

Performance Analysis and Optimization of the Weather Research and Forecasting Model (WRF) Advection Schemes

Negin Sobhani^{1,2}, Davide Del Vento², and Dave Gill²

¹University of Iowa ²National Center for atmospheric Research(NCAR)

negin-sobhani@uiowa.edu

WRF is a numerical weather prediction system designed for both atmospheric research and operational forecasting.

- Community model with **large user base**:
- More than 30,000 users in 150 countries

<u>Research Goals</u>

- **Goal 1.**WRF scalability and comparison between MPI and hybrid parallelism
- **Goal2.** Identify hotspots and potential areas for improvement in WRF
- **Goal3.** Optimize the code to improve the performance of the hotspots

Scalability Assessment (MPI Only)

Scalability Assessment (MPI Only)

Domain Decomposition (MPI only)

Scalability Assessment (MPI Only)

6

Goal2.What does make WRF expensive?

Hurricane Sandy 4x4km case(500x500) **Domain Configuration** 50°N Longwave Radiation Scheme **RRTMG Scheme (ra_lw_physics =**4) 45°N -**Shortwave Radiation Scheme** CAM Scheme(ra_sw_physics = 3) 40°N — **Microphysics Scheme** Thompson et al. 2008 (mp_physics =8) 35°N − 30°N 90°W 85°W 80°W 75°W 70°W 65°W

7

Identifying hotspots and potential areas for improvement in WRF

Mass Conservation in the WRF Model

Image adapted from UCAR COMET and NOAA

Moisture transport in ARW

- Until recently, many weather models did not conserve moisture because of the numerical challenges in advection schemes. → high bias in precipitation
- WRF-ARW is conservative but not all of the advection schemes are.
- This introduces new masses to the system.

Advection schemes can introduce both positive and negative errors particularly at sharp gradients.

Advection options in WRF

High number of explicit IFs are causing high branch mispredictions

Figure from Skamarock and Dudhia 2012

Hotspot Positive Definite Delimiter (32 lines) High Time High cache misses (both L1 and L2 Cache misses) High branch miss-prediction Optimization Solution

Restructure and split the PD delimiter loop

Increase vectorization Reduce cache misses

Compiler	Optimization Flag	Loop Speed-up	Kernel Speed-up
Intel(v16.0.2)	-03	100%	~17%
GNU (v6.1.o)	-Ofast	105%	~11%
PGI (v16.5)	-03	35%	~4%

Monotonic Advection Scheme

Compiler	Optimization Flag	Whole Kernel Speed-up
Intel(v16.0.2)	-03	~16%
GNU (v6.1.o)	-Ofast	~21%
PGI (v16.5)	-03	~9%

Optimization strategy

• Expose more parallelism

- Push columns inside
- Facilitates better vectorization
- Facilitates cache blocking
- Force vectorization using SIMD & vector align directives
- Replace:
 - divisions with reciprocal multiplications
 - repeated indexed access with copies having coalesced access
 - assumed-shaped arrays (e.g. (:,:) with proper declarations)

• Eliminate:

• unnecessary code, variables, initializations or copies

Conclusion

- Profiling: WRF with Intel Vtune XE, TAU tools, and Allinea MAP for identifying the hotspots of WRF
 - Dynamics is identified as the most expensive part of ARW
- Optimizing: the identified hotspots of different advection schemes for Intel, GNU, and PGI compilers
 - Significant speed-up of the advection schemes
- □ Validating: the results of the advection kernel
- Integration: The changes to WRF advection schemes are approved by the WRF committee and integrated in the main WRF repository.

Ongoing and Future Work

Performance Improvement of advection modules

- Reducing memory footprint by decreasing the number of temporary variables
- Increasing the advection module vectorization
- Analysis of hardware counters to fix branch mispredictions and cache misses

Future pull requests will provide up to 2.5x speed-up for advection schemes.

Acknowledgements

- * Davide Del Vento
- Rich Loft
- * Srinath Vadlamani
- * Dave Gill
- * Dave Hart
- * Siddhartha Ghosh
- * Greg Carmichael

Extreme Science and Engineering Discovery Environment

TEXAS ADVANCED COMPUTING CENTER

