A function for the thalamo-habenula projection

Ruey-Kuang Cheng1, Seetha Krishnan2, Qian Lin2, David G. C. Hildebrand3,4, Isaac H. Bianco4, Caroline Kibat5, Michelle Kee Zhi Ling6 and *Suresh Jesuthasan1,5,6,7

1Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921.
2NUS Graduate School for Integrative Sciences and Engineering, 28 Medical Drive, National University of Singapore, Singapore 117456.
3Graduate Program in Neuroscience, Division of Medical Sciences, Graduate School of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138 United States of America.
4Department of Molecular and Cell Biology, Harvard University, Cambridge, Massachusetts 02138, United States of America.
5Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, Singapore 138673.
6Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857.
7Department of Physiology, National University of Singapore, Singapore 117597.

*Corresponding author: sureshj@ntu.edu.sg; +65 65869545

equal contribution
Abstract

The thalamus mediates diverse brain functions including arousal, perception and memory formation, and is characterized by widespread connectivity. One thalamus projection that is evolutionarily conserved is to the habenula, a regulator of broadly acting neuromodulators. The function of this projection is unknown, as the information transmitted has not been identified. By two-photon calcium imaging of larval zebrafish, we show that change in irradiance triggers dynamic responses in the habenula. Neuroanatomical tracing shows that the dorsal left habenula neuropil, which has the most prominent response to irradiance change and influences irradiance-dependent behavior and raphe response, is innervated by retinorecipient nuclei in the thalamus. Optogenetic stimulation of the thalamus triggers habenula activity, while lesion reduces light-evoked habenula activity. These data establish that the thalamus controls habenula activity following irradiance change, thereby suggesting that the thalamo-habenula projection provides a pathway for visual stimuli to affect neuromodulator release and behavior.

Introduction

The vertebrate thalamus receives information from virtually all regions of the brain including sensory systems, motor systems, basal ganglia and cerebellum, and in turn projects to multiple structures (Ward, 2013; Mitchell et al., 2014). It modulates the flow of sensory information to the cortex (Sherman and Guillery, 2002; Lee and Dan, 2012; Mitchell et al., 2014; Wimmer et al., 2015) and is considered a gateway to consciousness (Newman, 1995; Crick and Koch, 2003). Connectivity with the amygdala (Romanski and LeDoux, 1992) and nucleus accumbens (Cho et al., 2013) underlie roles in emotion and reward processing, while connectivity with the hippocampus is essential for memory formation (Aggleton et al., 2010) and navigation (Jankowski et al., 2013).
less well known feature of thalamus connectivity is its innervation of the habenula
(Marburg, 1944; Cragg, 1961; Díaz and Puelles, 1992). The function of this projection is
unknown, as the information relayed from the thalamus to the habenula has not been
identified.

The habenula is an evolutionarily conserved structure (Stephenson-Jones et al.,
2012) that controls the release of broadly-acting neuromodulators such as serotonin,
dopamine, epinephrine and histamine (Wang and Aghajanian, 1977; Morley et al., 1985;
Jhou et al., 2009; Quina et al., 2014). As neuromodulators shape functional connectivity
in neural circuits (Getting, 1989; Marder, 2012; Bargmann and Marder, 2013), the
habenula can be viewed as a regulator of brain mode - defined as pattern of functional
connectivity (Getting, 1989). This role of the habenula is reflected by its involvement in
multiple behaviors, ranging from the control of fear (Agetsuma et al., 2010; Lee et al.,
2010; Zhang et al., 2016), to learning (Matsumoto and Hikosaka, 2007; 2009; Amo et al.,
2014), addiction (Fowler et al., 2011), sleep (references), and performance under stress
(Thornton and Davies, 1991).

The habenula regulates neuromodulators based on inputs reflecting reward value,
internal state and sensory stimuli. The entopeduncular nucleus, or internal segment of
the globus pallidus, provides excitatory input in response to negative reward (Hong and
Hikosaka, 2008). Internal states such as circadian clock, may be conveyed from the
hypothalamus, from example by hypocretin-secreting neurons (Appelbaum et al., 2009).
Odor-evoked activity in the habenula, which has been documented in the zebrafish
(Krishnan et al., 2014), is mediated by a direct input from the olfactory bulb (Miyasaka et
al., 2009). Light-evoked activity has been detected in the habenula in rat (Zhao and
Rusak, 2005), pigeon (Semm and Demaine, 1984) and zebrafish (Dreosti et al., 2014).
Reduction in irradiance has also been shown to affect the habenula (Portugues et al.,
2014; Bianco and Engert, 2015). How changes in irradiance affect the habenula is unclear.

The thalamus receives input from all sensory systems, except the olfactory system. It is thus possible that the pathway from the thalamus to the habenula functions to control habenula activity in response to change in irradiance. Here we provide evidence for this hypothesis. In doing so, this paper identifies one function of the thalamus-habenula projection.

Results

The habenula displays dynamic response to irradiance change

The zebrafish habenula consists of neurons surrounding neuropils that are innervated by afferent neurons (Hendricks and Jesuthasan, 2007; Miyasaka et al., 2009; Amo et al., 2014). To identify the pathways by which change in irradiance influences the habenula, we first characterized habenula activity evoked by these changes. Two-photon imaging was performed on a transgenic zebrafish line expressing the calcium indicator GCaMP3 in the habenula (Krishnan et al., 2014) (Figure 1A). Resonant-scanning, combined with piezo-driven focusing, was used to record the activity of cells at multiple focal planes throughout the habenula (Figure 1B, C). With a step size of 10 µm, so that each cell would be sampled only once, most of the habenula could be covered with 5 planes at a rate of 1 Hz. Habenula activity was monitored as the larva was exposed to discrete pulses of blue light. Pixel-wise analysis in one fish indicates that evoked activity – both transient and sustained - occurred throughout the habenula in response to both increase and decrease in irradiance (Figure 1D, E). The spatio-temporal pattern of activity was reproducible across several cycles, as shown by the trajectory of the system through state space (Figure 1F).
To assess if responses were reproducible across multiple fish, we imaged the habenula in 6 fish. Habenula neurons were segmented (Figure 2A-C; total of 4986 cells, with an average of 831 ± 53 cells (95% CI) per fish) and their activity was clustered by k-means. Cluster centers were classified by response type. Transient and sustained responses to increase and decrease in irradiance could be reliably evoked (Figure 2D-F). The percentage of responding cells per fish (±95% CI) were ON: 30.98 ± 9.94%; OFF: 19.03 ± 3.93%; Inhibitory: 7.93 ± 3.50%. Correlating the cells corresponding to the different response types revealed that, in general, neurons that were excited by an increase of irradiance did not fire to a decrease (Figure 2G, H). Some neurons that were inhibited by light did, however, show a response at light offset (Figure 2F, blue trace; see also Figure 1E, red trace). These observations confirm that the activity of zebrafish habenula neurons is affected by change in irradiance, and that in addition to excitation there is inhibition by light, as well as excitation to loss of light.

Activity occurs prominently in the dorsal left neuropil

To obtain a more detailed view of light evoked activity, we used higher speed widefield microscopy. With imaging at 20 Hz, responses was detected in multiple regions of the habenula at the onset of the LED used to induce fluorescence of the reporter (Movie 1). One region with a reproducible increase in fluorescence was the dorsal left neuropil (Figure 3A-C; n = 6 fish). The calcium indicator R-GECO (Zhao et al., 2011), which has a faster rise time than GCaMP3 (approx 10 msec half rise time (Akerboom et al., 2013)) and is more sensitive (Walker et al., 2013), also showed a reproducible strong rise in the dorsal left neuropil (Movie 2; Figure 3D-H; n = 3 fish). As the calcium indicator is expressed in habenula neurons in both these lines, this neuropil response probably occurs in dendrites, implying that at least some information about irradiance change is provided by afferents to the dorsal left neuropil.
To further explore this, we performed imaging in the Tg(elavl3:GCaMP6f) line, which has broad expression of a calcium-reporter, and thus likely also in afferent neurons. A prominent increase in fluorescence was detected in neuropil of the dorsal left habenula (Movie 3; Figure 3I-K). This was seen in all fish imaged (n = 3) and may reflect activity in terminals of afferent neurons. In addition to the asymmetric habenula neuropil response, bilateral increase was seen more posteriorly, within the thalamic/pretectal area (Fig. 3J). This latter symmetry argues against the habenula response being a result of asymmetric expression of the reporter. Rather, the pattern of increase in the habenula suggests that information regarding increase in irradiance is conveyed asymmetrically to the left dorsal neuropil.

We asked what role activation of the dorsal left neuropil might have. Larval zebrafish show a strong preference for light over darkness (Steenbergen et al., 2011), which appears to involve the dorsal raphe (Cheng et al., 2016). Lesioning the dorsal neuropil of the left habenula with the two-photon laser (Supplemental Figure 1A-C) led to a reduction in this preference (Supplemental Figure 1D-F; p = 0.0086 Mann-Whitney's U test; effect size r = 0.413). This manipulation also led to an alteration of raphe response to change in irradiance (Supplemental Figure 1G-K). Instead of the inhibition to increase in irradiance in the anterior raphe, there was an excitation. These observations indicate that the dorsal left neuropil influences irradiance-dependent neuromodulator release and behavior.

The thalamus provides a source of input to the dorsal left neuropil

The entopeduncular nucleus (EN) is the major source of habenula afferents in teleosts (Yañez and Anadon, 1994), including zebrafish (Amo et al., 2014). This nucleus is labeled in the Et(sqKR11) line (Lee et al., 2010), providing a simple way of visualizing
EN afferents to the habenula. Some labeled fibers were detected in the dorsal left neuropil, indicating that the EN does provide innervation to this region of the habenula (Figure 4A). To test for additional input sources, the lipophilic tracer DiD was injected into the dorsal left neuropil (n = 6 fish). In all cases, neurons in the dorsal left habenula (which extend dendrites into the neuropil), the parapineal, and a thalamic nucleus located ventrally to both habenula (Figure 4B-D) were labelled. DiD label was not detected in any other regions of the brain, and only rarely in the entopeduncular nucleus (Figure 4C), suggesting that the thalamus is the major source of input to the dorsal left neuropil. The label in the thalamus cannot represent anterograde label from the habenula, as tracing of projections from the habenula by expressing fluorescent proteins specifically in the habenula does not result in a projection to the thalamus (Movie 4).

Moreover, the labeling of cell bodies in the thalamus (Figure 4D inset, E) indicates that this is likely to be a retrograde label. The neuropil of this thalamic nucleus contains terminals of retinal ganglion cells, as shown by Dil injection into the retina (Figure 4E, F). Based on the location of these terminals relative to the optic tract, these terminals make up AF2 and AF4 (Easter and Nicola, 1996; Robles et al., 2014). Thus, the habenula neuropil with the initial response to light is innervated by thalamic nuclei that receive retinal input.

The habenula may receive glutamatergic and GABAergic input from the thalamus

Light caused both excitation and inhibition in zebrafish habenula neurons, implying that there may be excitatory and inhibitory afferents. Using an antibody to vGlut1/2, glutamatergic pre-synapses were detected in all neuropils of the habenula, including the dorsal left neuropil (Figure 4G), indicating the existence of excitatory afferents. GAD65/67 labeled puncta could also be detected in the dorsal left neuropil (Figure 4H). Label was seen also in other neuropils, while in the lateral regions, corresponding to the
ventral habenula, streaks were detected adjacent to cell bodies. These labels were not located within habenula neurons, as they did not co-localize with cytoplasmic label provided by GCaMP3, nor did they fill the cytoplasm, implying that these puncta and streaks must reside in habenula afferents (i.e. axon terminals). Labeled cell bodies were seen below the level of the habenula [see Movie 5]. Consistent with this, inhibitory neurons could be detected in the dorsal thalamus using the transgenic line *Tg(gad1b:RFP, vGlut2a:GAL4, UAS:eGFP)* (Satou et al., 2013) (Figure 4I, J; Movie 6).

No label was seen in the entopeduncular nucleus, which has previously been shown to be glutamatergic (Amo et al., 2014). These observations confirm that the thalamus contains both GABAergic and glutamatergic neurons, as described previously (Mueller, 2012), which may mediate light-evoked excitation and inhibition of habenula neurons.

Irradiance change evokes activity in thalamus neurons

If the thalamus provides afferents mediating illumination-dependent information to the habenula, there should be responses to increase and decrease of illumination in thalamic neurons. To test this, calcium imaging was carried out using a driver line with GAL4 expression in the thalamic neurons that innervate that habenula (Figure 5A, B). A response to increase and decrease in irradiance was detected in scattered cells in the anterior thalamus (Figure 5C-I) in all fish imaged (n = 5, Figure 5 J,K). The response to increase in irradiance was more prominent in the dorsal region of the neuropil (cyan pixels; Figure 5C-E, 5J), whereas response to decrease (magenta pixels) was more prominent ventrally (Figure 5K). Terminals of neurons within the habenula also showed a response (Figure 5L-O). These observations indicate that change in irradiance leads to activity in thalamic neurons innervating the habenula, with different subsets responding to increase versus decrease.
Optogenetic stimulation of the thalamus drives habenula activity

To test the ability of thalamic neurons to drive activity in the habenula, we used optogenetics. Channelrhodopsin-2 (ChR2) was expressed in thalamic neurons using the s1020tGAL4 driver (Figure 6A). Experiments were carried out on fish lacking eyes, to prevent a response to visual stimulation. Short pulses of blue light reproducibly caused an increase in fluorescence of GCaMP6f in habenula neurons of fish with expression of ChR2 in the thalamus (Figure 6B-E, G). A small response was seen in fish without ChR2 expression (Fig. 6F), however, implying that some habenula response may be due to deep brain photoreceptors (Fernandes et al., 2013). The larger response in fish with ChR2 expression suggests that neural activity in thalamic neurons can elicit a response in the habenula.

Thalamic lesion inhibits habenula response to illumination change

To test the role of the thalamus pathway in light-evoked activity in the habenula, we lesioned the thalamus neuropil with a two-photon laser. The laser was targeted to the region of AF4 that showed excitation to light ON (Figure 7A-C). This manipulation is expected to damage fibers innervating this neuropil (Semmelhack et al., 2014). Following lesion, there was a reduction of evoked activity in the habenula (Figure 7D-F, I). There was some variability in the effect, possibly reflecting the limitations of this technique in enabling consistent ablation of the entire neuropil. Lesioning other targets of retinal ganglion cell axons did not lead to a loss of light-evoked activity (Figure 7G, I). These observations support the hypothesis that a pathway involving the thalamic neuropil AF4 has a role in light-evoked activity in the habenula.

Discussion

This paper identifies one function of the projection from the thalamus to the habenula. By calcium imaging, we found that increase and decrease in irradiance
causes activity throughout the habenula. A strong increase in the fluorescence of
calcium reporters was detected in the neuropil of the dorsal left habenula. Although
calcium indicators are only a proxy for neural activity, i.e. reflecting the opening of
voltage sensitive calcium channels, and have slow dynamics, they can indicate the
number of spikes (Chen et al., 2013). The strong fluorescence in the dorsal left neuropil
may thus reflect relatively high spiking rate of afferents following change in irradiance.
These afferents appear to derive primarily from the thalamus. Lipophilic tracing and
labeling of thalamic neurons with the GAL4s1020t driver demonstrate that the thalamus
directly innervates the zebrafish habenula. Optogenetic stimulation of the thalamus led
to activity in the habenula, while lesion inhibited light-evoked activity. Thus, by calcium
imaging, anatomical tracing and manipulation, our data demonstrates that innervation
from the thalamus enables habenula responses to irradiance change.

The region of the thalamus mediating activity in the habenula can be functionally
separated into two domains, based on the response to light – excitation to light OFF in
the ventral regions and excitation to light ON more dorsally. The neuropil of the thalamus
contains two previously defined targets of retinal ganglion cells - AF2 and AF4 (Burrill
and Easter, 1994), and would thus correspond to first-order nuclei. AF4 is innervated
predominantly by M3 and M4 retinal ganglion cells (Robles et al., 2014), which extend
their dendritic tree into the proximal layer of the inner plexiform layer and are considered
ON neurons. AF2 is innervated by B1 retinal ganglion cells that have dendrites in the
distal layer (Robles et al., 2014), and these may account for the OFF responses in the
thalamus and habenula. The distinct domains suggest that the habenula is innervated by
two retino-recipient thalamic nuclei; these nuclei may also receive input from non-retinal
sources, but this remains to be investigated.

Light is a potent regulator of brain function – it can affect mood (Vandewalle et al.,
2010), alertness (Badia et al., 1991), cognitive ability (LeGates et al., 2012) and movement (Aschoff, 1960; Burgess and Granato, 2007). These phenomena are sensitive to irradiance, not image formation, and are mediated by a number of sensors including intrinsically-sensitive retinal ganglion cells (Hattar et al., 2003), and deep brain detectors (Fernandes et al., 2012; Kokel et al., 2013). The ability of light to affect normal movement patterns (Burgess et al., 2010) or to disrupt mood and cognition (LeGates et al., 2012) involves neuromodulators such as serotonin, and changing irradiance affects activity in the dorsal raphe (Fite et al., 2005; Cheng et al., 2016). Based on the data here, and the well-established roles of the habenula in regulating neuromodulators, we suggest that some of these effects of light may be mediated by the thalamic projection to the habenula.

Materials and Methods

Fish lines

Experiments were performed in accordance with guidelines issued by the Institutional Animal Care and Use Committee of the Biological Resource Centre at Biopolis, Singapore. Zebrafish (Danio rerio) lines used for this study were: Tg(UAS:GCaMP6s)sq202, SqKR11Et, GAL4s1011t, GAL4s1020t, Tg(UAS-R-GECO), Tg(UAS:GCaMP3)sq200, Tg(elavl3:GCaMP6f)a12200, Tg(UAS:ChR2-eYFP)(Arrenberg et al., 2009) and AB wildtype.

Tg(elavl3:GCaMP6f)a12200 was generated by PCR amplification of the GCaMP6f open reading frame (Addgene plasmid 40755 (Chen et al., 2013)) with forward primer ataACTAGTgccaccATGGGTTCTCATCATCAT and reverse ataCCGCAGGtCACTTTCGTGTCATCATTTGTAC (restriction site and coding sequences are in upper case). This fragment was cloned into a plasmid with Tol2 arms
flanking an upstream attR1-R2 cassette and the insertion site using restriction enzymes SpeI and SacII. Previously described *elavl3 (HuC)* cis-regulatory elements (Higashijima et al., 2003) were placed upstream via LR recombination (Invitrogen) with an attL flanked *elavl3* entry clone. The resulting plasmid was then co-injected into 1-cell stage embryos at a concentration of 30 ng/µL with Tol2 transposase mRNA at a concentration of 30 ng/µL. A single founder was selected based on high and spatially broad expression. Outcrossing this founder generated 50% GCaMP6f-positive embryos, which were selected to establish the line.

Imaging

Zebrafish larvae (aged 5 - 10 dpf) were anaesthetized in mivacurium and embedded in low-melting temperature agarose (1.2-2.0 % in E3) in a glass-bottom dish (Mat Tek). They were imaged on a Nikon two-photon microscope (A1RMP), attached to a fixed stage upright microscope, using a 25x water immersion objective (NA = 1.1). The femtosecond laser (Coherent Vision II) was tuned to 920 nm for GCaMP imaging. Stacks were collected in resonant-scanning mode with a 525/50 nm bandpass emission filter and with 8x pixel averaging; single-plane images were collected in galvano-scanning mode with 2x pixel averaging. The sample size was based on (Dreosti et al., 2014).

Light stimuli were generated by 5 mm blue LEDs (458 nm peak emission). They were powered by a 5 V TTL signal from a control computer and synchronized with image capture using a National Instruments DAQ board, controlled by the Nikon Elements software. Light intensity at the sample was 0.13 mW/cm².

For widefield microscopy, excitation was provided by LEDs (Cairn OptoLED) at 470 nm. Images were captured on a Zeiss Axio Examiner with a 40x water immersion objective, using an Evolve camera (Photometrics) or a Flash4 camera (Hamamatsu).
After background subtraction, ratio images were obtained by dividing each frame against the first frame of this time-stack using Fiji. A mask, created with Fiji, was used to isolate the fluorescent structures. Movie 2 was made using the ratio command in MetaMorph, after background subtraction.

Data analysis

Data Preprocessing: Raw images obtained were first registered to correct for any vertical/horizontal movement artifacts using cross correlation. In case of high speed data using a resonant scanner, a median filter of size 3 was applied to remove noise. A darker region outside the region of interest was chosen as the background and subtracted from the image to remove any background noise. Non linear trends in the data were detrended using polynomials of order 2-5. Data was then normalized into Z-scores by subtracting the overall mean and dividing by the standard deviation. A rolling window average was then used to smooth noisy traces where necessary.

Analysis of Habenula and Thalamus: The Thunder platform (Freeman et al., 2014) was used for fast pixel based clustering and factorization. Principal Component Analysis (PCA) was used to obtain a low dimensional representation. The number of principal components was identified based on the total variance explained. K-means clustering was performed to identify pixels with similar responses profiles. The number of clusters (k) was chosen such that cluster members were highly correlated with the cluster centroid and to each other after multiple iterations. Details for different data sets are given below.

Figure 1D-E shows the temporal and spatial distribution of responses to change in irradiance and is not intended for cell segmentation. Since pixel based analysis are sensitive to noise, images were first run through a median filter of kernel size 5 and time...
traces were detrended and smoothed before clustering was performed. The number of clusters were chosen to reveal as many stimulus related clusters as possible, until there was little change in the number and types of stimulus related clusters and increase in noise related clusters. Noise clusters were then removed from the spatial and temporal plots for clarity. After multiple runs, k-means was performed for $k=10$. 6 clusters were light related and are shown in Figure 1D-E, 4 noisy clusters were removed. Similarly, for Figures 5C-I, k-means was run on 6 focal planes obtained from the thalamus with $k=8$, 4 light related clusters are plotted in Figure 5I, 4 were removed.

For Figures 2D-F, k-means was performed from cells segmented by a semi-automated algorithm (see below). The purpose is to show heterogeneity of temporal responses to changes in irradiance, accurately classify cells into ON, OFF and Inhibitory responses and perform correlation between them. Analysis was done on traces from 4986 cells from 6 fish. Traces were detrended, smoothed and normalized to z-scores using baseline as the time before the first blue light. Traces that did not reach a Z-score of 2 during the period of irradiance change were classified as not having an evoked response and not included in the clustering analysis. 2456 of 4986 cells were thus removed. K-means was first run with an arbitrary $k = 60$. This generated a wide range of clusters capturing the temporal heterogeneity of the responses. The clusters were then divided into ON, OFF, Inhibitory and No response. Neurons belonging to each cluster were correlated among each other and to the cluster centroid. Neurons with low correlation (<0.6) were inspected, if they had no evoked response, they were discarded. If they had an evoked response, they were correlated with other clusters and assigned to one with the highest correlation. 138 such cells were reclassified.

For data following AF4/AF9/AF7 lesion (Figure 7), k-means was performed to differentiate responses between the controls and the lesion. Hence, number of clusters
were chosen such that cluster centroids adequately differentiated responses before and after lesion. Cluster centroids not responding to light were also plotted here.

Terminals of thalamic afferents in neuropils of the habenula were isolated pixels in the image that showed increases in calcium to changes in irradiance. For Figure 5 L-O, recordings from two fish were registered and averaged. The images were then thresholded to find pixels with high standard deviation and those corresponding to ON and OFF were plotted.

For images obtained with widefield microscopy, which included out-of-focus information, non-negative matrix factorisation (NMF) was used for accurate source separation and identifying temporal differences in regions of the habenula. NMF factorizes a non-negative matrix V, into two non-negative matrices W and H (Maruyama et al., 2014). For Figure 3G-H, 4 recordings from the same fish were registered (using TurboReg in ImageJ) and NMF was run on a dataset formed by averaging the recordings and filtering the resulting images with a median filter of window 5. The algorithm was run multiple times with different number of components k, ensuring convergence of at least 0.01 in H. Finally, $k=6$ was selected for its accuracy in picking the different temporal profiles when compared to manual inspection.

The scripts used for analysis are provided at http://dx.doi.org/10.5061/dryad.q0171.

Segmentation of Region of interest (ROI): Each stack was scaled 2x in imageJ, then maximally projected to a single image, which was then subjected to a minimum filter and unsharp mask to sharpen the boundary of cells. ROIs were identified using the “find maxima...” command, as a way to localize regional darkest point as the center of each ROI. The boundary of the ROI was outlined by “analyze particle...” that connects bright pixels into mosaic-like tessellated plane, encircling each darkest point. Each ROI was
then numbered sequentially using the ImageJ ROI Manager and mapped back to the original despeckled image stack. Manual segmentation was done here to delete extraneous ROIs outside the habenula and to encircle cells that were not detected by the algorithm (<10% of total ROIs). In the last step, “Set measurements…” and “measure” in ImageJ provided the mean fluorescence value of all pixels within each ROI across the entire image stack and the x-y coordinates of each ROI. Time-lapse series in which z drifting occurred were excluded, as in this case ROIs could not be defined.

Ratio images: Following background subtraction, a ratio of each plane relative to the first plane was obtained using FIJI. A median filter (radius = 1.0 pixels) and a mask was then applied.

Neural tracing

DiD (Life Technologies) was dissolved in 50 µl ethanol to make a saturated solution. This was heated to 55°C for 5 minutes prior to injection into the fish that had been fixed in 4% paraformaldehyde. Fish were mounted in 1.2% low melting temperature agarose dissolved in PBS. The dye was pressure injected into the habenula under a compound microscope (Leica DM LFS), using a 20X water immersion objective. For labeling the retina, a saturated solution of Dil in chloroform was used. Injections were carried out under a stereo microscope (Zeiss Stemi 2000). After injections, fish were stored at 4°C overnight to allow tracing, and then imaged with a 40x water immersion objective on a Zeiss LSM 710 confocal microscope.

Antibody label

Larvae were fixed in 4% paraformaldehyde/PBS overnight at 4°C. They were then rinsed in PBS. The brains were dissected out, and permeabilized using 1% BSA
(fraction V; Sigma), 0.1% DMSO and 0.1% Triton X-100. The antibodies used here, anti-
vGlut1/2 (Synaptic Systems 135503, RRID:AB_1279466; 1:100) and anti-GAD65/67
(Abcam ab11070, RRID:AB_297722; 1:500), have previously been used in zebrafish
(Wyart et al., 2009; Lee et al., 2010). The brains were incubated in the primary antibody
overnight, rinsed several times in PBS, then incubated in secondary antibody (Alexa 488
goat anti-rabbit; 1:1000). After washing, these were mounted in 1.2% agarose/PBS.
Imaging was carried out using a Zeiss LSM 510 laser scanning confocal microscope,
with a 40x water immersion objective.

Optogenetic stimulation

5 dpf Tg(s1020GAL4, UAS:ChR2-eYFP, elavl3:GCaMP6f) larvae were used. The
eyes were removed using fine tungsten needles in fish that were anesthetized with
MS222. This procedure was carried out in Ringers saline. Fish were then mounted in
1.2% agarose in Ringers saline, and imaged using two-photon microscopy as described
above, at 1 Hz. Optical stimulation was carried out using a 50 µm fiber optic probe (Doric
Lenses), placed approximately 20 µm from the thalamus. The 465 nm LED (Doric) was
driven with a current of 900 mA, 30 seconds after the start of imaging. 10 pulses were
provided, with a pulse duration of 25 milliseconds and a frequency between 1 and 8 Hz.
Each fish was exposed to at least 3 pulse trains. For Figure 6B-C, the average of the first
29 frames was used as a reference. The ratio of all frames relative to this reference was
obtained using FIJI. The analysis to generate Figure 6G was blind to the genotype.

Laser ablation

Tg(Elavl3:GCaMP6f) larvae were anaesthetized and then mounted in 2% low-
melting temperature agarose. Lesions were created with the femto-second laser tuned to
960 nm and fixed on a single point. Several pulses, each lasting 100 - 500 msec, were
used. Lesioning was monitored by time-lapse imaging before and after each pulse, and
was terminated when there was a localized increase in GCaMP6f fluorescence. Sample size was chosen based on (Aizenberg and Schuman, 2011). Animals with bleeding in the brain after lesioning, due to bursting of a blood vessel in AF4, were discarded.

Behavioural Assay

The chamber for the light/dark assay has been described previously (Cheng et al., 2016). Control fish were mock-lesioned, i.e. subject to the same anaesthetic (MS222) and mounted in agarose for the same duration as lesioned fish. Fish were observed in the chamber for 10 minutes, by imaging at 15 Hz under infra-red illumination.

Acknowledgements

This work was funded by core funding from the Institute of Molecular and Cell Biology and a grant from the Ministry of Education, Singapore. SK and QL were supported by fellowships from the National University of Singapore. DGCH was supported by NIH grant 5T32HL007901. We thank Claire Wyart for providing the UAS:ChR2 transgenic line.

Author contributions

Experiments were designed by CRK, QL and SJ. CRK carried out two-photon imaging. SK developed software and analyzed imaging data. CK performed antibody label and generated the UAS:GCaMP6s line. MKZL performed the behavior assay, using fish lesioned by QL. DGCH and IHB generated the elavl3:GCaMP6f transgenic line. SJ performed wide-field imaging, analysis, dye tracing, optogenetic manipulation and wrote the manuscript.

References

Agetsuma M, Aizawa H, Aoki T, Nakayama R, Takahoko M, Goto M, Sassa T, Amo R,

temperature, alertness, EEG and behavior. Physiol Behav 50:583–588.

Bargmann CI, Marder E (2013) From the connectome to brain function. Nat Methods
10:483–490.

Bianco IH, Engert F (2015) Visuomotor transformations underlying hunting behavior in

Burrill JD, Easter SS (1994) Development of the retinofugal projections in the embryonic

serotonergic neurons operate in tandem to influence larval zebrafish preference for

accumbens, thalamus and insula connectivity during incentive anticipation in typical

Wang RY, Aghajanian GK (1977) Physiological evidence for habenula as major link

Figure legends

Figure 1. The habenula responds to change in irradiance

(A) Dorsal view of a live 7 day-old fish, with GCaMP3 expression in the habenula (arrows) under the control of the s1011tEt GAL4 driver. (B) A single two-photon slice through the habenula of the fish in panel A. (C) A yz reconstruction at the point indicated by the yellow line in panel B. The dotted lines indicate imaging planes separated by 10 µm. The yellow line indicates the plane imaged in B. (D) Spatial distribution of major responses in the habenula of one fish. 5 planes are shown here. The colors are coded according to the temporal pattern of response, as indicated in (E). Images were collected at a rate of 1 stack/second, and four pulses of light were delivered for 20 seconds each, with variable inter-stimulus interval. (E) Centers of k-means clusters corresponding to colors of pixels in (D). (F) Trajectory of the habenula response in (D-E) is shown in two-dimensional state space, using the first two principal components (PC1 and PC2). The first two principal components explain 79.7% of the total variance. Traces are color-coded according to the wedges in panel E to represent direction in which change in irradiance drives the neural state. In panels E and F, the bold lines correspond to light onset while the dashed lines indicate offset.

Figure 2. Habenula response to irradiance change is reproducible.

(A-C) Semi-automated segmentation of habenula neurons. (D-F) K-means cluster analysis of segmented habenula neuron responses to pulses of blue light in 6 fish. Cells with excitation to light (ON, top) or darkness (OFF, middle), or inhibition to light (Inhibitory, bottom) were seen. Traces show cluster centroids, with shaded regions indicating standard error of the mean. (G) Correlation between activity of cells belonging to ON, OFF and Inhibitory (Inh) clusters shown in panels D-F. In general, the ON and OFF responding cells were uncorrelated (correlation coefficient < 0). (H) Activity
traces of cells in ON and OFF clusters that showed high correlation with the other category (381 of 1767 cells). The traces showed that this correlation may be due to OFF cells showing slow decay in fluorescence following light ON. Manual inspection of the traces also did not reveal any that responded reliably to both light ON and OFF. Scale bar = 25 μm. a: anterior; p: posterior.

Figure 3. High-speed imaging identifies the dorsal left neuropil as a site of prominent response to irradiance change

(A) Dorsal view of the habenula in a 5 day old Tg(s1011t:GAL4, UAS:GCaMP3) fish. (B) Relative change in fluorescence (F/F₀) 250 msec after the start of imaging. The arrowhead indicates the dorsal left neuropil. (C) F/F₀ in five different regions of the habenula. (D-H) Light-evoked calcium change in the habenula of a 5 day old Tg(s1011t:GAL4, UAS: R-GECO) fish. (D) Average projection of one 20 second time-lapse, showing habenula neurons. (E) F/F₀ 200 msec after light onset. (F) Traces from 8 different regions, indicated in panel D. (G) Averaged response from 4 recordings of the same fish, imaged at 50 hz, analyzed using non-negative matrix factorization. Arrowhead indicates the dorsal left neuropil. Pixels are colored according to the traces (NMF components) in (H). (I-K) 200 Hz widefield imaging of an (elavl3:GCaMP6f) 5 day old fish at the level of the dorsal habenula. (I) Average projection of the initial 2.475 seconds of the timelapse. Relative fluorescence change in the colored regions are shown in panel I. (J) Relative change in GCaMP6f fluorescence 100 milliseconds after the onset of light. Increase is seen in the left habenula (red arrowhead) and in the thalamus (white arrowheads). (K) Region 1, which is the dorsal left neuropil, shows a sharp increase in fluorescence. Region 3 shows gradual decrease. The inset shows a zoom of the first 100 milliseconds. No rise is detected in the right habenula at this time. Scale bar = 25 μm.
Figure 4. The thalamus projection to the habenula

(A) Dorsal view of the forebrain of a Et(SqKR11) larva, in which habenula afferents from the entopeduncular nucleus are fluorescently labeled. The dorsal left neuropil (arrow) is weakly labeled. (B) Dorsal view of the habenula of a Et(SqKR11) larva, following DiD injection into the dorsal neuropil of the left habenula. The parapineal (arrow) has been retrogradely labeled. Habenula afferents from the entopeduncular nucleus are labeled by the transgene, and shown in red here. (C) 80 µm deeper in the same fish, showing bilateral label in the thalamus (white arrows). A labeled cell in the entopeduncular nucleus is also indicated (yellow arrow). (D) Lateral view of another larva, in which the dorsal left neuropil had been injected with DiD. The retrogradely labeled thalamic neuropil is indicated (white arrow). The entopeduncular nucleus is indicated by the yellow arrow. The inset shows a higher magnification labeled thalamic neuropil. Cell bodies are labeled (white arrowhead). (E) A close up view of the neuropil retrogradely labeled by DiD (cyan), in a fish where retinal ganglion cells had been labeled with Dil (yellow). RGC terminals intermingle with fibers from DiD-labeled cells innervating the neuropil (arrow). The arrowhead indicates a DiD thalamic neuron labeled retrogradely.

(F) Dorsal view of another fish with Dil injection (yellow) into the right retina, and DiD (cyan) into the left habenula. The thalamic neuropil is indicated (arrowhead). (G) Dorsal view of a 6-day-old fish, labeled with an anti-vGlut1/2, which marks glutamatergic presynapses. There is strong label in the dorsal left neuropil (arrowhead). (H) Dorsal view showing label with an anti-GAD65/67 antibody. Labeled puncta are visible in the dorsal left neuropil (arrowhead). No labeled cell bodies were detected. (I) A Tg(gad1b:RFP, vGlut2:GAL4, UAS:eGFP) fish, with GABAergic cells indicated in magenta, and glutamatergic cells shown in green. Both cell types can be detected in the thalamus. The arrowhead indicates the region of the thalamus that is labeled in panel D. (J) RFP expression in the thalamus of a Tg(gad1b:RFP) fish. Arrowheads indicate neurites
extending to the thalamic neuropil. All panels except (G) are single optical sections. EN:
entopeduncular nucleus; Pa: pallium; OT: optic tectum; Hb: habenula; Th: thalamus; fr:
fasciculus retroflexus. Scale bar = 25 µm.

Figure 5. The thalamus has non-overlapping responses to increase and decrease in
irradiance

Dorsal view of the thalamus (A) and habenula (B) of a fish expressing mCherry
(magenta) under the control of the GAL4s1020t driver. Cell bodies are labeled in the
thalamus (A, white arrowheads). Labelled neurites are visible in the thalamic neuropil (A,
yellow arrowheads) and in the habenula neuropils (B, arrowheads). The puncta appear
to be secreted fragments of the labeled cells. GCaMP6f (green) is broadly expressed in
this fish. (C-H) Six different focal planes, from dorsal to ventral, of a fish expressing
GCaMP6s in thalamic neurons. The colors of the pixels represent clusters obtained from
k-means as shown in (I). Responses are seen in the thalamic neuropil (arrowhead) and
in neurons (arrows). (I) Cluster centroids obtained from running k-means on data in
panels (C-H). (J-K) Color coded activity obtained by registering and performing k-means
on 4 fish, in the dorsal (J) and ventral (K) thalamus. Colored pixels are a maximum
projection and superimposed on an image obtained by averaging the 4 fish. Pixels
showing an excitation to light are colored blue and those showing an excitation to
darkness are in magenta. (L-O) Thalamic afferents in neuropils in the dorsal (L) and
ventral (N) habenula. Pixels in cyan show a calcium increase during light ON and traces
are plotted as heatmap in the bottom panel of (M) and (O). Pixels in magenta show an
increase during light OFF and their heatmaps are shown in the top panel of (M) and (O).
In panels I, M and O, blue light was delivered for 20 seconds, with an inter-stimulus
interval of 20 seconds. Light onset is indicated by the solid line, while light offset is
indicated by the dashed line. a: anterior; p: posterior; Th: thalamus; rHb: right habenula;
lHb: left habenula. Anterior is to the top in all cases. Scale bar = 25 µm.

Figure 6. Optogenetic stimulation of the thalamus

(A) Expression of ChR2-eYFP in the thalamus (arrowheads) of a 5 day old Tg(s1020t:GAL4, UAS:ChR2-eYFP, elavl3:GCaMP6f) fish. (B, C) Activity in the habenula of a ChR2-expressing fish, with (B) and without (C) blue LED stimulation of the thalamus. The images show the maximum projections of F/F₀ images for a 25-second period after blue LED illumination, following subtraction of maximum projections of the period before illumination (i.e difference in activity before and after stimulation). (D-F) Heatmaps showing temporal activity from cells segmented in fish with (D, E) and without (F) ChR2. In D (n = 5 fish) and F (n = 2 fish), blue light pulse was given at the time indicated by the black dashed line. No blue light stimulation was given in E (n = 4 fish). Z-scores were calculated by subtracting each time traces by the total mean and dividing by the standard deviation. (G) Mean amplitude of z-scores before and after optogenetic stimulation. Each square stands for a stimulus trial. Amplitude difference before and after stimulation, mean ± 95% CI: 1 Hz: 0.43 ± 0.56, 2 Hz: 0.72 ± 0.35, 4 Hz: 0.89 ± 0.28 and 8 Hz: 1.05 ± 0.18. Scale bar = 25 µm.

Figure 7. The effect of AF4 lesion on habenula response to irradiance change

(A, B) Dorsal view of an 8-day old Tg(elavl3:GCaMP6f) fish, before (A) and after (B) lesion of AF4 (arrowheads in panel A). Pixels are colored according to their activity, as indicated by traces in (C). The prominent AF4 sustained response to blue light (cyan pixels) is reduced after lesion, although some response is still detected in the brain (brown pixels). (D, E) Habenula activity before (D) and after (E) lesion of AF4. Pixels are colored according to the traces in (F). There is a reduction in the sustained response to light, but some activity that was not stimulus-locked was still detected. (G) The habenula after lesion of AF9, with pixels colored according to the traces in panel (H). (I) Number of
cells in one plane of the dorsal left habenula that are excited by blue light, following
lesion of AF4 (n = 12), or AF7 (n = 2) or AF9 (n = 3), or before lesion (n = 5). Error bars
represent 95% CI. a: anterior; p: posterior; Pa: pallium; rHb: right habenula. Images are
all single optical sections. Scale bar = 25 µm.

Supplemental Figure 1. Dorsal left habenula lesion affects light-dependent behavior
and raphe activity.

(A-C) A sequence of frames taken during lesioning of the dorsal left neuropil in a
elavl3:GCaMP6f fish. The laser caused an increase in intracellular calcium in the left
habenula, and eventually led to the formation of a bubble at the lesion site (arrow). (D,
E) A minimal projection of a time-lapse of control (D) and lesioned (E) fish, imaged at 15
Hz using infra-red illumination. The lesioned fish crossed into the dark side, whereas the
control did not. (F) Latency to cross into the dark side (n = 25 fish for each group). The
bar indicates median. As the assay was run for 10 minutes, a value of 10 indicates a
failure to cross. (G-J) Activity in dorsal raphe in an elavl3:GCaMP6f fish, before (G) and
after (H) lesioning of the dorsal left neuropil. Pixels are color-coded according to the
traces in panel (I). Instead of inhibition (magenta), cells show excitation (green) to
increase in irradiance. (J) The effect of lesioning the left dorsal habenula neuropil on
raphe response in three different fish. Scale bar = 25 µm.

Movie 1. Response in the habenula to increase in irradiance

Widefield imaging of three different focal planes, 10 µm apart, of a fish expressing
GCaMP3 in the habenula. Red represents an increase, whereas blue represents a
decrease. Responses can be detected throughout the habenula.

Movie 2. Response dynamics in the habenula, as assessed using R-GECO

Time-lapse of R-GECO fluorescence (F/F0) in the habenula of a 5 day old fish,
following onset of illumination. Red represents an increase, whereas blue represents a
decrease. An increase in fluorescence was detected first in the neuropil of the left habenula, and then in the cell bodies of habenula neurons. This is a GAL4s1011t, UAS:R-GECO fish. Anterior is to the left.

Movie 3. Widefield imaging of response to blue light onset

200 Hz recording of a 5 day old fish expressing GCaMP6f under the elavl3 promoter. Dorsal view; anterior is to the left.

Movie 4. Habenula neurons do not project to the thalamus

3D rendition of habenula projection in a zebrafish larva, visualized by expression of RFP under the narp promoter (red) and eGFP under the bm3a promoter (green). There is a clear projection to the interpeduncular nucleus (IPN), but not to the thalamus.

Movie 5. GAD65/67 label in a zebrafish larva

z-stack of a s1011Et:GAL4, UAS:GCaMP3 transgenic fish, after immuno-labelling with an antibody to GAD65/67 (magenta). The stack goes from dorsal to ventral. GAD65/67 label is visible in neuropils of the habenula; puncta can be seen between cells in the lateral regions of the habenula in more ventral planes. GAD65/67 labeled cells are visible in the deep focal planes, but these do not express GCaMP3. The location of GAD65/67 expressing cells correlates with the thalamus. S1011Et drives GAL4 expression in the habenula, medial pallium and anterior-lateral pallium. This is a dorsal view, with anterior to the left.

Movie 6. Z-stack of 6 day old gad1b:RFP, elavl3:GCaMP6f fish

GABAergic neurons (magenta) are visible in the thalamus, below the habenula. Anterior is to the left. The stack goes from dorsal to ventral.
Figure 1. The habenula responds to change in irradiance. (A) Dorsal view of a live 7 day-old fish, with GCaMP3 expression in the habenula (arrows) under the control of the s1011t Et GAL4 driver. (B) A single two-photon slice through the habenula of the fish in panel A. (C) A zy reconstruction at the point indicated by the yellow line in panel B. The dotted lines indicate imaging planes separated by 10 µm. The yellow line indicates the plane imaged in B. (D) Spatial distribution of major responses in the habenula of one fish. 5 planes are shown here. The colors are coded according to the temporal pattern of response, as indicated in (E). Images were collected at a rate of 1 stack/second, and four pulses of light were delivered for 20 seconds each, with variable inter-stimulus interval. (E) Centers of k-means clusters corresponding to colors of pixels in (D). (F) Trajectory of the habenula response in (D-E) is shown in two-dimensional state space, using the first two principal components (PC1 and PC2). The first two principal components explain 79.7% of the total variance. Traces are color-coded according to the wedges in panel E to represent direction in which change in irradiance drives the neural state. In panels E and F, the bold lines correspond to light onset while the dashed lines indicate offset.
Figure 2. Habenula response to irradiance change is reproducible. (A-C) Semi-automated segmentation of habenula neurons. (D-F) K-means cluster analysis of segmented habenula neuron responses to pulses of blue light in 6 fish. Cells with excitation to light (ON, top) or darkness (OFF, middle), or inhibition to light (Inhibitory, bottom) were seen. Traces show cluster centroids, with shaded regions indicating standard error of the mean. (G) Correlation between activity of cells belonging to ON, OFF and Inhibitory (Inh) clusters shown in panels D-F. In general, the ON and OFF responding cells were uncorrelated (correlation coefficient < 0). (H) Activity traces of cells in ON and OFF clusters that showed high correlation with the other category (381 of 1767 cells). The traces showed that this correlation may be due to OFF cells showing slow decay in fluorescence following light ON. Manual inspection of the traces also did not reveal any that responded reliably to both light ON and OFF. Scale bar = 25 µm.
Figure 3. High-speed imaging identifies the dorsal left neuropil as a site of prominent response to irradiance change. (A) Dorsal view of the habenula in a 5 day old Tg(s1011t:GAL4, UAS:GCaMP3) fish. (B) Relative change in fluorescence (F/F_0) 250 msec after the start of imaging. The arrowhead indicates the dorsal left neuropil. (C) F/F_0 in five different regions of the habenula. (D-H) Light-evoked calcium change in the habenula of a 5 day old Tg(s1011t:GAL4, UAS:R-GECO) fish. (D) Average projection of one 20 second time-lapse, showing habenula neurons. (E) F/F_0 200 msec after light onset. (F) Traces from 8 different regions, indicated in panel D. (G) Averaged response from 4 recordings of the same fish, imaged at 50 hz, analyzed using non-negative matrix factorization. Arrowhead indicates the dorsal left neuropil. Pixels are colored according to the traces (NMF components) in (H). (I-K) 200 Hz widefield imaging of an (elavl3:GCaMP6f) 5 day old fish at the level of the dorsal habenula. (I) Average projection of the initial 2.475 seconds of the timelapse. Relative fluorescence change in the colored regions are shown in panel I. (J) Relative change in GCaMP6f fluorescence 100 milliseconds after the onset of light. Increase is seen in the left habenula (red arrowhead) and in the thalamus (white arrowheads). (K) Region 1, which is the dorsal left neuropil, shows a sharp increase in fluorescence. Region 3 shows gradual decrease. The inset shows a zoom of the first 100 milliseconds. No rise is detected in the right habenula at this time. Scale bar = 25 µm.
Figure 4. The thalamus projection to the habenula. (A) Dorsal view of the forebrain of a *Et(SqKR11)* larva, in which habenula afferents from the entopeduncular nucleus are fluorescently labeled. The dorsal left neuropil (arrow) is weakly labeled. (B) Dorsal view of the habenula of a *Et(SqKR11)* larva, following DiD injection into the dorsal neuropil of the left habenula. The parapineal (arrow) has been retrogradely labeled. Habenula afferents from the entopeduncular nucleus are labeled by the transgene, and shown in red here. (C) 80 μm deeper in the same fish, showing bilateral label in the thalamus (white arrows). A labeled cell in the entopeduncular nucleus is also indicated (yellow arrow). (D) Lateral view of another larva, in which the dorsal left neuropil had been injected with DiD. The retrogradely labeled thalamic neuropil is indicated (white arrow). The entopeduncular nucleus is indicated by the yellow arrow. The inset shows a higher magnification labeled thalamic neuropil. Cell bodies are labeled (white arrowhead). (E) A close up view of the neuropil retrogradely labeled by DiD (cyan), in a fish where retinal ganglion cell dendrites had been labeled with Dil (yellow). RGC terminals intermingle with fibers from DiD-labeled cells innervating the neuropil (arrow). The arrowhead indicates a DiD thalamic neuron labeled retrogradely. (F) Dorsal view of another fish with Dil injection (yellow) into the right retina, and DiD (cyan) into the left habenula. The thalamic neuropil is indicated (arrowhead). (G) Dorsal view of a 6-day-old fish, labeled with an anti-vGlut1/2, which marks glutamatergic pre-synapses. There is strong label in the dorsal left neuropil (arrowhead). (H) Dorsal view showing label with an anti-GAD65/67 antibody. Labeled puncta are visible in the dorsal left neuropil (arrowhead). No labeled cell bodies were detected. (I) A *Tg(gad1b:RFP, vGlut2:GAL4, UAS:eGFP)* fish, with GABAergic cells indicated in magenta, and glutamatergic cells shown in green. Both cell types can be detected in the thalamus. The arrowhead indicates the region of the thalamus that is labeled in panel D. (J) RFP expression in the thalamus of a *Tg(gad1b:RFP)* fish. Arrowheads indicate neurites extending to the thalamic neuropil. All panels except (G) are single optical sections. EN: entopeduncular nucleus; Pa: pallium; OT: optic tectum; Hb: habenula; Th: thalamus; fr: fasciculus retroflexus. Scale bar = 25 μm.
Figure 5. The thalamus has non-overlapping responses to increase and decrease in irradiance. Dorsal view of the thalamus (A) and habenula (B) of a fish expressing mCherry (magenta) under the control of the GAL4s1020t driver. Cell bodies are labeled in the thalamus (A, white arrowheads). Labelled neurites are visible in the thalamic neuropil (A, yellow arrowheads) and in the habenula neuropils (B, arrowheads). The puncta appear to be secreted fragments of the labeled cells. GCaMP6f (green) is broadly expressed in this fish. (C-H) Six different focal planes, from dorsal to ventral, of a fish expressing GCaMP6s in thalamic neurons. The colors of the pixels represent clusters obtained from k-means as shown in (I). Responses are seen in the thalamic neuropil (arrowhead) and in neurons (arrows). (I) Cluster centroids obtained from running k-means on data in panels (C-H). (J-K) Color coded activity obtained by registering and performing k-means on 4 fish, in the dorsal (J) and ventral (K) thalamus. Colored pixels are a maximum projection and superimposed on an image obtained by averaging the 4 fish. Pixels showing an excitation to light are colored cyan and those showing an excitation to darkness are in magenta. (L-O) Thalamic afferents in neuropils in the dorsal (L) and ventral (N) habenula. Pixels in cyan show a calcium increase during light ON and traces are plotted as heatmaps in the bottom panel of (M) and (O). Pixels in magenta show an increase during light OFF and their heatmaps are shown in the top panel of (M) and (O). In panels I, M and O, blue light was delivered for 20 seconds, with an inter-stimulus interval of 20 seconds. Light onset is indicated by the solid line, while light offset is indicated by the dashed line. a: anterior; p: posterior; Th: thalamus; rHb: right habenula; lHb: left habenula. Anterior is to the top in all cases. Scale bar = 25 µm.
Figure 6. Optogenetic stimulation of the thalamus triggers habenula activity. (A) Expression of ChR2-eYFP in the thalamus (arrowheads) of a 5 day old Tg(s1020t:GAL4, UAS:ChR2-eYFP, elavl3:GCaMP6f) fish. (B, C) Activity in the habenula of a ChR2-expressing fish, with (B) and without (C) blue LED stimulation of the thalamus. The images show the maximum projections of F/F₀ images for a 25-second period after blue LED illumination, following subtraction of maximum projections of the period before illumination (i.e. difference in activity before and after stimulation). (D-F) Heatmaps showing temporal activity from cells segmented in fish with (D, E) and without (F) ChR2. In D (n = 5 fish) and F (n = 2 fish), blue light pulse was given at the time indicated by the black dashed line. No blue light stimulation was given in E (n = 4 fish). Z-scores were calculated by subtracting each time trace by the total mean and dividing by the standard deviation. (G) Mean amplitude of z-scores before and after optogenetic stimulation. Each square stands for a stimulus trial. Amplitude difference before and after stimulation, mean ± 95% CI: 1 Hz: 0.43 ± 0.56, 2 Hz: 0.72 ± 0.35, 4 Hz: 0.89 ± 0.28 and 8 Hz: 1.05 ± 0.18. Scale bar = 25 µm.
Figure 7. The effect of AF4 lesion on habenula response to irradiance change. (A, B) Dorsal view of an 8-day old Tg(elavl3:GCaMP6f) fish, before (A) and after (B) lesion of AF4 (arrowheads in panel A). Pixels are colored according to their activity, as indicated by traces in (C). The prominent AF4 sustained response to blue light (cyan pixels) is reduced after lesion, although some response is still detected in the brain (brown pixels). (D, E) Habenula activity before (D) and after (E) lesion of AF4. Pixels are colored according to the traces in (F). There is a reduction in the sustained response to light, but some activity that was not stimulus-locked was still detected. (G) The habenula after lesion of AF9, with pixels colored according to the traces in panel (H). (I) Number of cells in one plane of the dorsal left habenula that are excited by blue light, following lesion of AF4 (n = 12), or AF7 (n = 2) or AF9 (n = 3), or before lesion (n = 5). Error bars represent 95% CI. a: anterior; p: posterior; Pa: pallium; rHb: right habenula. Images are all single optical sections. Scale bar = 25 µm.
Supplemental Figure 1. Dorsal left habenula lesion affects light-dependent behavior and raphe activity.

(A-C) A sequence of frames taken during lesioning of the dorsal left neuropil in an elavl3:GCaMP6f fish. The laser caused an increase in intracellular calcium in the left habenula, and eventually led to the formation of a bubble at the lesion site (arrow). (D, E) A minimal projection of a time-lapse of control (D) and lesioned (E) fish, imaged at 15 Hz using infra-red illumination. The lesioned fish crossed into the dark side, whereas the control did not. (F) Latency to cross into the dark side (n = 25 fish for each group). The bar indicates median. As the assay was run for 10 minutes, a value of 10 indicates a failure to cross. (G-J) Activity in dorsal raphe in an elavl3:GCaMP6f fish, before (G) and after (H) lesioning of the dorsal left neuropil. Pixels are color-coded according to the traces in panel (I). Instead of inhibition (magenta), cells show excitation (green) to increase in irradiance. (J) The effect of lesioning the left dorsal habenula neuropil on raphe response in three different fish. Scale bar = 25 µm.