))
  (=> (and (quantity ?q)
           (unit-of-measure ?u)
           (= (quantity.dimension  ?q)
              (unit.dimension ?u)))
      (defined (QUANTITY.MAGNITUDE ?q ?u)))

Without this axiom, the definition of quantity.magnitude only stipulates necessary
conditions—domain and range constraints that must hold whenever the function is
defined.

The practical consequence of this commitment is that unit conversion is now
possible.  Given any quantity ?q, originally specified in unit ?u, there is a magnitude ?m =
(quantity.magnitude ?q ?m). From the previous axiom, for any other unit ?u2 of the
same dimension we can expect there to exist a magnitude ?m2 = (quantity.magnitude
?q ?u2).  Thus, quantity.magnitude provides the vocabulary for unit conversion.

Based on this ontology, Yves Peligry of the Stanford Knowledge Systems Lab has
written an agent that can perform unit conversion operations.  It commits to the physical
quantities ontology, and answers queries in KIF using the vocabulary from the ontology.
It gets its information about the dimensions and relative magnitudes of various units by
reading other ontologies containing unit definitions.  The unit ontologies describe systems
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of units in which some dimensions are fundamental, with standard units, and the rest are
composed using multiplication and exponentiation operators.  For example, one such
ontology specifies the standard SI system of units (Halliday & Resnick, 1978).  Given
such an ontology, the agent can determine whether the provided unit definitions are
sufficient to compute the magnitude of any quantity given in one unit in terms of another.
Then, given a query of the form

(evaluate (quantity.magnitude quantity-expression unit-expression))

the agent can return the appropriate magnitude.

This is an example of using an ontology for agent interoperation.  The ontology
provides the vocabulary from which to construct such queries, and the semantics so that
two agents can agree on what makes sense in a given vocabulary.  In this case, the agents
can agree about which quantity expressions and term expressions denote quantities and
units, and when they are given as arguments to the quantity.magnitude function, that
the magnitude exists.  These agreements establish a basis for agent discourse.

Separating the core ontology about quantities and units from the specific conventions
for systems of units minimizes the ontological commitment of participating agents.
While they all need to commit to the core theory, they can commit to differing standards
of measure.  Since commitment to an ontology does not require completeness of
inference, agents can “understand” the conditions under which a value exists (e.g., a
magnitude in some unknown unit) without knowing how to compute the value.  This
makes it possible to capitalize on the services of “mediator” agents (Wiederhold, 1992) to
translate between agents.  In this case, the mediator is the unit conversion agent.

Summary of Case 1

We have seen how a formal ontology for engineering models can be designed with
respect to the general design criteria we outlined in the Section 3.  Criterion 1 asks for
clarity.  In the engineering math ontologies, clarity is achieved from a formal
axiomatization, which forced us to make explicit the distinctions and assumptions that are
often left ambiguous in textbook notations.  Since the resulting ontology is machine
interpretable, the “reader” can use a theorem prover to help answer the kinds of questions
one finds at the end of textbook chapters (questions that probe the student’s
understanding of the defined concepts).  The second criterion, coherence, guided the
design of the ontology throughout.  In the case study we found that the definitions in an
early version implied a conclusion that was inconsistent with our conceptualization
(equivalent quantities expressed in different units were not equal).  Criterion 3,
extendibility, also suggested a design change: instead of fixing a set of units, we added
vocabulary to define new units and dimensions, and to allow for quantities to be
expressed in any compatible unit.  We saw an instance of encoding bias (criterion 4) in
the assumption about the precision of magnitudes.  To help minimize ontological
commitment (criterion 5) we decomposed a comprehensive theory of engineering
mathematics into modular theories, so that agents that who could reason about scalar
quantities but not higher-order magnitudes, or agents that work in different standard
units, could commit to the smallest theory needed to share models with other agents.
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We will now consider a domain in which the application of the same design criteria
leads to different choices in the representation.

4.3 Case 2: An ontology for sharing bibliographic data

The second case study involves an ontology for sharing bibliographic data, such as the
information in a library's card catalog and the reference list at the end of a scholarly
paper. This example will clarify some of the design issues relating ontologies and shared
data.

The bibliography ontology is designed to facilitate automatic translation among
existing bibliographic databases, to support the specification of reference-formatting
styles independently of database or program, and to provide a knowledge-level
vocabulary for interacting with network-based services such as bibliography database
search.

Any such ontology describes a conceptualization, a view of a world from a particular
perspective.  In this ontology, the world includes information.  We say that a bibliography
is made up of references.  A reference contains the information needed to identify and
retrieve a publication.  References contain data about publications; references are not the
publications themselves.  Documents  are the things created by authors that can be read,
viewed, listened to, etc.  Books and journals are documents.  There may be references for
several publications per document, as in edited collections. Documents are created by
authors, who are people or other agents.  Documents are published by publishers at
publication dates, which are time points.  Authors and publishers have names, which are
strings.

The bibliography ontology defines a class for each of the concepts italicized above.
For example, bibliographic references are represented by instances of the class called
reference. The definition of this class includes the necessary condition that a reference
be associated with a document and a title.  The document associated with a reference is
represented by the ref.document function and the title with ref.title.

(defrelation REFERENCE
; A bibliographic reference is a description of some publication
; that uniquely identifies it, providing the information needed
; to retrieve the associated document.  A reference is
distinguished...
  (=> (REFERENCE ?ref)
      (and (defined (ref.document ?ref))
           (defined (ref.title ?ref)))))

(deffunction REF.DOCUMENT
; ref.document maps references to documents
  (=> (and (defined (REF.DOCUMENT ?ref)
           (= (REF.DOCUMENT ?ref) ?doc))
      (and (reference ?ref)
           (document ?doc))))
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(deffunction REF.TITLE
; ref.title maps references to title strings
  (=> (and (defined (REF.TITLE ?ref))
           (= (REF.TITLE ?ref) ?title))
      (and (reference ?ref)
           (title-name ?title))))

In a database, an entity such as a reference might be encoded as a record or relation
tuple.  The vocabulary for representing the data associated with these entities—the fields
of a database record—are provided by unary functions and binary relations.  For example,
the ref.title function represents the title field of a reference, whose value is a title-
name (a string).  The sentence (defined (ref.title ?ref)) in the definition of
reference states that a valid reference must have an associated title. Another field is the
ref.year, which will be defined below.  It is an “optional field” —not all references will
include the year information.

The ref.document function is different from the “data field” functions.
Ref.document represents the relationship between a reference and a document.  The
document is an element of our conceptualization, but it is not a data item like a name
string or number.  It is used to help specify the relationship of other data.  For example, in
an edited collection, all the papers share the same publication data.  This is because, in
the world, the papers are published in a single document. In each reference, the fields for
the publisher and year of publication are determined by the publisher and year of
publication of the document.  This is true whether or not the document is represented in a
database.

The relationships between the data in a reference and the facts about documents and
authors is provided by unary functions and binary relations.  Let us consider the
ref.year function in detail.  The function ref.year maps a reference to an integer
representing the year in which the associated document was published.  If the associated
document was not published, then the ref.year function is undefined for that reference.
The relationship between references, documents, and years is specified below: The
ref.year of a reference is an integer that is the timepoint.year of the time point that is
the doc.publication-date of the document associated with the reference.

(deffunction REF.YEAR
 (= (ref.year ?ref)
    (timepoint.year (doc.publication-date (ref.document ?ref)))))

(deffunction DOC.PUBLICATION-DATE
; the timepoint at which the document was published
  (=> (and (defined doc.publication-date ?doc)
           (= (DOC.PUBLICATION-DATE ?doc) ?date))
      (and (document ?doc)
           (timepoint ?date))))

Notice that the mapping from references to year numbers involves an intermediate
entity called a timepoint.  A timepoint is a single point in real, historical time — the
same for all observers and contexts.  It is continuous, and its meaning is independent of
the granularity at which we wish to approximate it.  The date of birth of a person and the
date of publication of a document are timepoints.
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(defrelation TIMEPOINT
; A timepoint is a point in real, historical time -- the same for all
; observers and contexts.  It is independent of measurement
resolution.
  (class TIMEPOINT))

Timepoint.year is a function from time points to integers representing the number of
years since a fixed reference time point.

(deffunction TIMEPOINT.YEAR
; the number of years between a timepoint and the origin timepoint
; of the Christian calendar.  The value is an integer, rounded up.
  (=> (and (defined (TIMEPOINT.YEAR ?t))
           (= (TIMEPOINT.YEAR ?t) ?y))
      (and (timepoint ?t)
           (integer ?y)))

Analysis

At this point we have enough context to examine the rationale for the central design
decision in this ontology: to define conceptual entities described by the data, rather than
just specifying the data. Why are documents distinguished from references?  Why
introduce publishers and authors as independent entities when only their names appear in
references?  Why is a theory of time points included, when dates in references always
appear as numbers and strings?  Do the anticipated applications need to reason about
dates, publication events, authorship, and so forth?  If not, why ask them to commit to
these concepts in an ontology?

One reason for introducing these entities is to be able to state integrity constraints
about the data in the reference object.  For instance, if two papers are published in the
same edited collection, then one would like to ensure that their publication data (date,
publisher, city, etc.) are the same.  By representing documents independently of
references, we are able to write such constraints. Database agents can use integrity
constraints to guarantee coherence and detect data processing errors.

Representing the conceptual entities in addition to the data also provides some
independence from application-specific encoding and resolution.  We distinguish
timepoints, rather than just talking about year numbers, for this reason.  We say that
documents are published at points in historical time, which, when mentioned in
references, may be approximated at various levels of precision.  If one reference claims
that a journal article was published in “1993,” and another that the article was published
in “March 1993,” then we have the representational machinery to determine that these
two references are consistent.  We could, instead, insist that all dates be represented in
some canonical form, such as day/month/year.  However, this would be specifying a
precision that may not be available in the data, and would vary over implemented
systems. Since this commitment would follow from a particular format rather than from
the conceptualization, it would be a kind of encoding bias.

On the other hand, one might also question the rationale for describing the data
(strings, numbers) at all.  Why represent the name of an author separately from the
author, or the integer encoding of years separately from time points?  One could instead
limit the ontology to the conceptual entities such as documents, authors, and time points,
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and leave it to the implementations to decide how a particular author might be named or
date might be stored in a database.  More generally, the issue is whether identifiers for
objects are appropriate to represent in knowledge-level specifications.

Typically, the choice of identifiers for objects in a knowledge base is a symbol-level
issue.  For example, a database may identify employees with unique integers that serve as
keys in employee records.  If the identifier is an artifact of the database design, and not in
the world, then it is not appropriate to include in a shared ontology.  Defining employees
in terms of numbers is an example of encoding bias.

In the domain of the bibliography ontology, however, symbolic identifiers such as
references and names are properly in the domain of discourse.  The reference object, and
its data fields such as the year of publication, are in the conceptualization of the
bibliographic domain.  It is part of the convention of bibliographic references that years
are encoded as integers. This is independent of format, but it is an encoding.  Similarly,
the names of authors are important elements of the domain.  For example, an early
version of the bibliography ontology was revised to accommodate the concept of pen
names: multiple names for the same author.  That authors sometime use pen names, and
that these names are the official author names in publications, is a property of the world,
not a database schema.

Nonetheless, we need to distinguish the identifiers from the entities being identified
to preserve coherence.  Names don't write; authors do!

The identification of dates is a more subtle case.  The notion of dates in the
bibliography domain assumes a coordinate system and unit of measure for historical time.
The domain also has standards for the precision in which time is measured (integral
years, months, and days).  Why is this not an encoding bias?  The commitment to a
specific unit of measure might also seem to limit extendibility. Would an agent that
works from a Chinese calendar be able to commit to an ontology based on the Western
calendar?  Compare this situation to the physical quantities ontology (Section 4.1), in
which we were careful to keep the concept of a quantity independent of the unit in which
it is known, and to provide a mechanism for supporting multiple, equivalent units.

The specification of a standard measurement or identification scheme does not
inherently impose an encoding bias or limit extendibility.  The bibliography ontology
does not equate the specification of dates with the concept of points in historical time.
The notion of timepoint is independent of units, just as the concept of thermodynamic
temperature is independent of whether it is measured on the Kelvin or Rankine scale.
The unit and coordinate system are introduced by the mapping from time points to the
surface encoding of the data via functions such as timepoint.year.

The agent working on the Chinese calendar can read the date specified using the
Western calendar, and convert it into the appropriate internal format.  In addition, because
encodings are distinguished from the conceptual entities, one can extend the existing
ontology to handle unforeseen units.  For example, some publication dates use the name
of a season, as in “Summer 1993.” A function from time points to seasons could be
defined without contradicting the underlying ontology.
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5. Summary and discussion

We have described five general design criteria and have given detailed examples of the
design of formal ontologies for knowledge sharing.  In these case studies, we found
several instances of encoding bias, ranging from prescriptions of numerical precision to
implicit assumptions resulting from viewing a quantity as a magnitude/unit pair.  We
showed that when an encoding is intrinsic to the conceptualization (integers for years),
encoding bias can be avoided by representing both the underlying concept (time points)
and the units of measure (timepoint years).  We showed how to extend the
representational vocabulary (e.g., for units of measure in the engineering ontology)
without overcommitment (e.g., to particular units as an exclusive standard).

We found that the evaluation of design decisions against the criteria depends on the
knowledge available and the applications anticipated for a domain. In the engineering
domain, we have a strong theory with which to relate the concepts of physical quantity,
unit of measure, dimension, and magnitude.  The ontology is specified with great clarity,
since most of the concepts can be defined axiomatically.  The resulting specification
imposes real constraints on the implementation of agents (e.g., they are prohibited from
making implicit assumptions about units), allows for program- and notation-independent
knowledge bases (libraries of engineering models), and provides the basis for useful
inferential services (e.g., behavior prediction and unit conversion).  The ontological
commitment to a strong theory is justified for the sharing of valuable mathematical
models.  In the bibliography domain, the theory relating references, documents, people,
publishers, and dates is weak.  We could have imposed a stronger theory, for instance,
describing a world where all authors have permanent, unique names and the month is
always known for a conference paper.  That would have been imposing more ontological
commitment than is necessary to share the information. It would also be incoherent, since
we know that these constraints do not hold in the world being modeled.

Related work

The design criteria proposed in this paper are primarily for evaluation of design decisions
in choosing among representations, rather than as guidelines for generating theory.
Choosing appropriate ways of conceptualizing a domain is a constructive modeling task,
a topic of active research (e.g., (Ford & Bradshaw, 1993)).

The LILOG project followed a set of software engineering principles, such as
modularity and abstraction, in the development of its ontology (Pirlein, 1993).  These
principles guide the form and organization of knowledge specifications, and are
complementary to those proposed here, which pertain to choice of representation.  The
design of the Penman ontology (Bateman, Kasper, Moore, & Whitney, 1990) draws from
knowledge of the structure and content of natural language (including the work of
linguists, philosophers, psychologists, and lexicographers).  Skuce and Monarch (Skuce
& Monarch, 1990) recommend a similar strategy for general knowledge acquisition.  In a
workshop on the LILOG ontology, Simmons (Simmons, 1991) discussed content-
independent ontology design criteria, including the software engineering principles and
some criteria similar to those proposed (independently) in this paper.  Reporting on
experience in formalizing theories of objects and their properties, he concludes that these
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content-independent criteria are less important than the validity of the theory itself (i.e.,
as a scientific theory of cognition).  For both LILOG and Penman, the purpose of the
ontology is to organize knowledge used for natural language processing, and so the
ontology must account for distinctions found in language.  In contrast, for the ontologies
discussed in this paper, which specify a common conceptualization for knowledge
sharing among programs, whether the conceptualization is a good model of the world was
not the dominant criterion.  In any case, an ontology is only a specification, and the utility
of an ontology ultimately depends on the utility of the theory it represents.

Several examples of ontologies are being developed to enable knowledge sharing
and reuse.  The Cyc project is generating a wealth of examples  (Lenat & Guha, 1990;
Lenat, Guha, Pittman, Pratt, & Shepherd, 1990) and methods for partitioning knowledge
bases into modular theories (Guha, 1991).  Guarino (Guarino, 1992), Sowa (Sowa, 1993)
and others offer content-independent guidelines for organizing concepts, relations, and
individuals in an ontology.  Comprehensive “top level” frameworks such as the Penman
Upper Model (Bateman et al., 1990), the upper structure of LILOG, Skuce’s ontology,
Takagaki’s adaptation of Mario Bunge’s ontology (Takagaki, 1990), the Ontek ontology,
and the upper reaches of Cyc's ontology offer partial designs that can be extended and
instantiated for particular needs.  There are a number of ontologies focusing on special
representation problems, such as varieties of time (Allen, 1984; Ladkin, 1986; Shoham,
1987), space (Cohn, 1995), part-whole structure (Eschenbach & Heydrich, 1995; Gerstl
& Pribbenow, 1995), causality and change (Hobbs, 1995; Terenziani, 1995).  Formal
specifications of domain or task specific conceptualizations are beginning to appear in the
research literature.  Ontologies for the sharing and reuse of knowledge about engineering
models (Alberts, 1993; Kiriyama, Yamamoto, Tomiyama, & Yoshikawa, 1989), planning
and scheduling (Allen & Lehrer, 1992; Hama, Hori, & Nakamura, 1993), manufacturing
enterprises (Fox, 1993) and problem-solving tasks and methods (Ericksson, Puerta, &
Musen, 1993; Musen, 1992; Steels, 1990; Walther, Eriksson, & Musen, 1992) can be
viewed as modular building blocks for reusable knowledge bases and ontology-specific
software.  Of particular relevance is the KADS methodology for expert system
development, which is based on sharing and reusing “models of expertise” (theories
about tasks, domains, and solution strategies) (Wielinga, Velde, Schreiber, & Akkermans,
1992; Wielinga, Schreiber, & Breuker, 1992).  These models are essentially ontologies,
and recent work has begun to produce formal specifications (Aben, 1992; Akkermans,
van Harmelen, Schreibner, & Wielinga, 1990; Angele, Fensel, & Landes, 1992; Fensel &
Studer, 1993; van Harmelen & Balder, 1992)

We have a start on a technology to put such ontologies in portable form, for
comparison and exchange (Genesereth & Fikes, 1992; Gruber, 1993).  With this we can
begin to accumulate a corpus of examples of ontology design.  As we learn more about
the design of ontologies for knowledge sharing, we may be able to evolve today's
preliminary design criteria into working design principles.
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