A PROGRAMMABLE CALCULATOR APPLICATIONS NOTEBOOK FOR PRACTICING PLANNERS

Robert M. Ericson
University of Rhode Island

Follow this and additional works at: http://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation

Ericson, Robert M., "A PROGRAMMABLE CALCULATOR APPLICATIONS NOTEBOOK FOR PRACTICING PLANNERS"
(1982). Open Access Master's Theses. Paper 380.
http://digitalcommons.uri.edu/theses/380
A PROGRAMMABLE CALCULATOR APPLICATIONS
NOTEBOOK FOR PRACTICING PLANNERSBY
ROBERT M. ERICSON
A RESEARCH PROJECT SUBMITTED IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF COMMUNITY PLANNING
UNIVERSITY OF RHODE ISLAND1982

MASTER OF COMMUNITY PLANNING RESEARCH PROJECT OF
 ROBERT M. ERICSON

APPROVED:

MASTER OF COMMUNITY PLANNING RESEARCH PROJECT
 OF

ROBERT M. ERICSON

APPROVED:

MAJOR PROFESSOR

DIRECTOR

CONTENTS

INTRODUCTION 2
QUANTITATIVE METHODS IN PLANNING PRACTICE 6
ECONOMICS OF PROBLEM SOLVING 10
HARDWARE 15
SOFTWARE 24
PROGRAMMING FOR PLANNERS 32
DATA MANAGEMENT 45
CONVERSION 50
ROWS AND COLUMNS 60
POPULATION PROJECTION 67
LIFE CYCLE COSTING 79
HYDROELECTRIC SITES 85
BIBLIOGRAPHY 101

A practicing planner needs the capability to solve quantitative problems. No planning curriculum can prepare its students for every kind of quantitative problem they can conceivably encounter. In my own field, renewable energy planning, some of the most important problems have emerged within the past few years: shadow calculations for solar access, tax incentive calculations for small hydroelectric site redevelopment, etc. Planners in this field are turning to powerful programmable calculator/printer systems as a means of coping.

Electronics engineers have been using programmable calculators since these tools appeared in 1977. I first began using the TI-59/PC-100C system in late l979, while working on passive solar design problems with architects at the Northeast Solar Energy Center. Since then I have done thousands of runs for a wide variety of problems, mostly energy-related. It has become increasingly apparent that most of the advantages of the system can be transferred to other kinds of public planning.

Given an introductory notebook, most students should be able to acquire competence in calculator programming and applications more efficiently than I did. And so I decided to write such a notebook.

Quantitative problem solving with the TI-59/PC-100C is a blend of many things, from mathematical theory to keeping your fingerprints off the magnetic program cards.

Writing a notebook that respects the utility of brand-name and housekeeping information is not accepted academic practice in graduate schools, nor is the required double-spaced format appropriate for communicating this kind of information in the most efficient way. I have entered this project with some trepidation, despite my complete confidence in the hardware/software system.

Many of you will probably be unfamiliar with the specific hardware system discussed in this notebook. The Texas Instruments TI-59 programmable calculator operates much like the inexpensive TI-57. You may know someone who has a TI-57, so I will note here that its instruction manual, MAKING TRACKS INTO PROGRAMMING, is the best possible introduction to the TI algebraic operating system (AOS) and programming in general. ${ }^{1}$

This notebook is based on several premises that should be discussed here. First, most planners will not have access to computers with the software they need. Furthermore, for problems with fewer than about 100 input data points, the TI-59 outperforms computers more often than not, simply because it is so easy to program, access and operate. I own a $\$ 4000$ microcomputer with a multi-purpose spreadsheet program, and the TI-59 is the minimal block time choice for most of the complex calculations in my work. The microcomputer works well for word processing and data storage, but it cannot compete as a calculator.

Second, the calculator's small size is a real advantage. It fits on the corner of a desktop or in an attache case
(with printer). Without the printer it operates on battery power for field applications. There is no substitute for this kind of close and constant utility.

Third, most planners will have at least a refreshable knowledge of algebra. Algebra is an important tool, good for understanding most of the quantitative problems ynu will face, and good for programming in an assembly language based on algebraic notation.

Fourth, consecutive, quick numerical solutions permit consideration of several values for variables that cannot be accurately determined or estimated. It is reassuring to know when improved accuracy of inputs adds little to the value of a solution, because then we can manage problemsolving resources more efficiently.

Fifth, the above process can be extended to provide broad understanding of the underlying dynamics of a problem, understanding that would otherwise be achieved only by more experienced or more analytical minds. It is difficult to appreciate this phenomenon without experiencing it once or twice. Trust me.

Sixth, the knowledge acquired from the process of quantitative problem solving is a commodity related to power. It can be used constructively to note specific options and consequences, thereby minimizing the latitude for politicizing decisions. Planners who cannot provide specific, accurate solutions to quantitative problems cannot
expect to be trusted by elected government officials.
Finally, the programmable calculator has been underestimated because of its small size, even though its speed and capacity exceed that of a central processing unit sold by IBM for a quarter million dollars in 1960. In 1980, when the federal government required utilities to provide on-site energy audits for their residential customers, I worked with a small group that designed a complying audit procedure. It required more than a hundred data inputs, more than a thousand calculations, and a complete discussion of results on-site. While other states set up central computer systems to be accessed by portable modem terminals, we developed an incredibly compressed TI-59 program. The Rhode Island utilities' non-profit auditing firm uses twenty calculator/printer systems for more than 10,000 audits per year. These systems save some $\$ 300,000$ per year in computer programming, leasing and operations costs. The good feeling of having worked on that project has sustained me through more than a few disappointing days since then.

NOTES
$l_{\text {Ralph }}$ Oliva et al, MAKING TRACKS INTO PROGRAMMING, (Lubbock: Texas Instruments, 1977).

Because quantitative methods have emerged from so many substantive fields and mathematical techniques, planning schools can include only the most practical and understandable in a two-year curriculum. And even this basic approach presents problems.

The economist John Kain has commented that quantitative methods courses in planning schools are too often about methods. ${ }^{\text {l }}$ Students complete degrees without gaining competence in methods as tools.

In 1974 Daniel Isserman surveyed AIP-recognized schools to find out what methods were being taught. He found almost no consensus: only population projection and economic base were widely taught beyond the introductory level. Isserman also surveyed practicing planners for recommendations on what they thought should be taught. Again he found almost no consensus, and practicing planners collectively had different priorities from those of schools. ${ }^{2}$

Practicing planners listed the methods in which they thought competence should be required, while schools listed methods in which a basic introduction was required. The following list is ranked according to the practicing planners' priorities:

1. Population projection
2. Questionnaire surveys
3. Housing need

Planners Schools 67\% 75\%
66
54

51
17

	Jllanners	Schools
4. Economic base	50%	75%
5. Market area	49	24
6. Descriptive statistics	43	61
7. Cost-benefit	41	37
8. Cost-revenue	37	24
9. Inferential statistics	27	51
lo. Gravity model	26	54
ll. Input-output	14	46
l2. Multiple regression	14	46

The schools were clearly not providing the training that the profession required, however farsighted they may have been in selected methods such as input-output. The surveys were inconsistent in several ways. Schools were questioned on the gravity model, while planners were questioned on land use and transportation models in general. This makes the planners' minimal interest all the more emphatic. Property development finance was not included, which may account for the practicing planners' response to the housing need methods.

Isserman accepted all responses at face value, despite misgivings. Terms such as "competence" and "introduction" are subjective. It would have been prohibitively expensive to monitor course offerings by questioning or testing students. It might have been even more disconcerting.

The Isserman survey raises some serious questions about the sources of "professional judgment" in planning. For the experienced planner a reputation for wisdom may be sufficient to secure support for a plan or program, but younger planners will be increasingly challenged by management and systems science techniques from tangential fields.

The Isserman survey also raises questions about the
classification $\jmath f$ quantitative methods. The survey did not discriminate between substantive field applications and mathematical techniques. This was most obvious in the case of inferential statistics. How much of inferential statistics are we discussing? Is probability included? What substantive field applications are we concerned with beyond questionnaire surveys?

Many planning schools offer statistics as an introductory techniques course, without attention to the mechanics of substantive field applications. This is particularly true when the course is taught outside the department. Students may concurrently be studying the mechanics of substantive field applications for other mathematical techniques they may not have learned before entering planning school. This double bind situation could be remedied with diagnostic tests and short tutorial courses that incorporate calculator programs. Business schools have done this within and parallel to their curricula. ${ }^{3}$

It would be helpful to classify commonly used planning methods in a two-way table that shows the intersections of mathematical techniques and substantive field applications. Each application method could be linked to at least one published source. For example, the PRACTITIONER'S GUIDE TO FISCAL IMPACT ANALYSIS is probably the most important published information source for that method, although sources for variations of the method could be noted. ${ }^{4}$ The manual
calculation method presented in the GUIDE has been enhanced in programmable calculator and microcomputer software, but nothing has been published to date.

NOTES
${ }^{1}$ John Kain, "Rampant Schizophrenia: The Case of City and Regional Planning," JOJRNAL OF THE AMERICAN INSTITUTE OF PLANNERS, (July 1970), p. 221.

2
Daniel Isserman, PLANNING PRACTICE AND PLANNING EDUCATION: THE CASE OF QUANTITATIVE METHODS, (Urbana: Illinois, 1975).
${ }^{3}$ LRN, (January 1982), p. 3.
4
Robert Burchell and David Listokin, PRACTITIONER'S GUIDE TO FISCAL IMPACT ANALYSIS, (New Brunswick: Rutgers, 1980).

ECONOMICS OF PROHLEM SOLVING

Linear programming was developed in the USSR during the 1930 's, but it became a practical operations research method in the United States during the 1950's. The number of man-hours required to perform thousands of arithmetic operations increased costs and limited the number of problems worth solving. High-speed computers simply decreased the costs of linear programming (and, of course, increased the speed for real time applications).

Although computation costs have decreased dramatically over the past thirty years, lower costs have not necessarily been directly accessible. Professionals with relatively infrequent quantitative problem solving requirements may find the first cost of a computer and appropriate software to be prohibitive. When consultants are hired to solve the problems, they absorb the difference between the cost of computation and the market value of the solution.

There are some adaptive methods for getting around the cost problem. Large computers may test the limits of error for less complex models that fit into programmable calculators or even nomographs. Screening methods developed from back-of-the-envelope calculations can eliminate alot of problem cases that are not even worth considering for the purpose at hand. This is a bit theoretical, but the bottom line conclusion is that we can often avoid being dependent on equipment we cannot afford.

Think for a moment about how problems are solved. I might begin with a pencil and some graph paper (non-repro blue, four squares to the inch). I generally try to assemble the graphic, numerical and verbal components I need: a stylized drawing, diagrams, some arrows, a few numbers, book citations, some equations, more arrows, and erasures of things that seemed germaine but turned out not to be. I understand some of the dynamics of the problem from related experiences. In other ways I feel very inadequate. These are the times that professionals hide. We all try to cheat our limitations and avoid defeat (the area under a curve equals the number of squares you count on the graph paper).

If the problem is quantitative, it eventually boils down to data, mathematical operations and a useful format. Then is when it would be nice to have an inexpensive programmable calculator capable of doing things that would otherwise require computer access. There is something very satisfying about accomplishing the apparently impossible with tools you can easily conceal. To the extent that the Texas Instruments $T I-59 / P C-100 C$ system can do this, the practicing planner has significant new opportunities.

In a world of complex problems, there are a few natural laws working for those of us using small tools. First, big models are not necessarily more useful than small models. William Alonso's old article on sources of error in models remains a good source of consolation and advice. ${ }^{l}$ He notes
two kinds of error. Measurement errors are those acquired from inaccurate measurement. Specification errors come from deliberate (or mistaken) model simplification. Alonso's central point is that elaborate specification may in fact generate cumulative measurement errors beyond what a simpler modal would have produced. There is, in almost every case, a point of diminishing return. His summary advice is to avoid the operations that generate cumulative error fastest, namely intercorrelated variables, subtraction and exponentiation. Add where possible, and multiply or divide if you cannot add. Second, complex problems can often be broken down into relatively autonomous sub-problems. If we can represent a problem graphically, it is often possible to understand how component parts are connected before that connection is expressed mathematically. Dennls Meadows' wo:ld systems model appears on the following page; it shows in some detail which sectors are most directiy related to which. If these linkages were expressed only mathematically, relatively few people would understand what is going on. And some strange things would happen as a result of that lack of understanding. Results generated from mathematical models that have not been graphically represented may be counterintuitive (contrary to our intuitive understanding of how things work). This might be because we have underestimated the extent to which certain combinations of variables could affect outcomes (watch out for exponents between 0.9 and 1.1: they strike surprisingly quickly). Once you know how the game is played,

keeping score is simple enough. Think graphically whenever you can. Drag the unknowns back to familiar ground. As one unimpressed reviewer wrote of a noted professor's mathematical model:

Is it true, however, that the policy suggestions Forrester derives from his model are really surprising? The simplest way to answer these questions is to point out that one gets out of computer models what one puts in. If Forrester has defined a sick city in terms of a declining economy, increasing numbers of unemployed and high taxes, then it is obvious that a healthy city will simply manifest the reverse symptoms.

Keeping the underemployed out of the city . . . would certainly lead industry to soak up available labor. Then the quality of urban life would improve, the demands on taxes diminish because of the decline in large numbers of demoralised, discontented workers and the economy would begin to recover.

In fact there is nothing at all surprising in Forrester's conclusions given his assumptions. The model has only to be stood on its head for the solution to appear. ${ }^{2}$

NOTES
${ }^{1}$ William Alonso, "Predicting Best with Imperfect Data," JOURNAL OF THE AMERICAN INSTITUTE OF PLANNERS (July 1968), pp. 251-55.
$\mathbf{2}_{\text {H. Cole et }}$ al, MODELS OF DOOM, (New York: Universe Books, 1973), p. 198.

HARDWARE

Texas Instruments and Hewlett-Packard manufacture the only magnetic-card-reading programmable calculators sold in the United States. From 1977-81 the Texas Instruments TI-59 dominated its market, essentialiy because it offered greater capacity and lower price than the Hewlett-Packard HP-67 and HP-97 calculators. The new HP-41CV is superior to the TI-59, but at more than double the price.

The most obvious difference between the $T I$ and $H P$ equipment is in the ássembly language used for programming. TI uses an Algebraic Operating System (AOS) that permits anyone with an understanding of algebraic notation to program almost literally from an equation. The HP assembly language uses Reverse Polish Notation (RPN), a more efficient method for allocating program steps. Competent mathematicians tend to prefer RPN as the more efficient calculation logic. Algebraic notation was developed for concept assembly on paper. MY preference for AOS is based on the ease with which it can be translated from program steps back to equations. The review and modification of available programs turns out to be an important activity.

TI and HP programmables also differ in physical design. The TI-59 uses a fast (60 characters per second) printer that runs on l20VAC only. The slower HP printer can run on battery power. The HP-41CV displays letters; the TI-59 does not.

The HP calculators have superior card-reading tolerances; it is sometimes difficult for one TI-59 to read a card written on another. This has important implications for the way programs are marketed.

The TI-59 was designed as a multi-purpose calculation tool. None of its keys are dedicated to programs for specific substantive field applications. Instead, one program call key and ten user-defined keys access dedicated firmware contained in small modules that slide into the back of the calculator. These interchangeable modules contain up to 5000 program steps (typically a library of $20-25$ programs). There are modules for business, investment, farming, etc., but none for community planning. The calculator comes with a master module designed for general use.

The TI-59/PC-100C system is both compact and modular. The diagram on the following page shows the relationship among parts. Note that the printer, calculator and modules each have their own instruction manuals. My entire system fits in a $\$ 10$ Woolworth attache case lined with thin, rigid foam sheeting from a Xerox packing case. The system costs about $\$ 380$ at discounted prices. Since repairs to the calculator are made on an exchange basis (\$63 per exchange for a replacement after warranties expire), there are no service benefits to buying from a local retail dealer rather than a discount mail order firm. The equipment is remarkably reliable. For those of you who have seen or used a TI-57, the

$\$ 380$ PACKAGE

differences in the TI-59 can be described as capacity-related rather than format related:

	TI-57	TI-59
Program steps	50	460
Memory registers	8	60
Subroutines	6	72
Subroutine levels	6	6
Conditional branching	yes	yes
User-defined keys	0	10

The TI-59 has modifiable capacity: it can trade 60 program steps for 10 memory registers. Instead of a fixed 460/60 split, the range can be shifted from 160/100 to 960/0 in increments of $60 / 10$.

The TI-57 has only 50 program steps, but these are functionally equivalent to about 80 steps on the TI-59, simply because more keystrokes are merged. For example, recalling a number from memory register 02 requires one step on a TI-57 and two on a TI-59. Of the minor differences.in notation, only subroutine calls are worth mentioning here. The TI-57 calls numbered labels (eg, LBL 0l), while the TI-59 calls key labels (eg, LBL x^{2}). You can set key/number equivalencies to keep track, so that programs for the TI-57 can be run or listed on the more expensive system.

The two instruction manuals are conceptually related, and the TI-57 uses the apt analogy of a model train layout to introduce programming concepts. The TI-59 manual, PERSONAL PROGRAMMING, uses flowcharting without analogies. ${ }^{1}$

The most sensitive component in the TI-59 system is the magnetic card, but that card sets it apart as a professional tool. Each card has four banks (magnetic tracks), and each bank holds up to 240 program steps or 30 memory registers. Card numbers and bank numbers are not the same; they are simply equated by convention. The calculator can hold up to four banks of input at once. By convention the left side of the first card is called side one and uses bank
one. The right side of that card is side two and uses bank two. The left side of the second card is called side three and uses bank three, etc. Respect the convention and save your mind for more important complications.

Although the instruction manual fails to mention erasure and rerecording, the magnetic cards can be used over again. Since each card side physically includes all four banks (or tracks), simply remember to overwrite the same bank you used before. This option is useful when data has to be stored on cards temporarily. Magnetic cards cost about \$. 40 each. When marking magnetic cards, use a black Flair pen that likes the surface (the ones that like the surface are great, but not all do). Let the ink dry thoroughly; it stays on until you wipe it off with soap and water.

Key definition cards that come with program library modules are black with gold lettering. Those that come with blank magnetic cards are gold and can be confused with magnetic cards. Throw them all away. The card case instruction manual is all you need for a program library module, and that is a good format to adopt for magnetic card programs as well.

BANK DIAGRAM

This diagram has been redrawn from PERSONAL PROGRAMMING, and it is a necessary reference for intial program/memory allocation. The following pages show the key codes as keys and as printed steps. The latter is a necessary reference

for interpreting other people's programs. Note that the keys and printed steps are not always easy to match. Not all codes are directly entered.

Key Codes in Numerical Order

Kay Code	Key		Key Code	Key		Key Code	Key	
00	0		39	2nd	cos	72	STO	2nd lint
\dagger	\dagger		40	2nd	lint	73	RCL	2nd lind
09	9		42	5 STO		74	SUM	2nd Ind
10	2nd	['	43	RCD		75	-	
11	A		44	SUM		76	2nd	161
12	8		45	y^{5}		77	2nd	$x \geq 1$
13	C		47	2 nd	cms	78	2nd	[
14	0		48	2 nd	Exic	79	2 nd	\bar{x}
15	E		49	2 nd	Prit	80	2nd	Grad
16	2nd	\boldsymbol{r}	50	2 dd	[x]	81	RST	
17	2nd	[52	EE		*82	HIR	
18	2 nd	6	53	7		83	GTO	2nd lind
19	2 nd	0	54	1		84	2 nd	OT 2 nd
20	2 nd	CLR	55	\div		85	\pm	
22	INV		57	2nd	Ene	86	2 nd	[8][9]
23	$\ln x$		58	2nd	If	87	2 nd	Inle
24	CE		59	2nd	lint	88	2nd	D.MS
25	CLR		60	2 nd	[6]	89	2nd	π
27	2 nd	INV	61	GTO		90	2nd	Iust.
28	2 nd	10	62	2 nd	Fgim 2nd lint	91	R/S	
29	2 nd	CP	63	2 nd	Eic 2nd lat	92	INV	SBR
30	2 dd	tin	64	2nd	Fro 2nd lind	93	-	
32	$x: 1$		65	X		94	+	
33	x^{2}		66	2 nd	Pund	95	F	
34	[$\sqrt{2}$		67	2 nd	$x=1$	96	2nd	Whte
35	1/x		68	2 nd	Nap	-997	2nd	Dist
36	2nd	Pgm	69	2 dd	OP	98	2 nd	Divo
37	2nd	$p \rightarrow$ B	70	2 nd	Rat	99	2nd	Prt
38	2nd	sin	71	SER				

NOTES

- This command cannot be directly keyed in, but may be written into a program by going into learn mode and pressing STO 82 and deleting the STO. There is a two-digit number $X Y$ which follows the 82 command. X stands for the hierarchy register oderation, where 0 is STO. 1 is RCL. 3 is SUM. 4 is "Prd. 5 is INV SUM, and 6-9 are INC •Prd. Y stands for the hierarchy register to be accessed (1-8). XY may be entered in the same manner as code 82 if $X Y$ by itseff is an invalid keyboard entry.
-"The Dsz instruction on the TI-59 can be used with any register (except 40, which implies indirect). Registers 10 99 cannot be keyed in directly but may be generated as follows: LRN ${ }^{\circ}$ Dsz STO nn 8ST 8ST ${ }^{\circ}$ Del SST - LRN.

Many people simply purchase the software they need and avoid programming altogether. Program instructions can be treated like cookbook recipes, but there are risks involved. Even good programmers make mistakes that can embarrass you. Most programs can be modified to meet your needs more efficiently. The trick is to integrate review and modification.

TI-59 programs are available from several sources, but the largest and most important source is TI's own Personal Programming Exchange. PPX provides a quarterly newsletter and program catalog for $\$ 20$ per year. Cataloged programs cost $\$ 4$ each and are listed by six digit codes. The first two digits denote the subject area. A subject area classification table and sample abstract listings appear on the following pages.

PPX programs are also sold in related groups of 5-10 in books called Specialty Pakettes. The notation numbers are those used in the PPX catalog.

Texas Instruments does not pay for programs submitted to PPX, and there are people who write sophisticated programs worth more than $\$ 100$ per copy. These are sold independently, often through appropriate professional journals. When they are sold as "protected" magnetic cards, the contents cannot be reproduced or analyzed. Be wary of these: if they have programming mistakes within them, you may never know. Your

TI-59 may have trouble reading cards written on another machine.

Texas Instruments offers program library modules that can be downlisted. Independent sources typically offer far more expensive modules that cannot be downlisted. If you trust the programmer, note that the modules present none of the reading problems posed by cards, nor do they wear out with extended use. If you do not trust the programmer, cards can at least be "unprotected" with a little effort.l

Most planners will probably want to purchase relevant PPX programs, review the listings, and modify them as necessary. The best source for information on modifications and utility routines is LRN, the newsletter of the Washington, D.C. area TI-59 users group. The $\$ 20$ membership includes twelve issues (some of which are double issues) and at least a hundred directly useful programs, routines and insights.

Addresses for further information are:
PPX-59 LRN
P.O. Box 53

Lubbock, TX 79408 Lanham, MD 20801

NOTES

LRN, (march 1980), p. 2.

Professional Categories

BUSINESS		NATURAL SCIENCES		SOCIAL \& BEHAVIORAL	
01	Management Accountung	40	Physics		NCES
02	Manutacturing Engineering	41	Chamistry	80	Political Science
03	Inventory Control	42	Biology	81	Saciology
04	Marketing/Sales	43	Agncuiture	82	Psychology/Psychiatry
05	Personner.	44	Forestry	83	Law Enforcement
06	Transportation	45	Ecology	84	Social a Behavioral Sciences
07	Insurance	46	Geology/Resources		(Other)
08	Real Estate	47	Oceanography		
09	Business (General)	48	Anthropology	NATURAL RESOURCES	
		49	Natural Sciences (Other)	85	Lumber/forest Products
FINANCE				86	Oil/Gas/Energy
10	Accounting	LIFE SCIENCES		87	Food Resources
11	Auditing	50	Clincal/ Oiagnostic	88	Water Resources
12	Banking	51	Virology/immunology	89	Natural Resources (Other)
13	Consumer Finance	52	Pathology		
14	Personal Finance	53	Biochemistry	GENERAL	
15	Economics	54	Genetics	90	Utility Programs
16	Leasing	55	Physiology	91	Demonstration/Games
17	Tax Planning/Preparation	56	Pharmacology	92	Education
18	Securitios	57	Oohthalmology/Optics	93	Air Navigation
19	Finance (General)	58	Nutition/Food Science	94	Marine Navigation
		59	Life Sciences (General)	95	Photography
STATISTICS \& PROBABILITY			-	96	Music
	Reqression/Curve fit	ENGINEERING		97	Astrology
21	Analysis of Variance	60	Aeronautical Engineerring	98	Sports
22	Statistical Testing	61	Chemical Engineering	99	Other
23	Statistical Inference	62	Civil Engineering		
24	Stochastuc Processes	63	Computer Science		
25	Probability Theory	54	Electncal Engineenng		
26	Probability Distrnbutions	65	Electronic Engineering		
27	Quality Assurance	66	Mechanical Engineenng		
28	Reliabllity/Mantaunability	67	Nuclear Engineenng		
29	Staustics \& Probability (Genera)	68	System Engineerng		
		69	Engineering (General)		
MATHEMATICS		TECHNICAL			
30	Linear Algebra/Matrices				
31	Complex Variables	70	Acoustics		
32	Harmonic Analysis	71	Archiecrure		
33	Nonimear Systerms	72	Ceramics		
34	Numencal Integration	73	Heatung. Air Conditionng,		
35	Oifferential Equations	74	Optics		-
36	Number Systems	75	Programming		
37	Systern Modeling	76	Seismology		
38	Operatuons Research	77	Surveying		
39	Mathematucs (Genera)	78	Astronomy		
		79	Technical (Other)		

```
1sBU6G IMTERMAL RATE OF RETURM COHPUTATION
    THIS PROGRAM CALCULATES THE IRR (INTERMAL RATE OF RETURH:
    FOR A NIDE CLASS OF PROSLEMS AND IS SIMILAR TO TME
    SECURITIES ANALYSIS PROGRAM ES (SA-05). NOHEVER, THE
    RESIRICTION THAT EACH CASM FIOH BE IM A SUCCESSIVE
    SEOUENCE IS REHOVED. THIS ALLOHS ADDITIDMAL FLEXIBILITY
    BUT DOES REQUIRE THE PERIOD OF EACH CASH FLOH TO BE
    ENTERED, THE PERIOD VALUE MAY ALSO SE A MOMIMTEGER
    THE IRR OF 46 CASH FLOHS CAN AE COHPUTED.
    USER EENEFITS: ALLDMS TNE USER TO MAKE BETTER DECISIONS
                    BY ANALYZIMG FIMAMCIAL TRANSACTIOMS
    RANDALLEE.STAPONSEI, TULSA, DR,
    104 STEPS
IP8EGIG FIMANCIAL STATEMENT ANALYSIS
    USES 20 LINE ITENS FROM COHPARATIVE B/S AND P/L TO
    PROVIDE II MAIN AMD S SECONDARY AMALYTICAL DATA ITENS
    AS FOLLOHS: HORXING CAPITAL, CURRENTS RATID. QUICR
    RATID. GVERAGE COLLECTION PERIDD, INYEMTGRY TUR'KS, DEET/
    ON ASSETS z. RETURN ON EOUITY %, ALTMAN-S Z-SCORE, Z-
    SCORE -X TERMS. PROVIDES FOR INOEPENDENT PRINTOUT OF:
    INPUT DATA, COMPUTED DATA, Z-SGORE -X" TESMS, AND RECDM-
    PUTATIDN OF Z-SCORE. THIS PROGRAM IS AN EXPANSION AND
    REORGANIZATIOH OF PPXEI98004 AMD PROVIDES FOR TME USE
    DF THE PC-100C PRINTER.
    USER BEMEFITS: EASY TO USE.
    JIM GAIMSLEY, MINMEAPOLIS, MR,
    718 STEPS. PC-100A
19062G PROFITABILITY MEASURES
    GIVEN NET RECEIPTS OF a PROJECT, CALCULATES SDLDHON'S
    AVERAGE RATE OF RETURM, MET PRESEMT YALUE PROFITABIIITY
    IHDEX, AND MET FUTURE VALUE; ALL ON A DISCRETE OR
    CONTINUDUS BASIS.
    USER BENEFITS: READT CALCULATION OF HEALTH GROATH RATE
                AND OTHER PROFITABILITY MEASURES
    JOREE VALENCIA. LITA. PERU *
    429 STEPS
198063G IRR MITH INCREASING CASH FLO&S
    FINDS RATE OF RETURN OF AH INVESTMENT HHDSE NET RE-
    CEIPTS GROW AT A FIXED RATE PER PERIOD.
    USER DENEFITS: SIMPIFIES CALCULATION.
    JORGE VALENCIA, LIMA, PERU
    169 STEPS
198064G PROJECT APPRAISAL UNDER RISK
    FOR A PROJECT HITH SEVERAL PROBABLE CASH FLOWS PER
    PER PERICALGULATES STANOARD DEYIAND ON OF CASH FLOWS
    PER PERIOD, SNYESTMEMT OF PROBADL EX ECTED VALUE
    IINCLUOING INVESTMENT) OF PROBABIE NET PRESENT VALUE
    VALUE O2 LESSER AROUMBILITY OF GIVEN NET PRESENT
    USER SENEFITS: CONSIDERABLE TIME SAVING AND ERRDR
            PREYENIION.
    JORGE VALENCIA. LIMA, PERU
    233 STEPS, MOD 2
198065G VARIADLE CASH FLONS - CONTIMUDUS
gives present value and future value of a series of CASH FLOOLS BEIMG DISBURSED CONTINUOUSLY, WITH INTEREST CONVERTED CONTINUOUSLY ALSO. UNLIKE PPXII98006 THIS PROGRAF HANDLES A SERIES OF CASH FLDMS.
USER BENEFTTS: BETTER FOR INYESTAENT MDDELS BECAUSE OF ITS MATMEMATICAL AMALYSIS APPRDACH.
JORGE VALENCIA, LIMA, PERU
152 STEPS
208038G SIMPLE REGRESSION MODELING
COMPARES AND SELECTS THE BEST AMONG 4 COHMON SIMPLE
REGRESSION MODELS. ALSD TIES IN WITN REGRESSION
ANALYSIS AND MULTIVARIATE STATISTICAG METHODS PROGRAM-
MING SYSTEM FOR THE COMPARISON DF DIHER USER-DEFIMED
MODELS. ANALYSIS OF RESIDUALS, AND AUTOCORREIATION
ANALYSIS.
USER BENEFITS: ELIMINATES DATA RE-ENTRY.
CHORFAN W. CHING, HAFILTON, CANADA
320 STEPS, PC-100A. MOE 3, REV B
```


STRUCTURAL PROGRAMS ${ }_{(\text {Side A) }}$

All programs (except F_{t}. . in. . Sixteenins include a reproducible calculation sheet. program descriotion, a design example and a preprogrammed magnetıc card. Allow approximately 2.3 weeks for detivery. Ten (10) individual program combinations at 20% off: twenty (20) individual program combinations at 30% off; tnirty (30) or more individual program combinations at 40% off of lisi price.

License Fee

HP67/HP97	T1-59	HP.41C
(6) $\$ 90.00$	\$115.00	(19) \$130.00
(1) 540.00] \$ 50.00	(3) \$ 80.00
(6) $\$ 90.00$	($\$ 115.00$	(13) \$130.00
(6) $\$ 90.00$	(8) $\$ 115.00$	(1) \$130.00
(6) 545.00	\$ $\$ 50.00$	(19) $\$ 60.00$
(6) \$20.00	\$ 20.00	(1) \$ 25.00
(19) $\$ 30.00$	\% $\$ 35.00$	(19) 30.00
(14) \$30.00	(1) 35.00	\% \$ 40.00
(1) \$30.00	\$ $\$ 35.00$	(1) $\$ 40.00$
($\$ 30.00$	\$ 35.00	(3) $\$ 40.00$
(18 $\$ 65.00$	\$ 70.00	(t) \$80.00
(4) $\$ 30.00$	\$ 35.00	(2) $\$ 40.00$
(\%) $\$ 30.00$	\$ 35.00	(6) \$ 40.00
(1) $\$ 65.00$	\$ 70.00	(19) $\$ 80.00$
(1) \$15.00	\$ 15.00	(1) $\$ 15.00$

VOLUME II - Programs 16 through 30
16. End Plate Moment Splices for Steel Deams.
17. Wood studs. Rafters, or Truss Members
18. Steel Beam-Biaxial Bending
19. Simple Soan beam with Moving Wheei Loads
20. Rigıa Frames.
21. Simple Span Beam Equal and Symmetrical Concentrated Loads
22. Simple Soan Beam: Concentrated Loads at any Point
23. Simole Soan Beam: Unitorm and Triangular Loads.
24. Simple Span Beam: Partal Uniform Loads
25. Beam. Fixed on Right End Concentrated Loads at any Point
26. Beam- Fixed on Right End Partial Uniform Loads at any Location
27. Beam. Fixed Both Ends with Concentrated Loads at any Point
28. Beam - Fixed Both Ends with Partial Uniform Loads at any Location
29. Cantılever Beam
30. Payroll tabulation

	\$ 75.00	(9) $\$ 80.00$
$\begin{aligned} & \text { (1) } \$ 75.00 \\ & \$ \$ 75.00 \end{aligned}$	\$ 75.00	- \$ \$ 80.00
(1) $\$ 60.00$	\$ 60.00	(1) $\$ 65.00$
(\$800.00	\$ 60.00	(1) \$ 65.00
(6) $\$ 100.0$	\$110.00	(4) $\$ 125.00$
(1) \$40.00	\$ 40.00	ct \$ 40.00
(1) \$45.00	\$ 50.00	(7) 550.00
(\%) $\$ 45.00$	\$ 45.00	(6) $\$ 45.00$
(6) 510.00	\$ 40.00	(1) \$ 45.00
(6) \$40.00	\$ 40.00	(1) \$ 45.00
(1) \$40.00	\$ 40.00	(4) $\$ 45.00$
(3) \$40.00	\$ 40.00	(17) \$ 45.00
(1) $\$ 40.00$	\$ 40.00	(2) $\$ 45.00$
(4. \$40.00	\$ 40.00	(1) $\$ 45.00$
(1) $\$ 40.00$	\$ 40.00	45.00

VOLUME III - Programs 31 Inrough 45
31. Steel Column. Combined Axial Load and Biaxial Bending
22. Column Stiffeners
33. Flange Plate Moment Splices for Steel beams
34. Composite Interior Beams
35. Comoosite Spandrel Beams
36. Cover Plates
37. Composite Interior Beams with Metai Deck
38. Composite Spandrel Beams with Metal Oeck
39. Composite Beams General Design
40. Beams Fixed at Both Ends - Uniformiy Varying Loads
41. Drilled Piers or Caissons.
42. Double Overnanging Beam
43. Two Span Continuous Beam with Uniform and Concentrated Loads
44. Three Span Contınuous Beam with Uniform Loads
45. Four Soan Contınuous Beam with Uniform Loads

46147 Continuous Beam (Rotations and Matrix) with Variabte Spans. Moment of liertia Concentrated. Uniform and Partial Uniform Loads
48. Contiriuous Beam (Positive Moments. Shears. Deflections
61. Suspended Caples
62. Boll and Pile Loads Circular and Fectangutar

Patterns with Biaxial Bending
63. Base Plates with Moment and Axial Loads

VOLUME VH\{Programs 71-76) (For Fabricators and Detallers)
71. Right and Oblique Triangles
72. Stair Solutions for A\&E's.
73. Stair Solutions
74. Unsymmennical Knee Bracing
75. Curved Sectors
76. Unsymmetrical Cross Eracing for Beams and Trusses.
77. Decimal Number Sorting Program
78. Feet - Inches . Sixteentns Number Sorting Program
79. Unsymmetrical Cross Bracing for Towers

T 516000
(a) $\$ 17500$

(9) $\$ 40.00$ _ $\$ 40.00$ _ $\$ 45.00$ ——
(4) $\$ 40.00$ _ $\$ 40.00$ _
(1) $\$ 40.00$ \qquad (1) $\$ 40.00$ \qquad 645.00
$\$ \$ 45.00$ \qquad

You are probsbly aware of the special architectural quality, and large energy savings, possible using Passive Solar tachniques in buildings. In this context PEGFIX/PEGFLOAT, the first hand calculator solar design aids published by Princeton Enargy Group, should be of special intertat to you, and to all soler deaigners, builders, and educators. PEGFIX and PEGFLOAT model both the hourty and dayiong performance of direct gain or 'sunspace' solar configurations, using any of the four mitor erd-programmabie hand-held calculators.

PEGFIX predicts auxiliary heat demand and excess heat available in a spsea with user-defined maximum and minimum temperanure limits. The program is dirsetly usatul in sizing and specifying the system components, including the backup heating and ventilating equioment if neaded. The rasulte stored by PEGFiX are: sotai auxiliary hasting load, excess haat availabie, maximum fan fate needed to vont excess heat, and maximum hourly auxiliary load.

PEGFLOAT predices hourly temperatures of air and storage mass in a space without auxiliary heat input or removal of excess heat. its purpose is to evaluate temperature excursions in a 100% solar operating mode. This program can axamine non-south glazing orientations with user-specified hourty inout values for insolation. PEGFLOAT dutomatically storas maximum and minimum storage. and air temperatures of the system boing modelied.

PEGFIX/PEGFLOAT are the first hand calculator programs which allow truly fast, low cost and accurate hour-by-hour analysis of direct gain systems, by designers with litde or no experience in buidding thermad analysis. Both programs require oniv a few user-derined inouts regarding the bulding design and local weather: hear loss coerificients: eifective thermal capacity and storage surface area; solar energy available, fraction to storage and fraction to air; average outdcor temperature and daily range. The programs automatically differantiate day and night heat loss values if desirad, enabling you to evaluate night-deploved moveable insulation. If oniy a daylong insolation value is availabie, PEGFIX and PEGFLOAT will automatically proportion this inout among the daylit hours. All inputs are expressed in familiar terms, and are clearty explained in the accompanying PEGFIX PEGFLOAT HAND8OOK. The programs cart be run througn a 24 -hour day, without user interaction, in onty five to nine minutw. You may aiso choose hourly disolay of air and storage terngeratures, and of auxiliary or excess heat, without interrupting program execution. Optional hourly display does not affect the stored data.

Our atritude in design is reftected in the ctarity and utility of these programs, which support rapid devatiopmertr of design judgement on a sound technicad besa. It is our experience that using programmabie hand catcuistors in passive dasign analysis is inherentiy self-instructive. PEGFIXIPEGFLOAT Employ the best available procedures suited to programmable hand calculators, retined in several years' use by PEG staff in all stages of our own design work. PEGFIX/PEGFLOAT combine fast and simpla execution with sophisticated numerical methods incluaing a now 'walking' solution of simultaneous equations. We introduced PEGFIX/PEGFLOAT at the Third Nanonal Passive Solar Conference in San Jose, wherle they were warmiy recerved by leading specsatist in performanca simulation and testing from throughout North America. The programs are now used with confidence by other experienced designers. reducing the time and expense devoted to sumilar anaivses on larger equipment. Less experiencad desugners gan a fine learning tool, as wall as accoss to houriy simulation capability without costly computer time and programmer expertisa which their present work can ill afford. Students and educarors espectaily appreciare the spesd with which results aro obtained using PEGFIX/PEGFLOAT, ailowing quick assessment of design options with vary little preparation. (We've bean told that from a teschar's standpoint. program reaults which aren't available until naxt weak's dass, mignt as well be unavailable until next term; not quite true, but wot the point!) The same advantage is important to any designer whose time is valuable.

PEGFIXPPEGFLOAT are available in Hewlett-Packard RPN and Texas Instruments AOS versions. An HP-g7. HP-97, HP-41C, or T1-59 card-programmable calculator is required. A printer is conveniem but, because of the hourly displav ootion, not needed. Either English or Metric programs are availabie; thoy must be ordered separately. Exch program package includes prerecofded cardis). printed Worisheert. and $70+$ page instruction HANDBOOK. A Library Packege, with cards for both English and Metric calculations on all four macnines, is offered at a special prica. The PEGFIX PEGFLOAT HANDBOOK and worksherts are thorough, ciesr, and well illustrated. Program use is presented in a way which allows any designer, wherther or not prewiousiy skilled in pazsive solar tectiniques, to eiffectively apply-and to learn in the process of Using-PEGFIX/PEGFLOAT. Extensive references provide amole documentation, and exceflent resources for further study.

Although Passive Solar butiding principles are rapidty gaining acceptance due to proven performance at low cost. strongexpertise is itill limited to refatively fow practicing architecs and engineers. Among these, inexpensive and fast houriv simulation techniques have been in great demand. We at Princiton Energy Group obtieve our programs are the most significant step to date toward solving these problems.

Pleas take a close look at PEGFIX/PEGFLOAT, and see how valuable these programs can be in vour work.

Ti-5\% subu-crom it

 teou heeding.

COORDIMATE GEOMETAY - The ofine purgise of this prograt sk the troring of ceordinares Por vie in opher pragrans. The bear ang-

 Ture ind orid focrme cirrecirasis nay be appised; yeu may
Tr*verse ar iund ample curve by are dierance: coirainates nay of lisete by peint numer; simple sideshere of wil is wraneming
 39 or fouer ceurses, Part Pis thase wath more than 30 courses

 erfers are cipfocied readily - yen may baek out sumer
 the fiold witheur the arinier... roy may nat recell bearinge b Whmom sidecheritare necescery, fier ine main traverse nas been en Pered and clasure enecrec, yeu ceuld qe 8 g pragram is in solance the reperse, ant then se pragesm 日3, stee 11 to enrer the sideaheris), and inaliy to progran 07 po campult the final

TRAVERSE $1 t$ - ancles - ippagrane on and 15 are complemenvary. When til the anqles of \& rravoese have bepn entersu, inis urogrom sompures the anqular erpor of closure: talances rie onqles

 04. Esimer horszentat or slepe dispances may be unturen and rempersture and grid facrer correcizany may be applies. After
 pores. fallamet by compurditien of onaslaneed cespdinares and
Galancime twe thaverge - This preqran basancet the Praverse oy
 coordinat

 may be useo. If alse may of wied for sieple inver ves ypon poin
 numer ic Desir number, or cesptanarev nay be entered ifon ine
 berdinaros

STAKEOUT - Thze preqran copperes ine angley and ovelances fron spored ceurdinarey for fieta steheevi purpeses.
LINE AUERMEINE (LINEAM REGESEIOM) - TMAB pragran eimputey the line thip besifite any number of ceardinaitee wich nap be wrwad dy pishi nurber of frim rhe Eeplegard.
INTEREETIDNB: EBI - DD1 - BDI = then ine compdinares of rue

PaEDETERHIMED AEEA - afror ine reavared arme ze entored, vearthep and disiances dre envered sntil ins calculdrer cempletes the fiquer inat will predvce ine depured area.
SIMPLE CURVE DATA - Unor givem ine PC ar PI Farion and ine

 senterlane. Alse, the lengin and radive moy of enpmed antresd Prewsam incluaes instrueition manel and prmerseramed rom maswie

Meret

Independently-produced program library module.
CROM = calculator read-only module
GANUAL PLOMTER-SCALER. There are lots of automatic plotting programs which will plot $f(x)$, provided you define $f(x)$ somehow in program memory. But what if you have a list of daca you would like to plot? You could use op o7 menually, but you would still be faced with the task of manually scaling your data within the zero to twenty range of OP 07. After having exparienced this problem a couple of times at the office. I finally settled on this short routine. It is short enough to be used aven by TI-58 fans. The instructions are simple:
scan your data and spot the lowest point, enter it and press A.MIN printed. Do the same for your maximum point, enter it and press B. .MAX printed. Now enter in succession all your data points either through key E or R / S. If you enter a data point out of bounds, either upper or lower, a small a is printed. LBLE - RCL $00=\mathrm{DIV}$ RCL $02=. C P$ INV GE $083 \mathrm{X}: T 20 \quad \mathrm{X}: \mathrm{T}$ GE 094 OP $07 \mathrm{R} / \mathrm{S}$ GTO E LBL A STO OO 282429 OP O4 RCL OO OP OG RTN LBL B STO O1 281344 OP O4 RCL O1 OP O6 - RCL $00=$ DIV $20+3$ EE $9+1 /$ INV EE $=$ STO O2 OP OO ADV R/S GTO E 54 EE 8 INV EE OP OL GTO 09854 OP O4 OP O5 OP OO R/S GTO E
TWO-VARIABLE GRDD-PIOT. As the name implies, this short routine by bill Skillman, will plot simultanoously two variables in the range 0 to 19. If out of bounds, a "?" is printed at the appropriate edge.The grid spacing is 5 printing spaces. The symbol for x is the asterisk ($\#$) and for the y he used an " g ". A cross-over is indicated with an " x ". The instructions are: Write the definition of $f(x)$ in user meanory. place x in the t-register, place y in the display, a call to E^{\prime} will plot both.
000: LBL E' INV STF 4 INV STF 5 STO 042 OP O1 OP 020003 OP O4 X:T NOP SBR 137 EXC O4 SBR 137 OP 22 OP $23 \times 49+R C L O 2 \times: T R C L O 3 E Q 10492$ =
 $+T 1 \times$ HIR 15 X:T I EE $4+1 /$ GE O90 I EE $6+1 /=$ HIR 35 INV IFF 51.34
 $+1-+1 .=$ HIR 38 OP OS RTN INV EE CP INV GE $374 \quad X: T \quad 20 \quad X: T$ GE 380 INT $+/-+1$ CE +/- DIV 5) INT X EXC 02 STO $035+4=$ INV LOG X^{2} RTN STF 4 CLR GTO 183 STF 53 EXC 22 STO 03 CLR RTN
To demonstrate its abilities, I wrote this short sin-cos routine. Start with A.
LBL A RCL $\mu \operatorname{SIN}+2=\times 9.9=$ INT X:T RCL $12 \operatorname{COS}+2=\times 9.9=E 118$ SUM 11 GTO A
Bill's routine uses registers 2, 3 and 4 and flags 4 and 5.

Part on a single page in LRN. Note the density of information.

PERSONAL PROGRAMMING provides a good introduction to everything Texas Instruments has chosen to document. The collected issues of LRN cover additional capabilities that are far too complex for general use. In this section we will concentrate on programming formats that planners will find useful.

Most people develop preferences for particular programming techniques. Some become adept at conditional looping; others prefer to set flags to achieve similar ends. My general suggestion is to work as simply and directly as possible using the techniques you prefer. There are benefits to be gained from optimization, but the TI-59 usually has more than enough capacity to get the job done with some inefficiencies. Direct logic runs fast enough. Once the program goes on the magnetic card, no one can tell how sophisticated you are.

Learn the techniques as you need them. Learn to translate from program steps back to algorithms and equations: Whatever the problem, it is usually possible to find a program nearly matched to your needs. Load it, record it, and then work on modifications to it. Always keep duplicates of cards, because oily fingerprints, accidental bending, etc. can destroy cards unexpectedly.

The easiest way to understand someone else's program is to isolate the alphanumeric labels first, equations second,
and data shifting routincs last. When in doubt abcout a step sequence, run the program from the nearest preceeding label with the printer on TRACE. This causes the calculator to explain what it is doing, step by step. Program labels can be listed by step location by entering RST OP 08 from the keyboard when the program is not running. Given these capabilities, most programs can be listed without annotation or flowcharting of the kind that would be required for a microcomputer written in BASIC.

The important issues for planners are input and output formatting. All of a programmer's work should follow the same format whenever possible. The user-defined keys A, B, C, D, E and their primes are like paragraph headings. The first number in the first data category should be entered through the A key, with each subsequent number in the same category entered through the R/S key (one key controls "run" and "stop"). The next category begins with B, and so on. The E key should always be reserved for starting the program run. The prime letters should be used reluctantly (for ergonomic reasons). The data sequences should feel right to users familiar with the problem being processed.

Alphanumeric labelling consumes significant amounts of program step capacity and should be minimized. Alphanumerics also slow program execution and consume printer paper. Three_ letter margin labels and asterisks will generally suffice. planners often need output that can be copied and distributed.

With this in mind, consider the following netrod of separating labelling from program processing.

The PC-100C prints 5.68 lines per inch, and the conventional advance moves more than a line (but less than two). We must therefore use a set of background numbers in place of a graph paper grid. The following page shows lines populated by digits l-9 in reverse order, with blank space at two of the twenty locations: The program used to generate the digits and spaces is listed on the second following page. By laying the digit grid page underneath a clean sheet of white paper, we can fill in block letters for a label sheet. After copying the label sheet, we have paste-up sheets for the numerical outputs.

After establishing a final format, we can write labels from the printer using the print processor program. It appeared in LRN almost as it appears here, except for minor changes in instructions and program steps. Note that some copiers copy at more than 100% of original size, so you may want to generate the label directly from the printer for each paste-up. Any margin labels on the numerical output tapes can be cut off without affecting the numerical output itself. The hydroelectric site screening program uses this paste-up method. All the labels were right-justified (which is why the digits for the background numbers were in reverse order).

The most serious limitation I have encountered is the
lack of a printed dollar sign. I have ised D for dollar and DK for $\$ 000$, but it should be interpreted in a key when you choose to use the label.

There is one other device planners should know about: direct address subroutines run faster than common label subroutines. PERSONAL PROGRAMMING explains the difference, but you should know it is easy to convert. If we use SBR STO, for example, the entry point is LBL STO. If we write the original program steps as SBR STO NOP, we can shift to SBR 0175 (or whatever) for direct addressing without moving steps out of sequence. The entry point can then be NOP NOP instead of LBL STO. Most good programmers consider NOPs inelegant, but they work nicely.

Finally, documentation needs some attention. Always list the program steps and paste them up on a reference sheet. Pressing OP 08 gives you a list of common labels, so others can find the subroutines. Even after you convert to direct addressing, keep the common label version for documentation. It also helps to downlist the storage registers for future reference. Document the contents.

TRACE

This is a trace of operations for program steps 282-349
in the hydroelectric site screening program.

0.	RCL	10.000	
	24		-
0.150		1.000	-
0.150	FRT	1.	+
0. 15	+	1.	RCL
	$=$		25
1. 150		0.150	
1.15	STD	0. 15	y
	36	1.150	
1. 1.50		1.15	Y\%
1.15	RCL	1.15	REL
	25		26
0.150		20.000	
0.150	FRT	-20.	$=$
0.15	RCL	0.939	
	26	. 9368997211	\div
20.000		. 9398997211	FCL
20.000	FRT		25
20.	FCL	0.150	
	27	0.15	$=$
D. 080		6.259	
0.080	PRT	6.259331474	1%
0. 08	+	0. 160	
	=	. 1597614704	x
1.080		. 1597614704	PCL
1.08	STD		13
	34	2121.239	
1.080		2121.299085	$=$
1.08	FCL	338.892	
	28	338.892	FRT
0.060		398.8922673	STI
0.060	FRT		17
0.06	+	338.892	
	$=$	958.892e67	FCL
1. 060			29
1.06	$8 T \square$	10.000	
	35		STI
1.060			2
1.06	RCL	10.000	
	29	10.	RCL
10, 000			26
10.000	FRT.	20. 000	
10.	QP	20.	STD
	5		3
		20. 000	

RUNNING THE PROGRAM
Clear and load mag card baink 1 .
Press A to initialize the alphanumeric code and print one row of digits. (This is required for the first row only.)

Press B to list one row of digits (except for the initial row, which requires A).

Press C to advance one.
Press D to list five rows of digits.
Press E to run OP 06. Note that although it prints some digits, $O P 06$ in any program lacking labels will cause the printer to "advance" a distance equivalent to one printed line. This option is sometimes useful.
98TE54.321 9er654321

$$
987654321 \text { 987654321 }
$$

$$
96765432198764321
$$

$$
987654321 \text { 987654321 }
$$

$$
98764921 \text { g8564321 }
$$

$$
967654321 \quad 987654321
$$

$$
987654321 \quad 98765421
$$

987654321 987654321
9876543298764321
98765321 9876.54321
98764321 98764321
98765421 987654321
98765431 987654321

9876542198764321
987654321 987654321
98764321 98764221
98764321 98554321
98765321 987654321
0. 4321

9876532198764321
98765431 987654321

RUNNING THE FROGRAM
Clear and enter mag card banks 1 and 2.
Note that the program runs in FIX 2, so you must key INV FIX before reading or writing data cards.

Press E' to clear all previously stored data. The l.0l in display indicates that the "pointer" is located at the first character of the first line (L.nn).

To store print codes, enter up to five 2-digit codes and press A. The program will store the codes appropriately. The pointer is then automatically set to indicate the next available location. When a line is completed it is automatically printed (unless you turn off the printer).

To end and print a line before 20 characters have been entered, press A'. To relocate the pointer, specify the line and character position desired (L.nn), and press E.

To print only the line you want, relocate to the last character in that line (eg, 4.20), and press E followed by A'

To print all the lines you want, from any given point on, specify the beginning line and character position (eg, l.01), and press E followed by B.

To correct line errors, relocate to the line and character to be changed, press E, and proceed to enter as if for the first time.

Note that a blank space can be designated as 00 or 80 , and the latter is always preferred if there is any question about whether the space will be "filled" in a given line.

Unlike the original program, pressing B does not advance the paper.

150	43	FCL	200	65	\%	250	85	+
151	01	11	201	82	HIF	251	42	ST1
152	55	\div	2 Q	13	18	2 S	ロ2	02
15	82	HIF	$2 \square$	85	+	2 S	19	4
154	16	16	204	32	XT	254	95	$=$
155	95	$=$	205	5	う	255	61	GTD
156	74	Sin	206	72	ET\%	256	02	02
157	00	00	207	00	10	257	67	67
158	82	HIR	208	69	DF	258	76	LEL
159	17	17	209	30	30	259	12	8
160	75	-	210	43	FCL	2¢0	68	HOF
161	59	IHT	211	01	01	261	03	3
162	74	Stra	212	55	\div	262	42	STD
163	01	01	213	02	2	263	02	12
164	54	\%	214	22	\%	264	43	FCL
163	29	CF	215	82	HIF	265	00	0 O
16E	$6 ?$	El	216	16	16	26	22	Xit
167	02	02	217	95	$=$	26	22	THY
158	10	11	218	77	GE	268	58	FIS
169	69	LF'	219	02	02	299	25	ELP
170	20	20	220	27	27	270	42	STD
171	6.5	x	221	65	8	271	13	03
172	01	1	22	89	IF.	272	18	C^{3}
173	5	EE	, 223	20	20	273	18	$\mathrm{C}^{\text {a }}$
174	01	1	224	01	1	274	18	C^{3}
175	010	0	2 E	00	0	37	18	E
176	82	HIE	226	17	$\mathrm{E}^{\text {a }}$	276	69	$\square \mathrm{F}^{\circ}$
177	08	108	27	42	STD	277	05	05
178	22	IH?	2 E	01	01	278	43	RCL
179	6	FD\%	2e9	25	CLE	279	02	02
180	00	00	230	43	ECL	280	22	IHV
181	54)	231	02	02	2 EL	77	GE
182	22	X:T	23	59	IHT	282	ก2	02
188	82	HIE	238	32	Xt	28	63	5
184	16	16	234	43	FCL	2 B 4	61	ETD
185	$5{ }_{5}$	\div	26	00	00	285	91	P/3
186	43	FCL	236	55	\div	286	75	LEL
1 Br	01	01	237	04	4	287	16	F^{3}
18 B	54	y	2 S	95	$=$	2 S	43	FCL
189	82	HIP	299	59	IHT	289	02	02
190	68	68	240	87	IFF	290	59	IHT
191	64	FD\%	241	01	01	291	82	HIF
192	00	00	242	00	01.	292	14	04
193	73	FC:	243	06	106	293	65	\%
194	010	010	244	67	EG	294	114	4
195	75	-	245	91	F, ${ }^{\text {c }}$	295	75	-
196	59	IHT	246	43	FCL	296	11	1
197	44	SUM	247	00	00	29	8	HTR
198	05	08	248	75	-	298	34	8
198	95	$=$	249	05	5	293	95	$=$

300	42	STI	850	00	\square	400	Qe	02
201	02	02	351	01	1	401	71	SER
302	43	PTL	352	52	EE	402	01	00
303	00	010	353	82	HIE	403	95	95
304	32	$\cdots+T$	354	41	41	404	02	2
305	71	SER	355	95	＝	405	17	E°
306	प2	02	35	65	\％	406	22	IHV
307	6	67	357	43	FCL	4107	59	IHT
308	82	HIE	358	01	01	408	65	x
309	14	14	359	95	$=$	409	43	ECL
310	61	GT0	360	74	Smx	410	01	01
311	15	E	361	00	010	411	95	$=$
312	76	LEL	362	73	FC：	412	74	S17：
313	13	C．	36	00	00	413	010	01
314	86	STF	364	22	IH4	414	69	－1F
315	01	01	365	59	INT	415	$2 \square$	20
316	85	$+$	366	22	TH日	416	72	FP\％
317	28	LDG	367	74	51：	417	00	010
318	32	品枵	368	01	00	418	29	CF
319	43	REL	369	29	CF	419	67	ED
320	प2	02	370	67	Er	420	04	04
321	82	HIR	371	03	18	421	46	46
322	104	04	372	0 O	08	422	5	\div
323	03	3	－ 373	65	\％	423	01	1
324	77	GE	374	01	1	424	52	EE
325	03	03	375	प2	2	425	11	1
326	45	46	375	17	$\mathrm{E}^{\text { }}$	426	10	1
327	00	\square	377	85	$+$	427	72	ST：
328	95	$=$	378	69	－1	428	00	00
329	11	H	379	20	20	429	52	EE
330	29	CF	380	73	FC：	430	08	8
331	43	PCL	381	00	10	431	75	－
332	0.3	0.3	382	95	$=$	432	22	IHE
333	97	EH	389	58	\div	43	5	IHT
334	03	03	384	02	2	434	64	FH
335	08	08	385	17	5^{-1}	435	П0	00
335	55	\div	386	72	ST：	496	59	DF
337	82	HIR	387	00	101	437	30	30
338	15	16	389	61	CTD	438	95	$=$
339	95	$=$	389	प3	113	439	74	51\％
340	71	SER	390	64	6.4	440	010	00
341	01	01	391	76	LEL	441	69	－P
342	37	37	392	14	II	442	20	20
343	61	GTD	393	86	STF	443	61	ETD
344	03	03	394	01	01	444	114	04
34.5	30	30	395	42	$5 T 0$	44^{4}	14	14
345	71	SER	396	03	98	445	43	FTL
347	ดั	00	397	43	RTL	447	पz	02
349	95	95	398	00	0	448	42	
349	93	$=$	397	42	STD	449	01	01

450	97	HST		
451	13	13		
45%	174	174		
458	01	01		
454	$\because 1$	GTD		The following page is a
45.	9	F		copy of the print code chart
45	7	LEL		published by LRN.
45	19	$\mathrm{I}^{\text {a }}$		
4.9	15	5		
459	06	E		
46	52	$E E$		
461	11	1		
4 E	02	2		
46	55	\div		
$4{ }^{\text {E }}$	09	9		
45	09	9		
46	35	$=$		
467	5	IHT		
458	8	HIF		
469	TS	15		
470	82	HIF		
471	16	16	-	
472	82	HIP		
473	17	D7	-	
474	8	HTP	,	
475	15	18		
478	8	DP		
477	15	15		
473	91	MTD		
479	91	F		
T11	17	E^{3}		
10\%	18	-		
119	10	\underline{E}^{\equiv}		
023	15	E		
158	91	F		
113	11	F		
259	12	E		
287	15	H^{9}		-
313	13	C		
397	14	II		
457	19	I^{1}		

00	0	1	2	3	4	5	6
00	01	02	03	04	05	06	07
7	8	9	A	B	C	D	E
10	11	12	13	14	15	16	17
-	F	G	H	I	J	K	L
20	21	22	23	24	25	26	27
M	N	O	P	Q	R	S	T
30	31	32	33	34	35	36	37
\cdot	U	V	W	X	Y	Z	+
40	41	42	43	44	45	46	47
X	$*$	V	π	e	C	J	l
50	51	52	53	54	55	56	57
\uparrow	$\%$	$:$	\prime	$=$	-	X	$\overline{\mathrm{x}}$
60	61	62	63	64	65	66	67
2	$?$	\div	$!$	I	Δ	π	L
70	71	72	73	74	75	76	77

The cost of data acquisition can sometimes limit a planner's ability to solve a given quantitative problem. Budget restrictions may make it impossible to spend money on data acquisition, even though such expenditures would be cost effective.

The practicing planner may have to find alternative solutions that use less expensive or more readily available data. In some cases the process may reveal an approach that is more cost effective than the one originally cunsidered. In other cases the process may be simply lead to a dead end.

The first question to ask about data is whether someone. else has already collected it in a way that can be directly or indirectly useful. Talk to someone with experience in. the field and search the literature in that field. Most professionals are willing to share information with people who ask thoughtful questions. It usually helps to explain what you want to do with the information.

Data sources, whether published or otherwise, may not agree. Estimates of population and resources are notably various. Sometimes differing sources are each correct in their own terms: read the fine print. Sometimes sources are in agreement because both have been copied from a common incorrect source. Planners have to search critically and learn to read between the lines.

Every profession has its peculiar sources that are
difficult to find between the time of publication and ultimate entry into a formal indexing system. In New England energy planning the mother lode is the FINAL REPORT of the New England Energy Congress. This large, 454-page paperback costs $\$ 24$ from the National Technical Information Service, but most of the planners who own a copy got it free when it was free, simply by requesting it. The book's many tables have some frustrating typographical errors, but an ownerannotated copy is a priceless reference. ${ }^{l}$

An almanac is often the least expensive single source for information. The PROVIDENCE JOURNAL publishes one for Rhode Island. Someone ought to edit a paperback almanac for planners, with the basics that one now searches for in various planning standards references, human factors design books, census publications, etc. For unit conversions the best tables I have seen are in THE NEW MATHEMATICS DICTIONARY, a paperback now out of print. ${ }^{2}$ The tables are reproduced on the second following page.

When relevant data can be retrieved, we are faced with the storage limitations of the programmable calculator. The data storage capacity can be effectively doubled by "splitting" the storage register at the decimal point.

Suppose we want to store 53467 and 519 in the same register. Load it as 5367.519 into, say, register 01. The 519 can be recalled as the decimal value (INV INT) of register 01 and immediately multiplied by 1000 in the body of the
program. Suppose the numbers to be stored are 53.46 and 51.97. They can be stored as 5346.5197 and retrieved as an integer value (INT) divided by 100 and a decimal value (INV INT) multiplied by 100. Data packing methods were not included in PERSONAL PROGRAMMING, although simple splitting is widely used, often just for the sake of making data entry more effirient. Programs exist for more complex forms of splitting and cacking. Another widely-used approach to data management is curve fitting. In many instances several hundred data points conform to a pattern that we can describe with a curve equation (eg, a fifth degree polynomial). If we find several equation variables with one program, we can then supply the main applications program with several variables instead of several hundred data points. There are programs for fitting data to $5-8$ kinds of curves. The user simply instructs the calculator to list the solution that fits best.

NOTES

$1_{\text {New England Energy Congress, FINAL REPORT (Boston: NEEC, }}$ 1979) 。

2Robert Marks, THE NEW MATHEMATICS DICTIONARY (New York: Bantam Books, 1964).

Units of Volume

Units.	Cubic inches	Cubic seet	Cubic yards	Cubic centimeters	Cubic decimeters	Cubic meters
1 cubic inch $=$	1	0.000578704	0.0000214 .33	16.387064	0016387	0.000016387
1 cubic foot $=$	1728	1	0.03703704	28316.846592	28:316847	$0.0283168+7$
1 cubic yard $=$	46656	27	1	764554.857984	$764.5 .5+8.58$	$0.76+55.4858$
1 cubic cm. $=$	0.06102374	0.000035315	0.000001308	1	0.001	0.000001
1 cubic dm. $=$	61.02374	0.03531467	0.001307351	1000	1	0.001
1 cubic meter $=$	61023.74	35.31467	1.307951	1000000	1000	1

Units of Capacity (Liquid Measure)

Units		Minims	Fluid drams	Fluid ounces	Gills	Liquid pints
1 minim	$=$	1	0.0166667	0.00208333	0.000520833	$0.000130 \div 208$
1 fuid dram	$=$	60	1	0.125	0.03125	0.0078125
1 fluid ounce	$=$	480	8	1	0.25	0.0625
1 gill	$=$	1920	32	4	1	0.25
1 liquid pint	$=$	7680	128	16	4	1
l liquid quart	=	15360	256	32	8	2
1 gailon	$\underline{=}$	61440	1024	128	32	8
1 milliliter	=	16.231	0.2705198	0.03391497	0.00845 .342	0.002113436
1 liter	$=$	16231.19	270.5198	33.31497	3.453 742	$\underline{2.1134} 4.36$
1 cubic inch 1 cubic foot	=	${ }_{459603.1}^{60.974}$	${ }_{7680.052}{ }^{4.43290}$.	${ }^{0.557 .5065} 506$	$\begin{gathered} 0.1385281 \\ 239.3766 \end{gathered}$	$\begin{array}{r} 0.03+6.320 .3 \\ 0.9+16 \end{array}$

Units of Capacity (Liquid Measure) Continued. Bold face type indicates exact values

Units		Liquid quarts	Gallons	Milliliters	Litcrs	Cubic inches	Culic feet
1 minim	$=$	0.000065104	0.000016276	0.061610	0.000681610	0.0038760	0.000000×176
1 Huid dram	$=$	0.00390625	0.00097656	3.606588	0.003 690 588	$0 . \because 2.5586$	0.00101130547
1 月luid ounce	$=$	0.03125	0.0078125	29.57: 70	0.02957 ± 7	1.304 6887	$0.0010+4379$
1 gill	$=$	0.125	0.03125	118.2908	0.11829008	7.21875	$0.00+177517$
1 liquid pint	$=$	0.5	0.125	+73.163:	0.47316:3:	28.875	0.01671007
1 liquid quart	$=$	1	0.25	946.339 4	U.9+1; 326 t	57.75	$0.03384 \geq 01+$
1 gallon	$=$	4	1	378:3.306	3.78 .5306	231	$0.133: 38018$
1 mililiter	$=$	0.001056718	$0.000 \div 64179$	1	0.001	0061055	0.0001035316
1 liter	$=$	1.006718	$0.26+1794$	1000	1	6102545	0.0.35 31.566
	$=$	0.01731602	0.0043280004	16.35661	0.01638661	18	0.060 578 704
S 1 cubic tont	$=$	-9.980 08	7.480519	$\underline{29316.05}$	$\because 8: 3105$	1728	1

Units of Canacity (Dry Measure)

Units	Dry pints	Dry quarts	Fecky	Bushely	Liters	Dekaliters	Cubic inctues
1 dry pint $=$	1	0.5	0.0625	0.015 ¢25	10.6\% . 519	11.15.7 1196	33.6003125
1 dry quarr $=$	2	1	0.125	0.03125	1.101 1! 10	11110119	67.200625
1 peck $\quad=$	16	8	1	0.25	8.80950 .3	0.880 96-2	537.605
1 bushel =	64	32	4	1	35.238 U8	3.52:3 301	2150.42
1 liter	1.816917	0.908108	0.113514	0.0:3 378	1	0.1	$610 \cdot 5$
1 dekaliter $=$	18.16217	9.081084	1.135136	0. 28.3 74.4	10	1	$610.20+5$
1 cubic inch $=$	0.029762	0.014881	0.001860	0.0061 465	0.018 688	0.0016339	1

Units of Mass not Greater than Pounds and Kilograms

Units	Grains	Apothecaries＇ scruples	Ponnyweights	Avoirdupois drams	Apothecarics： drams	A voirdupois ounces
1 grain	1	0.05	0.04166667	0.036 .57143	0.01665667	0.00298571
1 scruple $\quad=$	20	1	0.8333333	$0.731+286$	0.3333333	$0.045 \%-1+3$ ？
1 nennyweight $=$	24	1.2	1	0.8777143	0.4	0.0 .5485714
1 dramavdp．$=$	27.34375	1.3671875	1.135323	1	0.455720%	0.062 ，
1 dram ap．$\quad=$	60	3	2.5	2.104236	1	0.1371429
1 oz．ivdp．$=$	437.5	21.875	18.20017	16	7.291667	1
1 oz ．ap．or t．$=$	480	24	20	$17.55+29$		1.097143
l lb．ap．or t．$=$	5760	288	240	210.6514	96	13.16571
1 lb ．avdp．$=$	7000	350	291.6667	256	116.6667	16
1 milligram	0.015432	0.000771618	0.000643015	0.000564383	0.000357206	0.0000355274
1 gram	15.43236	0.7716179	0.6430140	0.5643834	0.2572060	0.035 .97396
1 kilogram	15432.38	771.6179	643．014 9	564．383 \＄	$257.806{ }^{\prime}$	35.27396
Units	Apothecaries＇ or troy ounces	Apothecaries＇ or troy pounds	Avoirdupois pounds	Milligrams	Grams	Kilograms
1 grain	0.00208333	0.000173 .611	0.000142857	64.79891	0.06479891	0.000064799
1 scruple	0.04166667	0.003 472923	$0.0028571+3$	1295.9782	1.2959782	$0.001 \div 95978$
1 pennyweight	0.05	0.004166667	$0.003+28571$	1555.17384	1.55517384	0.001555174
1 dram avdp．	0.05696615	$0.00+7+7179$	0.00390625	1771.845195	1.771845195	0.001771845
1 dram ap．	0.125	0.01041667	0.008571429	3887.9346	3.8879346	0.003887933
$!$ oz．avdp．	0.9114583	0.07595488	0.0625	28349.523125	28.349523125	0.02834952
loz．ap．or t．$=$	1	0.083333333	0.06857143	31103.4768	31.1034768	0.03110347
1 lb ．ap．ort．$=$	12		0.8928571	$3732+1.7216$	373.2417216	$0.373:+1722$
1 lb ．avdp．	14.58333	1.215273	1	＋53 5 2.37	453.59237	0.45359237
1 milligram	$0.00003: 151$	0.000002879	0.000002005		0.001	0.000001
1 gram	0.03215075	0．002 679229	0.002904623	1000	1	0.001
1 kilogram $=$	32.15075	2.679229	2.204623	1000000	1000	1

Units of Mass not Less than Avoirdupois Ounces

Units		Avoir－ dupois ounces	Avoir－ dupois pounds	Short hundred－ weights	Short tons	Lung tons	Kilograms	Betric tons
1 se avdp．	$=$	1	0.0625	0.0006 .25	0.0000 .3125	（140いご 90゙3	$0.028: 349533$	0.1000028350
116 avip	$=$	16	1	0.191	0.00105	11， $110+4 i+3!$	0.45 .350237	
1 ．hust cort．	\cdots	1600	100	：	0.05	$0.0+4$（it： 80	＋5．359 237	0.045359237
1 shurt ton	$=$	32 （0）0	2000	20	1	0．$\times 193857$	907.18474	$0.90718+74$
1 longe ton	＝	35840	2240	22.4	1.12	1	1016．046 908 8	$1.01610+6909$
1 kidogram	$=$	35． 273 \％ 36	$\because: 30+6: 3$	0，リ：	（1）111 10：311	$00000094 \div 07$	1	0.001
1 inctracton	$=$		$\because 01415$	－$\because 0468$	110：： 11		1000	1

The program documented on the following pages provides an example of a modification strategy. The unit conversion program in the Master Library module converts units of length from English to SI measure and vice-versa. The 1 program uses conversion factors for multiplications and divisions as required.

The conversion factors in the existing program use from four to nine program steps. In the modification the factors were replaced by recall instructions and inert "no operation" fillers for the leftover step spaces. The data storage registers recalled are 91 for A, 92 for B, 93 for C, 94 for D, and 95 for E.

Data stores 90-99 are in bank l. By changing the partition to 159/99, the program steps and stored factors can reside in the same bank. If you want to change factors, simply store the new factors in the $91-95$ registers and rewrite the magnetic card (or use a new card). Sometimes factors have to be changed periodically, as with fuel costs, for example.

Conversions seem trivial enough, but remember that planners do alot of converting. We convert assessed values to tax revenue, map measurements to actual distances, population numbers to standard service requirements, and so on. Even fiscal impact analysis consists mainly of conversions.

In my work I read energy and environmental research
that use SI units of measurement. Practicing architects and land use planners in this country generally use English units of measurement, even in such recent technologies-ofinterest as solar design and siting. The program documented on the following pages helped me translate between research and practice.

There are times when the user needs more conversion capacity. What if we borrowed the algorithm used in the Master Library program and kept rolling new numbers into storage registers 9l-95? We would, of course, need to keep track of what sets of numbers we rolled in, but the technique would permit us to keep 85 conversions in one program.

Each row stores five ccnversions. When we want to change a row number, we reset the program (RST), choose the new row number (eg, 9), hit R / S, and we are ready to use a "new" unit conversion program. Any number from 0-17 constitutes a legitimate row call number, but keep a chart of what you have in each row (and cell).

We can modify the program by inserting SUM $00 \mathrm{R} / \mathrm{S}$ before what is now step 049, and SUM Ol R/S before what is now step l25. If we hit R / S after a conversion has been completed, the converted output sums into a register that we can then retrieve or zero out at will. Note that this adds more to the fiscal impact analysis capabiljty, among other things.

The worked example demonstrates a recorded conversion
from a 14.2 centimeter measurement on a l:24000 map to an actual distance in feet. Two more centimeter measurements are then converted. The third conversion is further converted from feet to miles, and then from miles to kilometers. If this had to be done very often, you would provide a direct conversion or group sequential conversions on the same row. Grouping by utility is important, even though the same conversion may be available on more than one row.

ROW 2
A (10)
B (11)
C (12)
D (13)
E(14)
Feet-Miles
.0001893939
Centimete
787.401575
at 1:25000
$1^{\prime \prime}=100^{\prime}$ to
1:25000 to 1:24000
820.2099725
20.83333333
. 96

ROW 12
A (60)
Centimeters-
B (61)
Meters-Feet
C (62)
D (63)
E (64) Inches . 3937
3.28084
Meters-Yards
Nautical miles-
Kilometers- Miles Miles 1.151158237 . 62137

ROW 15
A (75)
B (76)
C (77)
Hectares-Acres
Square milesAcres 640
D (78)
Kilometers ${ }^{2}$ Miles ${ }^{2}$. 386019
E (79)
Acres-Square feet 43560 2.4710538 Not used 1.

150	71	$56 F$
15	00	01
150	84	84
156	00	0
154	010	0
15	00	0
156	01	0
15	00	0
158	00	0
15	00	0

113	1
050	12
0.7	13
064	14
071	15
081	16
126	17
135	18
140	19
147	10

\square.	D1	0.	59
0.	01	0.	51
0.	02	0.	5
0.	03	0	5.8
0.	0.4	1.	54
3. 149606.	05	0.	55
7.8740158	015	0.	5
15.740032	07	I.	57
2.5	08	0.	53
5	09	0.	59
. 0001893939	10	0. 3937	60
787. 401575	11	3.28084	$E 1$
820. 2099725	$1:$	1.093613	8 E
20. 83383333	13	1.151158237	63
0, 96	14	0.62137	64
$1=201$	15	0.1550003	63
D. 2641794	13	10.76391	6
2.35283	17	.1.19599	67
1. 609	13	. 0002471054	58
3. 28084	13	$1=$	69
8, 345172596	20	0.06102374	71
2150.42	21	35. 31467	71
7.480519	22	1.807951	72
448,83114	2	7.480519	73
325851.4076	24	8, 345172596	74
. 925925959	23	4360.	7
- 9090909091	2%	2.4710538	7%
- 8928571429	27	640.	77
. 869565174	28	0. 386019	73
. 833333333	29	1.	79
D.	30	D. 0352396	81
Data bank for	31	0.1625	81
Data bank for $0_{\text {, }}$	22	2.20463	8
the conversion $0^{\text {a }}$	33	D. 001102311	83
program. The	34	62.426	84
registers would	33	3.96831	85
normally be full. $\mathrm{O}_{\text {a }}$	36	3412	86
I.	37	0. 947813	87
0.	36	0. 08805471	88
\square.	39	316.98518	89
0.	40	12.	90
0	41	4.	91
0.	42	64.	92
0.	43	99.	93
0.	44	$5151515151=$	94
0.	45	1300.1365	95
0.	48	1400. 1465	95
0.	47	1500. 1565	97
0.	43	1600. 1658	93
0.	49	1700. 1765	97

The administration of related grants requires creative budgeting. Suppose the agency budget is adequate, but program X has more than enough money and program Y has too little. The accounting for overhead and shared costs can be modified according to the relationships between the two programs. This means that we may have to run several trial budgets to allocate money effectively.

The following ten-row-by-nine-column program has many practical applications, but I have appreciated it most in the program budgeting process. It assigns entries to storage registers (equivalent to grid cells) for later column and row summations. The ability to keep printing out complete revisions makes it useful.

Surprisingly, no one had written such a program, probably because there are more efficient ways to sum rows and columns without assigning cells for inputs. I bought the PPX program nearest to what I needed. It could not relist modified columns, because operations were performed upon entry and only the results were assigned to (summation) cells. PPX 908109 handles any combination of rows and columns that total 79 (eg, $40 \times 39,50 \times 29$, etc.), far more rows and columns than I needed.

The 10×9 program can function in tandem for 20×9 or 10×18 problems. With two layer processing it might be used to assemble the totals of $12-90$ of the 10×9 macro cells. In the
worked example the seven columns are, from 1-7: personnel, fringe, travel, supplies, printing, contracts and other. Rows 1-6 are programs (make up your own names). The programs could have been labelled using the print processor method, so that columns can be pasted up, as on a typical budget sheet.

Partition the memory to 159.99 (10 OP 17). Fix the number of decimal places to be printed (usually FIX 0 or FIX 2). Clear and load mag card bank 1.

ENTER	KEY	DISPLAYS	PRINTS COMMENTS
Number of columns: 7	A	7.	
Number of rows: 6	A'	6.	
Column number: 1	B	10.	
Value for cell $10: 30140$	R / S	11.	
Value for cell $11: 16412$	R / S	12.	

Enter remaining column values (up to 10 per column). In this case we would initialize column 2 after entering the seventh value in column 1. Continue until the chosen number of columns are completed.

Column number: 1 D 118762 Prints all entered values in that column, along with sum.

Row number: 0 0 ' 75998 Prints sum of entered values in that row.

No entry E 402208 Total of completed row sums (only those sums processed by the D^{\prime} routine)

No entry $\quad E^{\prime} \quad 0$ Prints and totals all columns; sums all rows and prints sums; prints total of row sums.

The user would normally enter values by column, go directly to E^{\prime}, enter modified values directly into cells (eg, 28450 STO 10), and use E' for another printout.

DATA REGISTERS

00 Sum of a row or column being processed
01 Stores column number being processed
02 Stores seed number for decrementing
03
04 Number of columns in use
05 Number of rows in use
06 Stores contents of register 04 for decrementing
07
08 Stores seed number for incrementing
09 Total of completed row sums
10 First of the series of usable storage cells for entries 99 Last of the series of usable storage cells for entries

Note that we can develop a 7×12 cell grid (for monthly accounts) by shifting the work of register 08 to 03, that of 09 to 99, and using registers 07-91 as the series of usable storage cells. Three control numbers in the program would have to be changed from 10 to 7 .

¢,																				
D,																				
н																				
wi m																				
м																				

001	12	E	0.	00	980.	50
020	14	II	8.5	01	690.	51
058	19	$\mathrm{I}^{\text {²}}$	0.	02	1450.	52
D87	11	H	D.	03	2100.	53
692	15	E	7.	04	2540	54
102	16	$\mathrm{H}^{\text {a }}$	6.	15	8000.	55
115	10	E^{*}	0	106	0.	56
11.	1.		0.	67	0.	57
			6.	08	0.	58
			10.	09	0.	59
			30140.	10	1410	60
			16412	11	1520.	61
			9080.	12	2560.	62
			10410.	13	2001.	63
			14520.	14	1450.	6.4
			3scon.	15	8600.	65
].	18	0	66
			0.	17	0.	67
			0.	18	0.	68
			0	19	0.	69
			7 T 7.	2	$24112=$	70
			4267	21	10870.	71
			2300.	22	18470	72
			2704.	23	12040.	73
			3775	24	16.00.	74
			998.	25	20450	75
			0.	26	0.	76
			0.	27	0.	77
			0.	2 B	0.	78
			D.	29	0.	79
			9410	30	0.	80
			5820,	31	0.	81
			456	32	0.	82
			8320.	38	0	83
			2540.	34	$\mathrm{O}=$	84
			5240.	35	D.	85
			0.	36	0.	86
			0.	37	0.	87
			-1.	38	1.	88
			0.	39	0.	8
			2110.	40	0.	90
			1870.	41	0.	91
			2580.	42	0.	92
			3650.	43	0.	93
			2980.	44	0.	94
			1450	45	0.	95
			0.	46	0	96
			0.	47	0	97
			0.	48	0.	98
			O.	49	0	99

Population projection methods ranked first with both practicing planners and planning schools in the Isserman survey. The location, number and age distribution of a community's population are dat? of critical importance to land use planning. Census publications make decennial population data inexpensive to the planner, but useful development of that data can be time-consuming and expensive.

In Rhode Island the Statewide Planning program provides projections of state population by sex, age and race, along with aggregated totals for cities and towns. Local government planners generally do not have access to cohort survival projections for their own census tracts.

Cohort survival population projection is relatively simple to understand when the operations are diagrammed. The calculations are tediously repetitive: multiplication after multiplication followed by additions. The calculations might even be worth suffering through if all the answers to our questions could be answered with one round of processing.

What do we really need to know? The planner might be interested in determining the different migration patterns of each cohort in a census tract. This can be an important indicator of relative stability in neighborhoods.

Assume that the town of Jefferson had a 1970 population of 18475 , and a 1980 population of 19921. Given cohort survival rates and fertility rates, what kind of average net
migration brings 18475 to 19921 in a decade? Once we know that, specific cohorts can be identified as having greater or lesser net migration rates. Within overall population growth there may be signs of serious problems.

This kind of analysis requires iterative runs with increasing or decreasing migration rates that eventually come close to generating the 19921 figure. For the town of Jefferson this may require thousands of arithmetic operations. With a TI-59 program the runs require $2-3$ minutes of unattended operation once the data has been loaded and stored on a magnetic card. The printouts can be formatted and labelled for publication.

Our example begins with 1970 population data. Using statewide fertility and survival rates, we can project two sequential five-year periods, to 1980, using a migration factor of 1.0 (not enough to bring us to 19921). Maybe the women of Jefferson had higher fertility rates than we expected. That would show up in descrepancies in the 00-04 cohort in 1975 and 1980, as well as the 05-09 cohort in 1980. Maybe most cohorts had better survival rates than we expected. That can be isolated through death records. The point remains that we have control over the sometimes opaque set of relationships over time. This is not straight matrix multiplication. If it had been, the program would have been about 300 steps shorter.

This problem is a good example of the possibilities for merging graphic and numerical approaches to problems. I found
cohort survival projection difficult because the text I read explained it poorly. Krueckeberg and Silvers' URBAN PLANNING ANALYSIS explains it backwards, with 15 year projections. ${ }^{1}$ How much more distant can a theoretical explanation stray from real world applications? David Winsor, a graduate student with remarkable graphic understanding, passed out copies of his diagram to anyone who needed one. That diagram has been redrawn, with several modifications, as the entry point to the calculator program.

NOTES

${ }^{1}$ Donald Kruekeberg and Arthur Silvers, URBAN PLANNING ANALYSIS: METHODS AND MODELS, (New York: John Wiley and Sons, 1974), pp. 276-81, and particularly p. 278.

Note that the numbers used are the same as those on the formatted printout on the following page (1975, 1980).

	1975
	117,
D0-194	795
-5-49	692
10-4	780.
18-4	885.
2]-24	7%
25-23	728.
80-84	cse
85-3	558
$4 \mathrm{4}-4$	448.
$4 \mathrm{~B}-2$	403.
$50-54$	50.
53-59	513
60-64	538
$6 \mathrm{E}-6$	483
$7 \mathrm{~T}-\frac{7}{4}$	33.
7-	489.
	9598

78

1980.

Ye
$117=$
OT

$08-94$
ก- -
5-19
2-34
20-5
$30-34$
35-9
40--4
$45-5$
50-54
5 s
20-64
85-6
79-74
7-

875
780
691.

779
E8.
769
721.

GT=
552
443
394.

493
494.

456
487.

535
10021.

	00-04
	05-07
	10-14
	15-19
	20-24
	25-29
	31-34
	30-3
	40-4
	$45-4$
	50-54
	58-59
	61-64
	$65-69$
	70-74
	F-

18475

00-4	911.
日8-9\%	807:
10-1	715
: $5-1$	$791=$
20-2\%	871.
25-23	809
20-84	664.
35-3	548
$4 \mathrm{H}-\mathrm{4}$	549
$45-3$	389=
5-5u	357:
50-5\%	431.
60-8	443
8 E 5	31.
7-7-4	297
P-	341.
	9304

17325

$$
\begin{aligned}
& 010-14 \\
& 05-19 \\
& \text { 10-14 } \\
& 15-\frac{1}{2} 9 \\
& \text { 21-2 } \\
& 25-2 \\
& 3-24 \\
& 2=-4 \\
& 45-54 \\
& 45-4 \\
& 51-54 \\
& \text { F5-5: } \\
& 810-4 \\
& 5 S_{3}-5 \\
& \text { 71-7 } \\
& 7 \text { 윽 }
\end{aligned}
$$

10-04	$00-04$
05-09	05-09
10-14	10-14
15-19	15-19
20-24	20-2
25-29	25-29
30-34	30-34
35-39	$35-3$
40-8.4	40-4
$45-48$	$45-29$
50-54	50,-54
58-59	$55-58$
60-64	60-E4
65-69	$63-69$
70-74	70-74
75-	75-

RUNNING THE PROGRAM
Clear and load mag card banks 1,2 and 4.
$\left.\begin{array}{lllll}\text { ENTER } & \text { KEY } & \text { DISPLAYS } & \text { PRINTS } & \text { COMMENTS } \\ \begin{array}{llll}\text { Year of input } \\ \text { data: } 1970\end{array} & \text { A } & 1970 . & 1970 . & \text { YR }\end{array}\right]$

Continue entering all female cohorts. After last entry (75+) the total female population will be printed.

Male 00-04
population and
survival rate in
the form P.S:
828.975 B 5. 828.975

Continue entering all male cohorts. After last entry (75+) the total male population will be printed.

Female 15-19
fertility rate:
.226 C . 226 . 226 FR

Continue entering required female fertility rates.
Net migration
rate: 1.0 D 1.0 1.0 MR
Number of 5 year periods for
projection: 2 Erints year, census tract, cohort projections and totals for females, then males. Prints total population.

Note that before running the program at E, the user will generally want to save the data by writing banks 3 and 4 to a new card. This permits use of verious migration rates without the need to repeatedly key in data.

00 Temporary storage of intermediate results
01 Pointer numbers for indirect recalls
02 Pointer numbers for indirect recalls
03 Counter for number of cohorts (decremented)
04 Total 00-04 generated
05 Female 00-04
06 Male 00-04
07 Alphanumeric code for YR
08 Alphanumeric code for CT
09 Counter for number of five year projections
10 Initial year (incremented by 5 after each run)
ll Census tract number
12 Migration rate
13 Merged population and survival rate for female 00-04 cohort. Subsequent cohorts follow in sequence through storage register 28
29 Total females
43 Merged population and survival rate for male 00-04 cohort. Subsequent rohorts follow in sequence through storage register 58
59 Total males

213
15
ar
$\sqrt{96}$ आ
.
E
FH
F E
LEL
ET
9

-

 -

The federal Office of Management and Budget defines life-cycle costing (LCC) as the "sum total of all the direct, indirect, recurring, non-recurring, and other related costs . . . in the design, development, production, operation, maintenance and support of a major system over its anticipated useful life."1 Everything counts. Most of the costs in the lifetime of a system occur after the initial investment, so that choosing the system with the lowest first cost can be expensive. In LCC costs occurring after the initial investment are appropriately discounted to present value. Some discount rates are more appropriate than others.

Because planners typically assume some responsibility for capital budgeting, LCC falls within our domain. The federal government has developed standard methods for LCC, largely in response to the increased factor costs for energy. In most cases, lifetime savings on energy or maintenance will generally provide the justification for choosing a system with a higher first cost.

Suppose that the town of Jefferson needs a new public works verhicle, and we want to compare the lifetime costs of vehicle A (conventionally called the Defender) and vehicle B (the Challenger). The Defender costs less initially, but the Challenger uses less fuel. If we compare life cycle costs at a discount rate of 14%, the Challenger is the
preferred investment.
Several questions emerge from the discussion. Should we assume everything has an inflation rate, or should we normalize costs and consider only relative inflation rates (higher or lower than the base rate)? If we normalize prices, the actual discount rate equals the stated discount rate plus the general inflation rate, even though that is not explicitly noted. The federal government specifies normalized prices. The FEDERAL REGISTER for November 18 , 1981 contains the DOE method. Local government planners would do well to ignore it and use inflated costs explicitly, if only to make the argument understandable.

If inflation is handled explicitly, how do we know what the salvage value will be in 20 years? You have to inflate presently known values and then discount them. The salvage rates entered in the example were previously inflated. For overhauls and other kinds of non-recurring costs, use the same inflate-then-discount approach.

The results of successive program runs are net present costs. This is a quick and relatively clean system. It assumes that the Defender and Challenger both do the same required job, and that doing more of the job provides no additional benefit streams.

NOTES
$l_{\text {R. Winslow et }}$ al, LIFE-CYCLE COSTING FOR PROCUREMENT OF SMALL BUSES, (Washington, D.C.: DOT, 1980), p. l. The method uses explicit inflation rates.

RUNNING THE PROGRAM

Clear and load mag card bank 1.

ENTER	KEY	DISPLAYS	PRINTS	COMMENTS
$\begin{aligned} & \text { Initial cost: } \\ & 20800 \end{aligned}$	A	20800.	20800 .	
Expected salvage value: 2400	R/S	2400.	2400.	
Economic life in years: 20	R/S	1.	20.	
Fuel cost per year: 2600	B	2600.	2600.	
Expected rate of escalation for fuel costs: 1.08	R/S	1.08	1.08	
Other costs per year: 1900	C	1900	1900.	
Expected rate of escalation for other costs: 1.06	R/S	1.06	1.06	-
Discount rate: 1.14	D	1.14	1.14	
No entry	E	Prints 20 by salvag	s of cash ue.	flow, followed
Year of nonrecurring cost: 10	A^{\prime}	10.	10.	
Amount of nonrecurring cost: 4600	R/S	1240.82	1240.82	Discounted.
No entry	E^{\prime}	0.	56372.20	Total present value of costs

The user would normally run the program first for the Defender and then for the Challenger.

```
0 5 ~ Y e a r s ~ o f ~ e c o n o m i c ~ l i f e
0 6 \text { Contents of register 05 stored here and decremented}
17 Year of non-recurring cost
18 Amount of non-recurring cost
3 1 ~ T o t a l ~ p r e s e n t ~ v a l u e ~ o f ~ c o s t s
3 2 ~ F u e l ~ c o s t ~ p e r ~ y e a r ~ ( b a s e ~ y e a r )
33 Other costs per year (base year)
4 0 ~ E x p e c t e d ~ s a l v a g e ~ v a l u e
4 2 \text { Expected rate of escalation for fuel costs}
4 3 \text { Expected rate of escalation for other costs}
4 4 \text { Discount rate}
4 9 \text { Initial cost}
```

Note that the storage registers should be allocated in a sequential, logical fashion. What would happen if we wanted to list storage registers for this program? This program could have been designed with some attention to possible future expansion. For example, we might want to run three or more classes of costs with differing escalation rates.

.	76
O1	11
-9	4290
ग¢	494
004	97 PR
O¢5	P1 Pr
T¢	9\% FPT
09	4257
Oe	40
09	22 He
110	4451
111	49
012	98
118	98 FP
-14	42 ST
1]	Tg ए
016	4250
17	-E एड
-18	5 B
19	43 BCL
Q9	4
Qi	95
-2	95
-20	4980
-9	4 B
-25	G8 HDP
Qe	O1
Q?	44 St
928	0¢ ण¢
I29	918
पु	FG LEL
081	12
T9	4280
989	Ex 38
934	39 FPT
-9E	9 P
-9	4230
पु7	4 E
98	G9 PRT
पद	3 P
040	FG LEL
14	18
048	$420]$
94	39
14	96 FPT
14.	01 F
046	42 ETD
047	$49 \quad 8$
143	9 Pat
143	ge mb

10	E	81		Q4909．
15		PRT	240，	240.00
19		C\％	Q．	Qn，प
156		FTy	Q日，एn	1769
54		Fr	－ H	1． C
15	0	－	आप．	190．
16	0．	］	1.06	－\square
15	T］	－	1， 14	$1.1+$
158	01	C		
15	$0 \square$	O	49496	$448=1$
$\square 1$	$1:$	－	4 Br	40e． CL^{2}
C1		E	－478	979．93
04	18	－	99\％，	Bue．
08		I	97\％	624． 69
0¢g		E	4 B	Q13－2
126		B^{3}	2990．	2798.48
146		$E^{\text { }}$	Quts．	E¢TD 44
			Q816	Q4ib，
			2s3． $\mathrm{ES}^{\text {a }}$	$22+8.6$
			240， 6	$894=5$
			291.8	196， 6
			21－96	－18．
			－6，	1898．98
			E日G，	bge E
			1789	14774
			16 Br	1979．65
			1 BE	1Q9， 98
			14E日，	$124=9$
			1968， 7	12 c
			－174， 6	$-17=68$
			1340， 9	
			Fere 20	40 GE
			Defender	Challenger
	ote	that	program ru	we would
the problem on paper（non－recurring cost entered last）．				
We could modify this program to print alot more and give				
us a presentation format similar to that designed for				
hydroelectric site analysis．				

Many New England cities and towns have hydroelectric sites within their jurisdictions. The generating equipment at such sites has typically been shut down within the past fifty years. In some cases the existing turbine/generator sets can be rehabilitated; in most cases at least some major components need to be replaced.

Even when private parties own the physical site and/or water rights, the municipality retains development priority. under existing federal law, and hence the ultimate responsibility for making certain the energy resource is prudently developed. If the cost of electricity produced at the site is equal to, or less than, the cost of electricity otherwise acquired, the site can almost certainly be leveraged for economic development.

Before thousands of dollars are committed to engineering design, environmental assessment and financial studies, we need to know whether the project is worth further study. Even if the municipality chooses to postpone development, it is important to know how changing energy and other factor costs would affect the economics of development. If the municipality permits investment by private parties, the economic information developed in a hydroelectric site review can be useful in any negotiation related to the project.

In 1980 the U.S. Department of Energy released a site
screening software package for the Apple II microcomputer. ${ }^{1}$ The documentation for this package provides the standard calculation reference in this field.

The screening package provides a conservative interpretation of the cash flow for a site (as opposed to investor cash flow or combined investor/siさe flow). DOE needed a standard method for comparing projects and determining that its loan funds for feasibility studies would not be misallocated. At the time DOE was forgiving 90% of the loan amount for hydro projects with negative feasibility study results.

We can look at the hydro screening problem as a set of problems. Each can be solved, but at different confidence levels. For example, the available energy at a site over the course of an average flow year can be calculated with reasonable precision, but the flow curves for the years of a project life can only be discussed in terms of probabilities based on the historical record. Recently negotiated power purchase contract rates are known, but we are less certain about the earnings impacts of contract escalator clauses.

Engineering firms face considerable difficulties in estimating the physical rehabilitation costs for a site, particularly when dam repairs may be required. At the screening level cost estimates are based on Army Corps of Engineers cost tables for 1978 and extrapolations of those tables. A general cost escalator can be derived for any later date. The programmable can recalculate bottom line results

FIgure 3-2. EXTRAPOLATED POWER GENERATION EQUIPMENT (SEE FIGURE 3-1)

TABLE 3-1

MISCELLANEOUS RECONNAISSANCE ESTIMATE COSTS* (Coet flase July 1973) PENSTOCK COST

Effective Head (Ft)	10	20	50	100	200	300
Cost Index (CI)	960	480	200	110	55	35

Installed cost $=\mathrm{Cl} \times$ Penstock Length (ft) \times Installed Capacity (MW) Minimum Penstock Cost is $\$ 5 \mathrm{C}$ per linear fook.

TAILRACE COST
Construction Cost $=\$ 15,000$ fixed plus $\$ 200$ per linear foot

SWITCHYARD EQUIPMENT COST
(Thousand Dollars)

Plant	Transmission	Voltage		
Capacity	13.8	34.5	69	115
1 MW	50	60	110	160
3 MW	85	100	120	175
5 MW	110	125	150	210
10 MW	150	170	210	280
15 MW	185	220	250	320

TRANSMISSION LINE COST
(Thousand Doilars)

Plant	Miles of transmission line				
Capacty	1	2	5	10	15
0.5 MW	30	60	150	-	-
5 MW	45	80	160	320	500
10 MW	60	100	180	380	600
15 MW	80	140	230	460	700

*TABLE 4-2 OF REF. 1

(Note: 2.28 represents July 1978)
FIGURE 3-3. ESCALATION OF SMALL HYDROELECTRIC PROJECT STRUCTURES (FIGURE 6-1 OF REF. 1 , VOL. VI)
quickly enough to permit efficient searching for the economic limits of capital investment. Successive numerical solutions begin to compensate for our analytical limitations.

A worked example will demonstrate the calculator version of the DOE screening program. Suppose that the town of Jefferson owns an existing hydro site. The dam provides 20 feet of usable head, and the nearest U.S. Geological Survey office informs us that the average flow rate near that site is 800 cubic feet per second. Given some knowledge of the flow duration curve for the river, we can assume a plant factor of about. 7 (more on the derivation of this later). The program can then tell us the kilowatt capacity of the site at average flow, as well as the output in kilowatt hours per year. If we enter the value of a kilowatt hour the program tells us the yearly energy revenue, although not right away.

For costs the COE has provided graphs and tables, reproduced on the following two pages. With a ruler and some linear interpolation we can derive the appropriate numbers for entry. (The listed program actually includes interpolation and formula routines at A^{\prime}, B^{\prime} and C^{\prime}, but we will not discuss them here.) After the costs have been entered we press control keys and let the economic calculations run.

The program includes built-in assumptions about project life, discount rate, etc. To change those assumptions, enter the new assumptions directly into the appropriate storage registers. For example, to change the interest rate from 15% to
to 18%, simply key ". 18 STO 25" (because the interest rate is stored in register 25). The instructions for running the program and the list of data register contents provide all the information required for running a series of calculations with changing variables. The instructions and list appear on the following two pages.

One of the more obvious questions one would ask is, "What happens if the value of electricity decreases?" If the purchasing utility offers $\$.042$ per KWH rather than $\$.050$, note the change in the number of years of negative cash flow. Some investors might be able to absorb that kind of negative flow, or compensate for it with the use of available tax incentives. For other investors that kind of change in the buyback rate would make the project infeasible.

The date of construction makes a difference in project feasibility. What would happen if the project is delayed until October 1983? We can determine that impact by changing the date (and hence the excalation factor for all costs). We might need to run the program 20-30 times with different values for selected variables before feeling confident about the dynamics of the project. But we could never feel confident about any one bottom line result, given the nature of the inputs.

No program is a final product, and this one has serious weaknesses that undermine its utility. We use it because it has assumed a life of its own as a DOE standard. It is not unusual for government-endorsed formulas to distort reality,

so we will spend some time reviewing how it happened in this particular case.

The DOE method calculates full revenue, operating and maintenance costs, and loan payment for year zero, the capital investment year. The applicable convention of engineering economics is to show only interest on the unspent construction loan balance as year zero revenue. The flow in year zero in the DOE method would normally be assigned to year one. It appears that this quirk was a programming error. The TI-59 program was written for simple conversion to convention by changing seed numbers in one subroutine.

As previously stated, the DOE method focuses on the real cash flow from the project, without regard to the use of available investment tax credits, accelerated cost recovery methods or tax bracket effects. It is too rigid in the sense that it fixes the interest rate at the selected discount rate, even though there are many cases in which separate rates are required. The TI-59 program permits identical or different rates, so that one run can mimic the DOE method and another can reflect reality.

It should also be noted that the benefit/cost ratio is calculated against the required investment independent of mortgage consequences. When the interest rate changes, the payment changes, as does the cash flow, but not the BCR.

The DOE method calculates a site's kilowatt capacity by using average flow. The capacity is then multiplied by a plant factor to determine kilowatt hour output per year. It
is possible to find the appropriate plant factor, but by means external to the DOE method. Rivers flow at varying rates from season to season and day to day. This variation is described by a flow exceddance curve. Turbines are typically matched to a flow rate exceeded only 15% of the time, and turbine efficiencies generally decline on either side of their rated flow. Determining yearly output from turbine efficiency curves and flow exceedance curves is an extremely complex problem. Suffice it to say that we can determine yearly output by the complex method and then divide by average flow kW rating to determine an accurate plant factor for the DOE method. This permits the merger of accurate design with COE costing.

In summary, we have a case in which no standard screening method existed before 1979. The DOE method became a standard by default. Because the microcomputer software was developed by a large engineering firm, few people questioned the method. David Thomas of Hoyle, Tanner and Associates developed reservations similar to mine while working with an HP-97. Similar conclusions from separate sources in different professions tend to reassure both sources.

NOTES

${ }^{1}$ Charles Broadus, HYDROPOWER COMPUTERIZED RECONNAISSANCE PACKAGE, Idaho Falls: DOE, 1980.

RUNNING THE PROGRAM

Partition the memory to 639.39 (4 OP 17) and clear. Load mag card banks l-4.

ENTER	KEY	DISPLAYS	PRINTS	COMMENTS
Date: 10.81	A	0.000	10.81	
Head in feet: 20	R/S	20.000	20.000	
Average flow in CFS: 800	R/S	7161459.854	$\begin{aligned} & 300.000 \\ & 1167.883 \\ & 0.700 \\ & 7161459.854 \end{aligned}$	KW capacity Plant factor KWH per year
Revenue per KWH in dollars	R/S	0.000	0.050	
Generating equipment costs in \$ 000: 1100	B	1100.000	1100.000	
Switchyard equipment in \$ 000:				
50	R/S	50.000	50.000	
Transmission				
$\begin{aligned} & \text { lines in } \$ 000: ~ \\ & 34 \end{aligned}$	R/S	34.000	34.000	
```Other in $ 000: 14```	R/S	14.000	14.000	
Tailrace costs in $\$ 000: 18$	R/S	18.000	18.000	
Penstock costs in \$ 000: 11	R/S	11.000	11.000	
No entry	C	Prints ev lation fac revenue"	ything from tor" through	"cost esca-   "base year
No entry	D	Prints eve rate" thr	ything from agh "benefit	$\begin{aligned} & \text { n "discount } \\ & \text { =/cost" } \end{aligned}$
No entry	E	Prints ca and O\&M e	flow for y calation	ears of revenue
No entry	$E^{\prime}$	Prints eve stopping	thing in $C$	,D,E without

00 Incremented exponent (revenue, O\&M escalation factors)
01 Incremented exponent (discount factor)
02 Register 29 copied (decremented for present value calculation)
03 Register 26 copied (decremented for present value calculation)
04 Revenue in dollars per KWH
05 Tailrace costs in \$ 000
06 Penstock costs in \$ 000
07 Generating equipment costs in \$ 000
08 Switchyard costs in $\$ 000$
09 Transmission line costs in $\$ 000$
10 Other costs in $\$ 000$
11 Construction cost escalation rate
12 Plant factor
13 Investment total in \$ 000
14
15 Operating and maintenance costs in \$ 000
16 Energy revenue per year in \$ 000
17 Annual payment, principal and interest, in \$ 000
18 Present value of net revenue (ie, revenue - O\&M)
19 Divisor in power formula
20 Hours in year
21 Contingency factor
22 Indirect costs factor
23 Operating and maintenance costs factor
24 Discount rate
25 Interest rate
26 Period of economic evaluation in years
27 Revenue escalation rate
28 O\&M escalation rate
29 Years of escalation for revenue and O\&M
30 Month and year (entered as MM.YY)
31 Net head in feet
32 Derived capacity in KW
33 KWH per year
34 Contents of register $27+1$
35 Contents of register $28+1$
36 Contents of register $24+1$
37
38.00868567 (used in penstock cost formula)
$39-.959576$ (used in penstock cost formula)
Input data is listed after the program step list.

009	76	LEL	050	32	32	100	87	07
011	11	H.	0.1	55	8	101	91	$\mathrm{F} / 8$
002	58	FIX	052	43	FCL	102	99	FRT
008	U2	02	059	12	12	103	42	ST]
004	99	PRT	054	99	PRT	104	0 O	10
005	42	ST]	1055	65	X	105	91	F 5
0106	30	30	056	43	RCL	106	99	FEr
007	5	IHT	0.7	20	20	107	42	ST]
008	55	$\div$	058	95	$=$	108	09	09
009	01	1	059	99	FreT	109	91	$\mathrm{F} / 8$
010	02	$z$	060	42	STD	110	99	FRT
011	85	+	061	33	39	111	42	STI
012	53	©	D6:	91	F 28	112	10	10
013	43	FCL	063	93	FRT	113	91	F 8
014	30	30	064	42	STD	114	99	PrT
015	22	IHY	065	04	04	115	42	ST]
016	59	IHT	16E	E	DF	116	OE	05
017	65	<	067	05	115	117	31	P. 5
018	01	1	068	91	F, 8	118	99	FRT
019	70	0	069	76	LEL	119	42	STI
020	00	0	070	17	$E^{\text {B }}$	120	06	06
021	54	y	071	65	\%	121	69	- $\mathrm{F}^{\prime}$
122	85	$+$	072	93	$=$	122	05	0.5
023	01	1	073	02	2	123	91	F
024	9	9	074	85	$+$	124	76	LEL
025	01	0	075	11	1	125	13	C
026	01	$\square$	178	05	5	126	43	FCL
027	95	$=$	077	95	-	127	30	31
028	42	STD	078	E8	HDF	128	65	8
029	30	30	079	91	R, 5	129	93	
	00	0	080	76	LBL	130	01	1
031	58	FIK	081	18	$\mathrm{C}^{\text {: }}$	131	96	6
082	03	108	082	65	\%	132	75	-
033	91	F/S	083	43	FCL	139	03	3
1034	95	FRT	194	31	31	134	01	1
D85	42	STD	1085	45	\%	135	04	4
086	S	31	OSE	43	ECL	136	93	
037	91	F 5	087	3	39	137	02	2
038	99	FRT	088	6.5	$\times$	138	19	S
039	6.5	X	089	43	FCL	139	95	-
040	43	RCL	090	38	36	140	55	$\div$
041	31	31	091	55	<	141	02	2
042	55	$\div$	092	43	FCL	142	93	
143	43	ECL	093	32	32	143	02	2
044	19	19	094	95	$=$	144	05	8
045	68	HDF	095	91	F/8	14.5	95	$=$
046	68	HDF	196	7 C	LEL	448	99	PRT
047	95	$=$	097	12	E	147	42	STD
048	94	FET	098	99	PRT	148	$1 \pm$	11
149	42	$8 T 1$	099	42	ST0	149	43	FCL



-  																				



Armstrong-Wright, A. CRITICAL PATH METHOD. London: Longman Group, 1969.

Burchell, Robert, and David Listokin. PRACTITIONER"S GUIDE TO FISCAL IMPACT ANALYSIS. New Brunswick: Rutgers, 1280.

Cole, H. et al. MODELS OF DOOM. New York: Universe Books, 1973.

Daryanani, Sital. BUILDING SYSTEMS DESIGN WITH PROGRAMMABLE CALCULATORS. New York: McGraw-Hill, 1980.

Duffie, John, and William Beckman. SOLAR ENGINEERING OF THERMAL PROCESSES. New York: John Wiley, 1980.

Farish, Roger et al. PERSONAL PROGRAMMING. Lubbock: Texas Instruments, 1977.

Finsterbush, Kurt, and C. Wolf. METHODOLOGY OF SOCIAL IMPACT ASSESSMENT. New York: McGraw-Hill, 1977.

Fish, Fred. USER SURVIVAL GUIDE FOR THE TI-58/59 MASTER LIBRARY. Dayton: Fred Fish., 1978.

Flystra, Dan, and Bill King. VISICALC USER'S GUIDE. Sunnyvale, CA: Personal Software, 1981.

Graff, Roderich. SOLAR ENERGY CALCULATIONS. Ann Arbor: Solarcon, 1979.

Hanks, Kurt. RAPID VIZ. Los Altos, CA: William Kaufmann, 1980.
Herr, Philip et al. NEGOTIATING FISCAL IMPACTS. Boston: Coalition of Northeast Municipalities, 19.80.

Isserman, Daniel. PLANNING PRACTICE AND PLANNING EDUCATION: THE CASE OF QUANTITATIVE METHODS. Urbana: Illinois, 1975.

Kain, John. "Rampant Schizophrenia: The Case of City and Regional Planning" JOURNAL OF THE AMERICAN INSTITUTE OF PLANNERS, (July, 1970)., pp. 221-223.

Kohler, Joseph et al. PASCALC II: PERFORMANCE OF PASSIVE SOLAR BUILDINGS. Harrisville, NH: Total Environmental Action, 1980.

Krueckeberg, Donald, and Arthur Silvers. URBAN PLANNING ANALYSIS: METHODS AND MODELS. New York: John Wiley; 1974.

LRN NEWSLETTER. Lanham, MD: Personal Programming C1ub, ;980-82.

Marks, Robert W. THE NEW MATHEMATICS DICTIONARY AND HANDBOOK. New York: Bantam Books, 1964.

New England Energy Congress. FINAL REPORT. Boston: NEEC, 1979.
Oliva, Ralph et al. MAKING TRACKS INTO PROGRAMMING. Lubbock: Texas Instruments, 1977.

Pearce, D.W. COST-BENEFIT ANALYSIS. London:Macmillan, 1971.
Pittenger, Donald. "A Typology of Age-Specific Migration Rate Distributions" JOURNAL OF THE AMERICAN INSTITUTE OF PLANNERS, (July, 1974), pp. 278-83.

Ris, Howard et al. WATER, WATTS AND WILDS. Boston: New England Rivers Basins Commission, 1981.

Schumacher, E.F. SMALL IS BEAUTIFUL. New York: Harper and Row, 1973.

Stobaugh, Robert, and Daniel Yergin. ENERGY FUTURE. New York: Ballantine Books, 1980.

Tudor Engineering Company. SIMPLIFIED METHODOLOGY FOR ECONOMIC SCREENING OF POTENTIAL LOW-HEAD SMALLCAPACITY HYDROELECTRIC SITES. Palo Alto: Electric Power Research Institute, 1981. EPRI EM-1679

White, Anthony. MATHEMATICS IN URBAN SCIENCE. Urbana: Council of Planning Librarians, 1973. \#430

Whitlock, Edward. PARKING FOR INSTITUTIONS AND SPECIAL EVENTS. Westport, CT: Eno Foundation, 1982.

Winslow, R. LIFE-CYCLE COSTING FOR PROCUREMENT OF SMALL BUSES. Washington, D.C.: U.S. Department of Transportation, 1980. UMTA-RI-06-0007-80-1

