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Abstract

This paper has been published in the Journal of Statistical Software (Meyer, Zeileis, and
Hornik 2006) and describes the “strucplot” framework for the visualization of multi-way con-
tingency tables. Strucplot displays include hierarchical conditional plots such as mosaic,
association, and sieve plots, and can be combined into more complex, specialized plots for
visualizing conditional independence, GLMs, and the results of independence tests. The
framework’s modular design allows flexible customization of the plots’ graphical appearance,
including shading, labeling, spacing, and legend, by means of “graphical appearance control”
functions. The framework is provided by the R package vcd.

Keywords: contingency tables, mosaic plots, association plots, sieve plots, categorical data, inde-
pendence, conditional independence, HSV, HCL, residual-based shading, grid, R.

1. Introduction

In order to explain multi-dimensional categorical data, statisticians typically look for (conditional)
independence structures. Whether the task is purely exploratory or model-based, techniques such
as mosaic and association plots offer good support for visualization. Both visualize aspects of
(possibly higher-dimensional) contingency tables, with several extensions introduced over the last
two decades, and implementations available in many statistical environments. A mosaic plot
(Hartigan and Kleiner 1984) is basically an area-proportional visualization of (typically, observed)
frequencies, composed of tiles (corresponding to the cells) created by recursive vertical and hori-
zontal splits of a rectangle. Thus, the area of each tile is proportional to the corresponding cell
entry given the dimensions of previous splits. An association plot (Cohen 1980) visualizes the
standardized deviations of observed frequencies from those expected under a certain independence
hypothesis. Each cell is represented by a rectangle that has (signed) height proportional to the
residual and width proportional to the square root of the expected counts, so that the area of the
box is proportional to the difference in observed and expected frequencies.

Extensions to these techniques have mainly focused on the following aspects.

1. Varying the shape of bar plots and mosaic displays to yield, e.g., double-decker plots (Hof-
mann 2001), spine plots, or spinograms (Hofmann and Theus 2005).

2. Using residual-based shadings to visualize log-linear models (Friendly 1994, 2000) and sig-
nificance of statistical tests (Meyer, Zeileis, and Hornik 2003; Zeileis, Meyer, and Hornik
2005).

3. Using pairs plots and trellis-like layouts for marginal, conditional and partial views (Friendly
1999).
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4. Adding direct user interaction, allowing quick exploration and modification of the visualized
models (Unwin, Hawkins, Hofmann, and Siegl 1996; Theus 2003).

5. Providing a modular and flexible implementation to easily allow user extensions (Meyer et al.
2003, 2006).

Current implementations of mosaic displays can be found, e.g., for SAS (SAS Institute Inc. 2005),
ViSta (Young 1996), MANET (Unwin et al. 1996), Mondrian (Theus 2003), R (R Development
Core Team 2006), and S-PLUS (Insightful Inc. 2005). For R, currently three implementations
do exist in the packages graphics (in base R), vcd (Meyer et al. 2006), and iplots (Urbanek and
Wichtrey 2006), respectively. Table 1 gives an overview of the available functionality in these
systems. Most environments are available on Windows, MacOS, and Linux/Unix variants, except
MANET which is only available for the Macinthosh platforms.

SAS S-PLUS R ViSta MANET Mondrian
base vcd iplots

Basic functionality × × × × × × × ×
Shape × × ×
Res.-based shadings × × × (×) (×) (×)
Highlighting × × × × ×
Conditional views × × × ×
Interaction × × × ×
Linking × × × ×
Extensible design ×
Language SAS S R R R/Java XLisp C++ Java

Table 1: Comparison of current software environments.

Figures 1 to 4 illustrate some of these extensions. Figure 1 shows the results from a double-blind
clinical trial investigating a new treatment for rheumatoid arthritis, using an extended mosaic plot
with residual-based shading based on the maximum statistic: clearly, the new treatment is effective.
The dark blue cell indicates that the rate of treated patients showing marked improvement is
significant at the 1% level. Figure 2 visualizes the well-known UCB admissions data by means of a
conditional association plot. The panels show the residuals from a conditional independence model
(independence of gender and admission, given department), stratified by department. Clearly, the
situation in department A (more women/less men accepted than would be expected under the null
hypothesis) causes the rejection of the hypothesis of conditional independence. Figure 3 illustrates
the conditional independence of premarital and extramarital sex, given gender and marital status.
The χ2 test of independence, based on the permutation distribution, rejects the null hypothesis:
possibly, because the tendency of people to have extramarital sex when they had premarital sex is
particularly marked among married people? The rate of such women and men ist significant at the
0.01 and 0.1 level, respectively. Finally, Figure 4 visualizes the“Survival on the Titanic”data using
a double-decker plot. Here, a binary response (survival of the disaster) is to be explained by other
factors (class, gender, and age). The gray boxes represent the proportion of survived passengers
in a particular stratum. The proportions of saved women and children are indeed higher than
those of men, but they clearly decrease from the 1st to the 3rd class. In addition, the proportion
of saved men in the 1st class is higher than in the others.
This paper describes the strucplot framework provided by the vcd package for the R environment
for statistical computing and graphics, available from the Comprehensive R Archive Network
(http://CRAN.R-project.org/). The framework integrates displays such as mosaic, association,
and sieve plots by their unifying property of being flat representations of contingency tables.
These basic plots, as well as specialized displays for conditional independence, can be used both
for exploratory visualization and model-based analysis. Exploratory techniques include special-
ized displays for the bivariate case, as well as pairs and trellis-type displays for higher-dimensional

http://CRAN.R-project.org/
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Figure 1: Mosaic plot for the Arthritis data.
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Figure 2: Conditional association plot for the UCBAdmissions data.
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Figure 3: Mosaic plot for the PreSex data.
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Figure 4: Double-decker plot for the Titanic data.
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tables. Model-based tools include methods suitable for the visualization of conditional indepen-
dence tests (including permutation tests), as well as for the visualization of particular GLMs
(logistic regression, log-linear models). Additionally, two of the framework’s further strengths
are its flexibility and extensibility: graphical appearance aspects such as shading, labeling, and
spacing are modularized by means of “graphical appearance control” (grapcon) functions, allowing
fine-granular customization and user-level extensions.
The remainder of the paper is organized as follows. In Section 2, we give an overview of the
strucplot framework, describing the hierarchy of the main components and the basic functionality.
In Section 3, we demonstrate how (residual-based) shadings support the visualization of log-linear
models and the results of independence tests. Also, we explain step-by-step how the concepts of
generating and grapcon functions can be combined to provide a flexible customization of complex
graphical displays as created by the strucplot framework. Sections 4 and 5 discuss in detail the
labeling and spacing features, respectively. Section 6 exemplifies the framework in the analysis of
a four-way data set. Section 7 concludes the work.

2. The strucplot framework

The strucplot framework in the R package vcd, used for visualizing multi-way contingency tables,
integrates techniques such as mosaic displays, association plots, and sieve plots. The main idea
is to visualize the tables’ cells arranged in rectangular form. For multi-way tables, the variables
are nested into rows and columns using recursive conditional splits, given the margins. The result
is a “flat” representation that can be visualized in ways similar to a two-dimensional table. This
principle defines a class of conditional displays which allows for granular control of graphical
appearance aspects, including:

• the content of the tiles

• the split direction for each dimension

• the graphical parameters of the tiles’ content

• the spacing between the tiles

• the labeling of the tiles

The strucplot framework is highly modularized: Figure 5 shows the hierarchical relationship be-
tween the various components. On the lowest level, there are several groups of workhorse and
parameter functions that directly or indirectly influence the final appearance of the plot (see Ta-
ble 2 for an overview). These are examples of grapcon functions. They are created by generating
functions (grapcon generators), allowing flexible parameterization and extensibility (Figure 5 only
shows the generators). The generator names follow the naming convention group_foo (), where
group reflects the group the generators belong to (strucplot core, labeling, legend, shading, or spac-
ing). The workhorse functions (created by struc_foo (), labeling_foo (), and legend_foo ())
directly produce graphical output (i.e., “add ink to the canvas”), whereas the parameter func-
tions (created by spacing_foo () and shading_foo ()) compute graphical parameters used by
the others. The grapcon functions returned by struc_foo () implement the core functionality,
creating the tiles and their content. On the second level of the framework, a suitable combination
of the low-level grapcon functions (or, alternatively, corresponding generating functions) is passed
as “hyperparameters” to strucplot(). This central function sets up the graphical layout using
grid viewports (see Figure 6), and coordinates the specified core, labeling, shading, and spacing
functions to produce the plot. On the third level, we provide several convenience functions such as
mosaic(), sieve(), assoc(), and doubledecker() which interface strucplot() through sensible
parameter defaults and support for model formulae. Finally, on the fourth level, there are “re-
lated” vcd functions (such as cotabplot() and the pairs() methods for table objects) arranging
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Group Grapcon generator Description
strucplot struc_assoc() core function for association plots
core struc_mosaic() core function for mosaic plots

struc_sieve() core function for sieve plots
labeling labeling_border() border labels

labeling_cboxed() centered labels with boxes, all labels clipped,
and on top and left border

labeling_cells() cell labels
labeling_conditional() border labels for conditioning variables

and cell labels for conditioned variables
labeling_doubledecker() draws labels for doubledecker plot
labeling_lboxed() left-aligned labels with boxes
labeling_left() left-aligned border labels
labeling_left2() left-aligned border labels, all labels on top and left border
labeling_list() draws a list of labels under the plot

shading shading_binary() visualizes the sign of the residuals
shading_Friendly() implements Friendly shading (based on HSV colors)
shading_hcl() shading based on HCL colors
shading_hsv() shading based on HSV colors
shading_max() shading visualizing the maximum test statistic

(based on HCL colors)
shading_sieve() implements Friendly shading customized for sieve plots

(based on HCL colors)
spacing spacing_conditional() increasing spacing for conditioning variables,

equal spacing for conditioned variables
spacing_dimequal() equal spacing for each dimension
spacing_equal() equal spacing for all dimensions
spacing_highlighting() increasing spacing, last dimension set to zero
spacing_increase() increasing spacing

legend legend_fixed() creates a fixed number of bins (similar to mosaicplot())
legend_resbased() suitable for an arbitrary number of bins

(also for continuous shadings)

Table 2: Available grapcon generators in the strucplot framework
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Figure 5: Components of the strucplot framework.

collections of plots of the strucplot framework into more complex displays (e.g., by means of panel
functions).

2.1. Mosaic, association, and sieve plots

As an example, consider the HairEyeColor data containing two polytomous variables (hair and eye
color), as well as one (artificial) dichotomous gender variable (Sex). The “flattened” contingency
table can be obtained using the structable() function (quite similar to ftable() in base R, but
allowing the specification of split directions):

> (HEC <- structable(Eye ~ Sex + Hair, data = HairEyeColor))

Eye Brown Blue Hazel Green
Sex Hair
Male Black 32 11 10 3

Brown 53 50 25 15
Red 10 10 7 7
Blond 3 30 5 8

Female Black 36 9 5 2
Brown 66 34 29 14
Red 16 7 7 7
Blond 4 64 5 8

Let us first visualize the contingency table by means of a mosaic plot. The effect of

> mosaic(HEC)

equivalent to
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Figure 6: Viewport layout for strucplot displays with their names. [A] = “corner top left”, [B] =
“corner top right”, [C] = “corner bottom left”, [D] = “corner bottom right”, [E] = “legend top”,
[F] = “legend sub”.

> mosaic(~Sex + Eye + Hair, data = HairEyeColor)

depicts the observed frequencies of the HairEyeColor data. If there are zero entries, tiles have
zero area and are, additionally, marked by small bullets (see, e.g, Figure 4). By default, these cells
are not split further. The bullets help distinguishing very small cells from zero entries, and are
particularly useful when color shadings come into play (see the example using the Bundesliga data
in Section 3.3). Note that in contrast to, e.g., mosaicplot() in base R, the default split direction
and level ordering in all strucplot displays correspond to the textual representation produced by
the print methods. It is also possible to visualize the expected values instead of the observed
values (see Figure 8):

> mosaic(HEC, type = "expected")

In order to compare observed and expected values, a sieve plot (Riedwyl and Schüpbach 1994)
could be used (see Figure 9):

> sieve(~Sex + Eye + Hair, data = HEC, spacing = spacing_dimequal(c(2,

+ 0, 0)))

where spacing_dimequal is used to set the spacing of the second and third dimension to zero.
Alternatively, we can directly inspect the residuals. The Pearson residuals (standardized deviations
of observed from expected values) are conveniently visualized using association plots (Cohen 1980).
In contrast to assocplot() in base R, vcd’s assoc() function scales to more than two variables
(see Figure 10):

> assoc(HEC, compress = FALSE)



David Meyer, Achim Zeileis, Kurt Hornik 9

Eye

S
ex

H
ai

r

F
em

al
e

B
lo

nd
R

ed
B

ro
w

n
B

la
ck

M
al

e

B
lo

nd
R

ed
B

ro
w

n
B

la
ck

Brown Blue Hazel Green

Figure 7: Mosaic plot for the HairEyeColor data.
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Figure 8: Mosaic plot for the HairEyeColor data (expected values).
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Figure 9: Sieve plot for the HairEyeColor data visualizing simultaneously observed and expected
values.

where the compress argument keeps distances between tiles equal.
For both mosaic plots and association plots, the splitting of the tiles can be controlled using the
split_vertical argument. The default is to alternate splits starting with a horizontal one (see
Figure 11):

> mosaic(HEC, split_vertical = c(TRUE, FALSE, TRUE),

+ labeling_args = list(abbreviate = c(Eye = 3)))

(Note that HEC, a structable object, already includes a splitting information which simply gets over-
loaded in this example.) For compatibility with mosaicplot() in base R, the mosaic() function
also allows the use of a direction argument taking a vector of "h" and "v" characters:

> mosaic(HEC, direction = c("v", "h", "v"))

By a suitable combination of splitting, spacing, and labeling settings, the functions provided by the
strucplot framework can be customized in a quite flexible way. For example, the default method
for doubledecker() is simply a wrapper for strucplot(), setting the right defaults. Most default
settings such as colors, spacing, and labeling are specified via the parameters and passed through
to strucplot(). The additional code just handles the dependent variable information, and in
particular permutes the table to have the dependent variable as the last dimension as required for
the doubledecker plot. Figure 4 shows a doubledecker plot of the Titanic data, explaining the
probability of survival (“survived”) by age, given sex, given class. It is created by:

> doubledecker(Titanic)

equivalent to:
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Figure 10: Association plot for the HairEyeColor data.
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> doubledecker(Survived ~ Class + Sex + Age, data = Titanic)

2.2. Conditional and partial views

So far, we have visualized either full or collapsed tables, as suggested by the analysis task at
hand. Subtables can be selected in a similar way as for objects of class table using indexing.
Note, however, that subsetting of structable objects is more restrictive because of their inherent
conditional structure. Since the variables on both the row and the columns side are nested,
subsetting is only possible “outside-in”, that is, indexing operates on blocks defined by the variable
levels. In the following, we use the Titanic data again, this time collapsed over Survived to
investigate the structure of crew and passengers (and having the Child and Age labels of the Age
variable swapped for optical clarity):

> (STD <- structable(~Sex + Class + Age, data = Titanic[, ,

+ 2:1, ]))

Class 1st 2nd 3rd Crew
Sex Age
Male Adult 175 168 462 862

Child 5 11 48 0
Female Adult 144 93 165 23

Child 1 13 31 0

> STD["Male", ]

Class 1st 2nd 3rd Crew
Sex Age
Male Adult 175 168 462 862

Child 5 11 48 0

> STD["Male", c("1st", "2nd", "3rd")]

Class 1st 2nd 3rd
Sex Age
Male Adult 175 168 462

Child 5 11 48

Conditioning on levels (i.e., choosing a table subset for fixed levels of the conditioning variable(s))
is done using the [[ operator. Here again, the sequence of conditioning levels is restricted by the
hierarchical structure of the structable object. In the following examples, note that compared to
subsetting, the first dimension(s) are dropped:

> STD[["Male", ]]

Class 1st 2nd 3rd Crew
Age
Adult 175 168 462 862
Child 5 11 48 0

> STD[[c("Male", "Adult"), ]]

Class 1st 2nd 3rd Crew

175 168 462 862
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> STD[["Male", "1st"]]

Age
Adult 175
Child 5

Now, there are several ways for visualizing conditional independence structures. The “brute force”
method is to draw separate plots for the strata. The following example compares the association
between hair and eye color, given gender, by using subsetting on the flat table and grid’s viewport
framework to visualize the two groups besides each other:

> pushViewport(viewport(layout = grid.layout(ncol = 2)))

> pushViewport(viewport(layout.pos.col = 1))

> mosaic(STD[["Male"]], margins = c(left = 2.5, top = 2.5,

+ 0), sub = "Male", newpage = FALSE)

> popViewport()

> pushViewport(viewport(layout.pos.col = 2))

> mosaic(STD[["Female"]], margins = c(top = 2.5, 0), sub = "Female",

+ newpage = FALSE)

> popViewport(2)

Note the use of the margins argument: it takes a vector with up to four values whose unnamed
components are recycled, but “overruled” by the named arguments. Thus, in the second example,
only the top margin is set to 2.5 lines, and all other to 0. This idea applies to almost all vectorized
arguments in the strucplot framework (with split_vertical as a prominent exception).
The cotabplot() function does a much better job on this task: it arranges stratified strucplot
displays in a lattice-like layout, conditioning on variable levels. The plot in Figure 13 shows hair
and eye color, given sex:

> cotabplot(~Class + Age | Sex, data = STD, split_vertical = TRUE)

Visualizing the strata separately “hides” the distribution of the conditioning variable(s) which
may or may not be appropriate or sensible in a particular analysis step. If we wish to keep
the information on the marginal distribution(s), we can use one single mosaic for the stratified
plot since mosaic displays are “conditional plots” by definition. We just need to make sure that
conditioning variables are used first for splitting. Both the default and the formula interface of
mosaic() allow the specification of conditioning variables (see Figure 14):

> mosaic(STD, condvars = "Sex", split_vertical = c(TRUE,

+ TRUE, FALSE))

> mosaic(~Class + Age | Sex, data = STD, split_vertical = c(TRUE,

+ TRUE, FALSE))

The effect of using this is that conditioning variables are permuted ahead of the the conditioned
variables in the table, and that spacing_conditional() is used as default to better distinguish
conditioning from conditioned dimensions. This spacing uses equal space between tiles of condi-
tioned variables, and increasing space between tiles of conditioning variables (See Section 5).
Another set of high-level functions for visualizing conditional independence models are the pairs()
methods for table and structable objects. In contrast to cotabplot() which conditions on variables,
the pairs() methods create pairwise views of the table. They produce, by default, a plot matrix
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Figure 12: Two mosaic displays put side-by-side, visualizing the distribution of class and age,
given gender. The marginal distribution of gender cannot be seen.
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Figure 13: Conditional table plot for the Titanic data, again visualizing the distribution of age
and class, given gender, using separate mosaic displays like the “manual” plot in Figure 12.
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Figure 14: Mosaic plot again visualizing the distribution of class and age, given gender, this time
using a single mosaic plot. In contrast to Figures 12 and 13, this plot also visualizes the marginal
distribution of gender.

having strucplot displays in the off-diagonal panels, and the variable names (optionally, with
univariate displays) in the diagonal cells. Figure 15 shows a pairs display for the Titanic data
with univariate mosaics in the diagonal, and mosaic plots visualizing the corresponding bivariate
mosaics in the upper and lower triangles. Due to the inherent asymmetry of mosaic displays, the
corresponding plots in the upper and lower triangle differ depending on which variable is used first
for splitting—inspecting both views might help detecting patterns in a data set. Additionally,
we are using a special spacing and shading normally used to ‘highlight’ the second variable in
the first (as will be discussed in Section 5): here, the intention of the spacing is to emphasize
the conditional distributions of the second variable, given the first one, and the shading helps
identifying the factor levels in the second variable.

> pairs(STD, highlighting = 2, diag_panel = pairs_diagonal_mosaic,

+ diag_panel_args = list(fill = grey.colors))

The labels of the variables are to be read from left to right and from top to bottom. In addition,
the levels can be matched by position within the columns and by shading within the rows. In
plots produced by pairs(), each panel’s row and column define two variables X and Y used
for the specification of four different types of independence: pairwise, total, conditional, and
joint. The pairwise mosaic matrix shows bivariate marginal relations between X and Y , collapsed
over all other variables. The total independence mosaic matrix shows mosaic plots for mutual
independence, i.e., for marginal and conditional independence among all pairs of variables. The
conditional independence mosaic matrix shows mosaic plots for marginal independence of X and
Y , given all other variables. The joint independence mosaic matrix shows mosaic plots for joint
independence of all pairs (X, Y ) of variables from the others.
Upper and lower parts can independently be used to display different types of independence mod-
els, or different strucplot displays (mosaic, association, or sieve plots). The available panel func-
tions (pairs_assoc(), pairs_mosaic(), and pairs_sieve()) are simple wrappers to assoc(),
mosaic(), and sieve(), respectively. Obviously, seeing patterns in strucplot matrices becomes in-
creasingly difficult with higher dimensionality. Therefore, this plot is typically used with a suitable
residual-based shading (see Section 3).



David Meyer, Achim Zeileis, Kurt Hornik 17

Sex

Male Female

Class

1st 2nd 3rd Crew

●

●

Age

Adult Child

Figure 15: Pairs plot for the Titanic data.

2.3. Interactive plot modifications

All strucplot core functions are supposed to produce conditional hierarchical plots by the means
of nested viewports, corresponding to the provided splitting information. Thus, at the end of the
plotting, each tile is associated with a particular viewport. Each of those viewports has to be
conventionally named, enabling other strucplot modules, in particular the labeling functions, to
access specific tiles after they have been plotted. The naming convention for the viewports is:

[Optional prefix] cell:Variable1 =Level1,Variable2 =Level2 . . .

Clearly, these names depend on the splitting. The following example shows how to access parts of
the plot after it has been drawn (see Figure 16):

> mosaic(~Hair + Eye, data = HEC, pop = FALSE)

> seekViewport("cell:Hair=Blond")

> grid.rect(gp = gpar(col = "red", lwd = 4))

> seekViewport("cell:Hair=Blond,Eye=Blue")

> grid.circle(r = 0.2, gp = gpar(fill = "cyan"))

Note that the viewport tree is removed by default. Therefore, the pop argument has to be set to
FALSE when viewports shall be accessed.
In addition to the viewports, the main graphical elements get names following a similar construc-
tion method. This allows to change graphical parameters of plot elements after the plotting (see
Figure 17):
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Figure 16: Adding elements to a mosaic plot after drawing.

> assoc(Eye ~ Hair, data = HEC, pop = FALSE)

> getNames()[1:6]

[1] "GRID.lines.2729" "rect:Hair=Black,Eye=Brown"
[3] "GRID.lines.2730" "rect:Hair=Black,Eye=Blue"
[5] "GRID.lines.2731" "rect:Hair=Black,Eye=Hazel"

> grid.edit("rect:Hair=Blond,Eye=Blue", gp = gpar(fill = "red"))

2.4. Performance issues

As stated above, the implementation of strucplot displays is based on creating and nesting grid
viewports. The main time-consuming steps performed by the core functions are the following:

1. recursively, split the table until the individual cells are reached

2. during the splits, add viewports to the plot

3. for the individual cells, add plot-specific content (rectangles for mosaics, bars for association
plots, etc.)

All these operations scale linearly with the amount of created viewports. For a d-dimensional table
with ki levels, i = 1 . . . d, the total number of needed viewports Td can roughly be estimated as

Td = k1 + k1k2 + · · ·+ k1 · · · kd =
d∑

i=1

∏
j≤i

kj (1)

since we first push the k1 viewports for the levels of the first dimension, then, for each of these,
the k2 levels of the second dimension, etc. If the number of levels is equal (k) for all dimensions,
Td simplifies to
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Figure 17: Changing graphical parameters of elements after drawing.

Td =
d∑

i=1

ki =
k(kd − 1)

k − 1
(2)

and so the time complexity for drawing a strucplot display is of order kd.

3. Shadings

Unlike other graphics functions in base R, the strucplot framework allows almost full control over
the graphical parameters of all plot elements. In particular, in association plots, mosaic plots, and
sieve plots, the user can modify the graphical appearance of each tile individually. Built on top of
this functionality, the framework supplies a set of shading functions choosing colors appropriate
for the visualization of log-linear models. The tiles’ graphical parameters are set using the gp
argument of the functions of the strucplot framework. This argument basically expects an object
of class gpar whose components are arrays of the same shape (length and dimensionality) as the
data table (see Section 3.1). For convenience, however, the user can also supply a grapcon function
that computes such an object given a vector of residuals, or, alternatively, a generating function
that takes certain arguments and returns such a grapcon function (see Section 3.2). We provide
several shading functions, including support for both HSV and HCL colors, and the visualization
of significance tests (see Section 3.3).

3.1. Specifying graphical parameters of strucplot displays

As an example, consider the UCBAdmissions data. In the table aggregated over departments, we
would like to highlight the (incidentally wrong) impression that there were too many male students
accepted compared to the presumably discriminated female students (see Figure 18):

> (ucb <- margin.table(UCBAdmissions, 1:2))

Gender
Admit Male Female
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Admitted 1198 557
Rejected 1493 1278

> (fill_colors <- matrix(c("dark cyan", "gray", "gray",

+ "dark magenta"), ncol = 2))

[,1] [,2]
[1,] "dark cyan" "gray"
[2,] "gray" "dark magenta"

> mosaic(ucb, gp = gpar(fill = fill_colors, col = 0))

Gender
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Figure 18: Mosaic plot for the UCBAdmissions data with highlighted cells.

As the example shows, we create a fourfold table with appropriate colors (dark cyan for admitted
male students and dark magenta for rejected female students) and supply them to the fill
component of the gpar object passed to the gp argument of mosaic(). For visual clarity, we
additionally hide the tiles’ borders by setting the col component to 0 (transparent).
If the parameters specified in the gpar object are “incomplete”, they will be recycled along the last
splitting dimension. In the following example based on the Titanic data, we will highlight all
cells corresponding to survived passengers (see Figure 19):

> mosaic(Titanic, gp = gpar(fill = c("gray", "dark magenta")),

+ spacing = spacing_highlighting, labeling_args = list(abbreviate = c(Age = 3),

+ rep = c(Survived = FALSE)))

Note that spacing_highlighting() sets the spaces between tiles in the last dimension to 0. The
labeling_args argument ensures that labels do not overlap (see Section 4).

3.2. Customizing residual-based shadings

This flexible way of specifying graphical parameters is the basis for a suite of shading functions
that modify the tiles’ appearance with respect to a vector of residuals, resulting from deviations
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Figure 19: Recycling of parameters, used for highlighting the survived passengers in the Titanic
data.

of observed from expected frequencies under a given log-linear model. The idea is to visualize
at least sign and absolute size of the residuals, but some shadings, additionally, indicate overall
significance. One particular shading, the maximum shading (Meyer et al. 2003; Zeileis et al. 2005),
even allows to identify the cells that cause the rejection of the null hypothesis.
Conceptually, the strucplot framework offers three alternatives to add residual-based shading to
plots:

1. Precomputing the graphical parameters (e.g., fill colors), encapsulating them into an object
of class gpar as demonstrated in the previous section, and passing this object to the gp
argument.

2. Providing a grapcon function to the gp argument that takes residuals as input and returns
an object as described in alternative 1.

3. Providing a grapcon generator taking parameters and returning a function as described in
alternative 2.

For each of these approaches, we will demonstrate the necessary steps to obtain a binary shading
that visualizes the sign of the residuals by a corresponding fill color (for simplicity, we will treat
0 as positive).

Alternative 1: Precomputed gpar object

The first method is precomputing the graphical parameters “by hand”. We will use royalblue4
color for positive and mediumorchid4 color for negative residuals (see Figure 20):

> expected <- independence_table(ucb)

> (x <- (ucb - expected)/sqrt(expected))

Gender
Admit Male Female
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Admitted 4.784093 -5.793466
Rejected -3.807325 4.610614

> (shading1_obj <- ifelse(x > 0, "royalblue4", "mediumorchid4"))

Gender
Admit Male Female
Admitted "royalblue4" "mediumorchid4"
Rejected "mediumorchid4" "royalblue4"

> mosaic(ucb, gp = gpar(fill = shading1_obj))
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Figure 20: Binary shading visualizing the sign of the residuals.

Alternative 2: Grapcon function

For implementing alternative 2, we need to create a “shading function” that computes gpar objects
from residuals. For that, we can just reuse the code from the previous step:

> shading2_fun <- function(x) gpar(fill = ifelse(x > 0,

+ "royalblue4", "mediumorchid4"))

To create a mosaic display with binary shading, it now suffices to specify the data table along with
shading2_fun():

> mosaic(ucb, gp = shading2_fun)

mosaic() internally calls strucplot() which computes the residuals from the specified indepen-
dence model (total independence by default), passes them to shading2_fun(), and uses the gpar
object returned to finally create the plot.
Our shading2_fun() function might be useful, but can still be improved: the hard-wired colors
should be customizable. We cannot simply extend the argument list to include, e.g., a fill =
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c("royalblue4", "mediumorchid4") argument because strucplot() will neither know how to
handle it, nor let us change the defaults. In fact, the interface of shading functions is fixed, they
are expected to take exactly one argument: a table of residuals. This is where generating functions
(alternative 3) come into play.

Alternative 3: Grapcon generator

We simply wrap our grapcon shading function in another function that takes all additional ar-
guments it needs to use, possibly preprocesses them, and returns the actual shading function.
This returned function will have access to the parameters since in R, nested functions are lexically
scoped. Thus, the grapcon generator returns (“creates”) a “parameterized” shading function with
the minimal standard interface strucplot() requires. The following example shows the necessary
extensions for our running example:

> shading3a_fun <- function(col = c("royalblue4", "mediumorchid4")) {

+ col <- rep(col, length.out = 2)

+ function(x) gpar(fill = ifelse(x > 0, col[1], col[2]))

+ }

The first statement just makes sure that exactly two colors are specified. In the call to mosaic(),
using the new shading3a_fun() function, we can now simply change the colors:

> mosaic(ucb, gp = shading3a_fun(c("royalblue4", "mediumorchid4")))

(figure not shown). The procedure described so far is a rather general concept, applicable to a
wide family of user-level grid graphics. Indeed, the customization of other components of the
strucplot framework (labeling, spacing, legend, and core functions) follows the same idea. Now
for the shading functions, more customization is needed. Note that shading3a_fun() needs to be
evaluated by the user, even if the defaults are to be used. It is a better idea to let strucplot() call
the generating function, which, in particular, allows the passing of arguments that are computed by
strucplot(). Since shading functions can be used for visualizing significance (see Section 3.3), it
makes sense for generating functions to have access to the model, i.e., observed and expected values,
residuals, and degrees of freedom. For example, the shading_max() generating function computes
a permutation distribution of the maximum statistic and p values for specified significance levels
based on the observed table to create data-driven cut-off points. If this was done in the shading
function itself, the permutation statistic would be recomputed every time the shading function
is called, resulting in possibly severe performance loss and numerical inconsistencies. Therefore,
generating functions for shadings are required to take at least the parameters observed, expected,
residuals, and df (these are provided by the strucplot framework), followed by other parameters
controlling the shading appearance (to be specified by the user):

> shading3b_fun <- function(observed = NULL, residuals = NULL,

+ expected = NULL, df = NULL, col = c("royalblue4",

+ "mediumorchid4")) {

+ col <- rep(col, length.out = 2)

+ function(x) gpar(fill = ifelse(x > 0, col[1], col[2]))

+ }

> class(shading3b_fun) <- "grapcon_generator"

Note that in this simple binary shading example, the first four parameters are not used. In some
sense, generating functions for shadings are parameterized both by the user and the strucplot
framework. For shading functions that require model information, the user-specified parameters
are to be passed to the gp_args argument instead, and for this to work, the generating function
needs a class attribute to be distinguishable from the “normal” shading functions. For others (like
our simple shading3b_fun()) this is optional, but recommended for consistency:
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> mosaic(ucb, gp = shading3b_fun, gp_args = list(col = c("red",

+ "blue")))

The final shading3b_fun() pretty much resembles shading_binary(), one of the standard shad-
ing functions provided by the vcd package.

3.3. An overview of the shading functions in vcd

Friendly (1994) suggested a residual-based shading for the mosaic tiles that can also be applied
to the rectangles in association plots (Meyer et al. 2003). Apart from shading_binary(), there
are currently two basic shadings available in vcd: shading_hcl() and shading_hsv(), as well as
two derived functions: shading_Friendly() building upon shading_hsv(), and shading_max()
building upon shading_hcl(). shading_hsv() and shading_hcl() provide the same concep-
tual tools, but use different color spaces: the Hue-Saturation-Value (HSV) and the Hue-Chroma-
Luminance (HCL) scheme, respectively. We will first expose the basic concept of these shading
functions using HSV space, and then briefly explain the differences to HCL space (a detailed dis-
cussion can be found in Zeileis et al. 2005). Color palettes in HCL space are preferable to palettes
derived from HSV space from a perceptual point of view. Functions for creating palettes (see, e.g.,
diverge_hcl()) are provided with the vcd package.
In HSV space, colors are specified in three dimensions: Hue, Saturation (“colorfulness”), and Value
(“lightness”, amount of gray). These three dimensions are used by shading_hsv() to visualize
information about the residuals and the underlying independence model. The hue indicates the
residuals’ sign: by default, blue for positive, and red for negative residuals. The saturation of a
residual is set according to its size: high saturation for large, and low saturation for small residuals.
Finally, the overall lightness is used to indicate the significance of a test statistic: light colors for
significant, and dark colors for non-significant results.
As an example, we will visualize the association of hair and eye color in the HairEyeColor data
set (see Figure 21, top):

> haireye <- margin.table(HairEyeColor, 1:2)

> mosaic(haireye, gp = shading_hsv)

As introduced before, the default shading scheme is not shading_hsv() but shading_hcl() due to
the better perceptual characteristics of HCL color space. The following example again illustrates
the HairEyeColor data, this time with HCL colors:

> mosaic(haireye, gp = shading_hcl)

> mosaic(haireye, gp = shading_hcl, gp_args = list(h = c(130,

+ 43), c = 100, l = c(90, 70)))

In Figure 21, the plot in the middle depicts the default palette, and the bottom plot an alternative
setting for Hue (h), Chroma (c), and Luminance (l).
Large positive residuals (greater than 4) can be found for brown eyes/black hair and blue eyes/blond
hair, and are colored in deep blue. On the other hand, there is a large negative residual (less than
−4) for brown eyes/blond hair, colored deep red. There are also three medium-sized positive (neg-
ative) residuals between 2 and 4 (−2 and −4): the colors for them are less saturated. Residuals
between −2 and 2 are shaded in white (gray for HCL-shading). The heuristic for choosing the
cut-off points 2 and 4 is that the Pearson residuals are approximately standard normal which
implies that the highlighted cells are those with residuals individually significant at approximately
the α = 0.05 and α = 0.0001 levels, respectively. These default cut-off points can be changed to
alternative values using the interpolate argument (see Figure 22):

> mosaic(haireye, shade = TRUE, gp_args = list(interpolate = 1:4))
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Figure 21: Three mosaic plots for the HairEyeColor data using different color palettes. Top:
default HSV color palette. Middle: default HCL color palette. Bottom: a custom HCL color
palette.
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The elements of the numeric vector passed to interpolate define the knots of an interpolating
step function used to map the absolute residuals to saturation levels. The interpolate argument
also accepts a user-defined function, which then is called with the absolute residuals to get a vector
of cut-off points. Thus, it is possible to automatically choose the cut-off points in a data-driven
way. For example, one might think that the extension from four cut-off points to a continuous
shading—visualizing the whole range of residuals—could be useful. We simply need a one-to-one
mapping from the residuals to the saturation values:

> ipol <- function(x) pmin(x/4, 1)

Note that this ipol() function maps residuals greater than 4 to a saturation level of 1. However,
the resulting plot (Figure 22, right) is deceiving:

> mosaic(haireye, shade = TRUE, gp_args = list(interpolate = ipol),

+ labeling_args = list(abbreviate = c(Sex = TRUE)))
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Figure 22: The HairEyeColor data. Left: shading with 4 cut-off points. Right: continuous
shading.

Too much color makes it difficult to interpret the image, and the subtle color differences are hard
to catch. Therefore, we only included shadings with discrete cut-off points.
The third remaining dimension, the value, is used for visualizing the significance of a test statistic.
The user can either directly specify the p value, or, alternatively, a function that computes it, to
the p.value argument. Such a function must take observed and expected values, residuals, and
degrees of freedom (used by the independence model) as arguments. If nothing is specified, the
p value is computed from a χ2 distribution with df degrees of freedom. The level argument is
used to specify the confidence level: if p.value is smaller than 1 - level, light colors are used,
otherwise dark colors are employed. The following example using the Bundesliga data shows the
relationship of home goals and away goals of Germany’s premier soccer league in 1995: although
there are two “larger” residuals (one greater than 2, one less then −2), the χ2 test does not reject
the null hypothesis of independence. Consequently, the colors appear dark (see Figure 23, left):

> BL <- xtabs(~HomeGoals + AwayGoals, data = Bundesliga,

+ subset = Year == 1995)

> mosaic(BL, shade = TRUE)
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Note that in extended mosaic plots, bullets drawn for zero cells are shaded, too, bringing out
non-zero residuals, if any.
A shading function building upon shading_hsv() is shading_Friendly(), implementing the
shading introduced by Friendly (1994). In addition to the defaults of the HSV shading, it uses the
border color and line type to redundantly code the residuals’ sign. The following example again
uses the Bundesliga data from above, this time using the Friendly scheme and, in addition, an
alternative legend (see Figure 23, right):

> mosaic(BL, gp = shading_Friendly, legend = legend_fixed,

+ zero_size = 0)
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Figure 23: The Bundesliga data for 1995. Left: Non-significant χ2 test. Right: using the Friendly
shading and a legend with fixed bins.

(The zero_size = 0 argument removes the bullets indicating zero observed values. This feature
is not provided in the original SAS implementation of the Friendly mosaic plots.)
A more“advanced” function building upon shading_hcl() is shading_max(), using the maximum
statistic both to conduct the independence test and to visualize significant cells causing the rejec-
tion of the independence hypothesis (Meyer et al. 2003; Zeileis et al. 2005). The level argument
of shading_max() then can be used to specify several confidence levels from which the correspond-
ing cut-off points are computed. By default, two cut-off points are computed corresponding to
confidence levels of 90% and 99%, respectively. In the following example, we investigate the effect
of a new treatment for rheumatoid arthritis on a group of female patients using the maximum
shading (see Figure 24):

> set.seed(4711)

> mosaic(~Treatment + Improved, data = Arthritis, subset = Sex ==

+ "Female", gp = shading_max)

The maximum test is significant although the residuals are all in the [−2, 2] interval. The
shading_hcl() function with default cut-off points would not have shown any color. In ad-
dition, since the test statistic is the maximum of the absolute Pearson residuals, each colored
residual violates the null hypotheses of independence, and thus, the “culprits” can immediately be
identified.
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Figure 24: The Arthritis data (female patients) with significant maximum test.
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4. Labeling

One of the major enhancements in package vcd compared to mosaicplot() and assocplot() in
base R is the labeling in the strucplot framework which offers more features and greater flexibility.
Like shading, spacing, and drawing of legend and core plot, labeling is now carried out by grapcon
functions, rendering labeling completely modular. The user supplies either a labeling function,
or, alternatively, a generating function that parameterizes a labeling function, to strucplot()
which then draws the labels. Labeling is well-separated from the actual plotting that occurs in the
low-level core functions. It only relies on the viewport tree produced by them, and the dimnames
attribute of the visualized table. Labeling functions are grapcons that “add ink to the canvas”: the
drawing of the labels happens after the actual plot has been drawn by the core function. Thus, it is
possible to supply one’s own labeling function, or to combine some of the basic functions to produce
a more complex labeling. In the following, we describe the three basic modules (labeling_text(),
labeling_list(), and labeling_cells()) and derived functions that build upon them.

4.1. Labels in the borders: labeling_text()

labeling_text() is the default for all strucplot displays. It plots labels in the borders similar to
the mosaicplot() function in base R, but is much more flexible: it is not limited to 4 dimensions,
and the positioning and graphical parameters of levels and variable names are customizable. In
addition, the problem of overlapping labels can be handled in several ways.
As an example, again consider the Titanic data: by default, the variable names and levels are
plotted “around” the plot in a counter-clockwise way (see Figure 25, top left):

> mosaic(Titanic)

Note that the last two levels of the survived variable do overlap, as well as some adult and child
labels of the age Variable. This issue can be addressed in several ways. The “brute force” method
is to enable clipping for these dimensions (see Figure 25, top right):

> mosaic(Titanic, labeling_args = list(clip = c(Survived = TRUE,

+ Age = TRUE)))

The clip parameter is passed to the labeling function via the labeling_args argument which
takes a list of parameters. clip itself takes a vector of logicals (one for each dimension). Almost
all vectorized arguments in the strucplot framework can be abbreviated in the following way:
unnamed components (or the defaults, if there are none) are recycled as needed, but overridden
by the named components. Here, the default is FALSE, and therefore clipping is enabled only for
the survived and age variables. A more sensible solution to the overlap problem is to abbreviate
the levels (see Figure 25, middle left):

> mosaic(Titanic, labeling_args = list(abbreviate = c(Survived = TRUE,

+ Age = 3)))

The abbreviate argument takes a vector of integers indicating the number of significant characters
the levels should be abbreviated to (TRUE is interpreted as 1, obviously). Abbreviation is performed
using the abbreviate() function in base R. Another possibility is to rotate the levels (see Figure 25,
bottom):

> mosaic(Titanic, labeling_args = list(rot_labels = c(bottom = 90,

+ right = 0), offset_varnames = c(right = 1), offset_labels = c(right = 0.3)),

+ margins = c(right = 4, bottom = 3))

Finally, we could also inhibit the output of repeated levels (see Figure 25, middle right):
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Figure 25: Examples for possible labeling strategies for the Titanic data mosaic. Top left: default
labeling (many labels overlap). Top right: with clipping turned on. Middle left: Age and Survived
labels abbreviated. Middle right: Age labels not repeated. Bottom: Age and Survived labels
rotated.
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> mosaic(Titanic, labeling_args = list(rep = c(Survived = FALSE,

+ Age = FALSE)))

We now proceed with a few more “cosmetic” features (which do not all produce satisfactory results
for our sample data). A first simple, but effectful modification is to position all labels and variables
left-aligned (see Figure 26, top left):

> mosaic(Titanic, labeling_args = list(pos_varnames = "left",

+ pos_labels = "left", just_labels = "left", rep = FALSE))

Note that obviously we need to change the justification to "left" as well. We can achieve the
same effect by using the convenience function labeling_left():

> mosaic(Titanic, labeling = labeling_left)

Next, we show how to put all levels to the bottom and right margins, and all variable names to
the top and left margins (see Figure 26, top right):

> mosaic(Titanic, labeling_args = list(tl_labels = FALSE,

+ tl_varnames = TRUE, abbreviate = c(Survived = 1,

+ Age = 3)))

The tl foo (“top left”) arguments are TRUE by default. Now, we will add boxes to the labels and
additionally enable clipping (see Figure 26, bottom left):

> mosaic(Titanic, labeling_args = list(tl_labels = FALSE,

+ tl_varnames = TRUE, boxes = TRUE, clip = TRUE))

The values to boxes and clip are recycled for all dimensions. The result is pretty close to what
calling mosaic() with the labeling_cboxed() wrapper does, except that variables and levels, by
default, are put to the top and to the left of the plot:

> mosaic(Titanic, labeling = labeling_cboxed)

Another variant is to put the variable names into the same line as the levels (see Figure 26, bottom
right—clipping for Survived and Age is, additionally, disabled, and Age abbreviated):

> mosaic(Titanic, labeling_args = list(tl_labels = TRUE,

+ boxes = TRUE, clip = c(Survived = FALSE, Age = FALSE,

+ TRUE), abbreviate = c(Age = 4), labbl_varnames = TRUE),

+ margins = c(left = 4, right = 1, 3))

labbl_varnames (“variable names to the bottom/left of the labels”) is a vector of logicals indicating
the side for the variable names. The resulting layout is close to what labeling_lboxed() produces,
except that variables and levels, by default, are left-aligned and put to the bottom and to the right
of the plot:

> mosaic(Titanic, labeling = labeling_lboxed, margins = c(right = 4,

+ left = 1, 3))

A similar design is used by the doubledecker() function.

4.2. Labels in the cells: labeling_cells()

This labeling draws both variable names and levels in the cells. As an example, we use the PreSex
data on pre- and extramarital sex and divorce (see Figure 27, top left):
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Figure 26: Advanced strategies for labeling of the Titanic data. Top left: left aligning of both
variable names and labels. Top right: changes in the margins (all variable names are in the top
and left margins, and all labels in the bottom and right margins). Bottom left: clipping turned on,
and boxes used. Bottom right: variable names beneath levels, clipping disabled for the survival
and age variables, and Age abbreviated.
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> mosaic(~MaritalStatus + Gender, data = PreSex, labeling = labeling_cells)

In the case of narrow cells, it might be useful to abbreviate labels and/or variable names and turn
off clipping (see Figure 27, top right):

> mosaic(~PremaritalSex + ExtramaritalSex, data = PreSex,

+ labeling = labeling_cells(abbreviate_labels = TRUE,

+ abbreviate_varnames = TRUE, clip = FALSE))

For some data, it might be convenient to combine cell labeling with border labeling as done by
labels_conditional() (see Figure 27, bottom left):

> mosaic(~PremaritalSex + ExtramaritalSex | MaritalStatus +

+ Gender, data = PreSex, labeling = labeling_conditional(abbreviate_varnames = TRUE,

+ abbreviate_labels = TRUE, clip = FALSE, gp_text = gpar(col = "red")))

Additionally, the cell labeling allows the user to add arbitrary text to the cells by supplying a
character array in the same shape as the data array to the text argument (cells with missing
values are ignored). In the following example using the Titanic data, this is used to add all
observed values greater than 5 to the cells after the mosaic has been plotted (see Figure 27,
bottom right):

> mosaic(Titanic, labeling_args = list(abbreviate = c(Survived = 1,

+ Age = 4)), pop = FALSE)

> tab <- ifelse(Titanic < 6, NA, Titanic)

> labeling_cells(text = tab, clip = FALSE)(Titanic)

4.3. A simple list of labels: labeling_list()

If problems with overlapping labels cannot satisfactorily resolved, the last remedy could be to
simply list the levels below the plot (see Figure 28):

> mosaic(Titanic, labeling = labeling_list, margins = c(bottom = 5))

The number of columns can be specified.

5. Spacing

Spacing of strucplot displays is customizable in a similar way than shading. The spacing argument
of the strucplot() function takes a list of unit vectors, one for each dimension, specifying the
space between the tiles corresponding to the levels. Consider again the introductory example of
the Arthritis data (Figure 1). Since we are interested in the effect of the medicament in the
placebo and treatment groups, a mosaic plot is certainly appropriate to visualize the three levels
of Improved in the two Treatment strata. Another conceptual approach is to use spine plots
with highlighting (Hummel 1996). A spine plot is a variation of a bar plot where the heights
of the bars are held constant, whereas the widths are used to represent the number of cases in
each category. This is equivalent to a mosaic plot for a one-way table. If a second (indicator)
variable is highlighted in a spine plot, we obtain a display equivalent to a simple mosaic display
for a two-way table, except that no space between the levels of the highlighted variable is used.
In the Arthritis example, we will highlight patients with Marked improvement in both groups.
To obtain such a display within the strucplot framework, it suffices to set the space between the
Improved tiles to 0 (see Figure 29):
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Figure 27: Cell labeling. Top left: default labeling using the PreSex data. Top right: abbreviated
labels. Bottom left: conditional labeling (labels abbreviated and in red for clarity). Bottom right:
user-supplied text (observed frequencies exceeding 5) added to a mosaic display of the Titanic
data. Note that clipping is on by default (top left), and has explicitly been turned off for the three
other plots.
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> (art <- structable(~Treatment + Improved, data = Arthritis,

+ split_vertical = TRUE))

Treatment Placebo Treated
Improved
None 29 13
Some 7 7
Marked 7 21

> (my_spacing <- list(unit(0.5, "lines"), unit(c(0, 0),

+ "lines")))

[[1]]
[1] 0.5lines

[[2]]
[1] 0lines 0lines

> my_colors <- c("lightgray", "lightgray", "black")

> mosaic(art, spacing = my_spacing, gp = gpar(fill = my_colors,

+ col = my_colors))

Note that the default and formula methods for mosaic() provide a convenience interface for
highlighting. A similar plot (with slightly different shading) than the previous one can be obtained
using:

> mosaic(Improved ~ Treatment, data = Arthritis, split_vertical = TRUE)

The strucplot framework also provides a set of spacing grapcon generators which compute suitable
spacing objects for typical applications. The simplest spacing is spacing_equal() that uses the
same space between all tiles (see Figure 30, top left):

> mosaic(art, spacing = spacing_equal(unit(2, "lines")))

spacing_equal() is the default grapcon generator for two-dimensional tables. Slightly more
flexible is spacing_dimequal() that allows an individual setting for each dimension (see Figure 30,
top right):

> mosaic(art, spacing = spacing_dimequal(unit(1:2, "lines")))

The default for multi-way contingency tables is spacing_increase() which uses increasing spaces
for the dimensions. The user can specify a start value and the increase factor (see Figure 30, bottom
left):

> mosaic(art, spacing = spacing_increase(start = unit(0.5,

+ "lines"), rate = 1.5))

For the arthritis example above, we could as well have used spacing_highlighting() which
is similar to spacing_increase() but sets the spacing in the last splitting dimension to 0 (see
Figure 30, bottom right):

> mosaic(art, spacing = spacing_highlighting, gp = my_colors)
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Figure 29: Spine plot for the Arthritis data using the strucplot framework.
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Figure 30: Varying spacing for the Arthritis data. Top left: equal spacing for all dimensions. Top
right: different spacings for individial dimensions. Bottom left: increasing spacing. Bottom right:
spacing used for highlighting.
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Finally, spacing_conditional() can be used for visualizing conditional independence: it com-
bines spacing_equal() (for the conditioned dimensions) and spacing_increase() (for the con-
ditioning dimensions). As an example, consider Figure 3: the spacing clearly allows to better dis-
tinguish the conditioning variables (Gender and MaritalStatus) from the conditioned variables
(PremaritalSex and ExtramaritalSex). This spacing is the default when conditional variables
are specified for a strucplot display (see Section 2).

6. Example: Ovarian cancer survival

In the following, we demonstrate some of the described techniques in analyzing a data set origi-
nating from (Obel 1975) (taken from Andersen 1991) about a retrospective study of ovary cancer
carried out in 1973. Information was obtained from 299 women, who were operated for ovary can-
cer 10 years before. The data consists of four binary variables: the stage of the cancer at the time
of operation (levels: early, advanced), the type of operation performed (radical, limited),
the survival status after 10 years (yes, no), and xray indicating whether X-ray treatment was
received (yes, no).
The dataset in vcd comes pretabulated in a data frame, so we first create the four-way table:

> tab <- xtabs(Freq ~ stage + operation + xray + survival,

+ data = OvaryCancer)

A “flattened” textual representation can be obtained using structable():

> structable(survival ~ ., data = tab)

survival no yes
stage operation xray
early radical no 10 41

yes 17 64
limited no 1 13

yes 3 9
advanced radical no 38 6

yes 64 11
limited no 3 1

yes 13 5

A first overview can be obtained using a pairs plot (Figure 31):

> dpa <- list(var_offset = 1.2, rot = -30, just_leveltext = "left")

> pairs(tab, diag_panel_args = dpa)

The pairs plot, by default, creates mosaic displays for all pairwise variable combinations, and
bar plots in the diagonal to visualize the absolute frequencies of the variables. The var_offset
argument modifies the offset of the (centered) variable names to avoid overlap with the bars. Ad-
ditionally, we use the rot and the just_leveltext arguments to rotate the level names, again
to avoid their overlap. First, we consider the marginal distributions. The study design involved
(nearly) the same number of survived (150) and deceased (149) patients. Similarly balanced, 158
cases were in an advanced and 141 in an early stage. Most patients (251, 84%) were treated with
a radical operation, and 186 (62%) were submitted to X-ray treatment. Next, we inspect the
two-way interaction of the influencing factors (stage, operation, and xray): the corresponding
mosaics exhibit symmetric, regular shapes with aligned tiles, which indicate no marginal interac-
tion between these variables. The same is true for the interactions of survival with operation
and xray, respectively. Only the stage seems to influence survival: here, the tiles are “shifted”.
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Figure 31: Pairs plot for the OvaryCancer data showing mosaic displays for all pairwise distribu-
tions and bar plots for all marginal distributions.

A different view on the data, focused on the influence of the explanatory variables on Survival,
can be obtained using a doubledecker plot (Figure 32):

> doubledecker(survival ~ stage + operation + xray, data = tab)

From a technical point of view, the display is constructed as a mosaic plot showing the conditional
distribution of survival, given xray, given operation, given stage, with vertical splits for the
conditioning variables and horizontal ones for survival. Additionally, there is zero space between
the tiles of the last dimension and a binary shading is used for survived and deceased patients.
Conceptually, this plot is interpreted as a mosaic plot of just the influencing variables, with
survival highlighted in the tiles. Thus, the plot really shows the influence of the explanatory
variables on survival. Clearly, the survival rate is higher among patients in an early stage, but
neither radical operation nor X-ray treatment seem to improve the situation. From this exploratory
phase, the survival rate seems to be slightly higher for patients who received a limited operation
only, whereas the effect for X-ray treatment is less marked.
To visualize inference results, we can make use of residual-based shadings, investigating log-linear
models for the four-way table. Figure 33 visualizes the null model, where survival is independent
from the combined effect of operation, X-ray treatment, and stage:

> split <- c(TRUE, TRUE, TRUE, FALSE)

> mosaic(tab, expected = ~survival + operation * xray *

+ stage, split_vertical = split)

The model is clearly rejected (p-value: 0.000). From the exploratory phase of our analysis, we
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Figure 32: Doubledecker plot for the OvaryCancer data showing the conditional distribution of
X-ray, given operation, given stage, and with survival highlighted.

(only) suspect stage to be influential on the survival rate. A corresponding hypothesis is that
survival be independent of xray and operation, given stage. The model is specified using the
expected argument, either using the loglin() interface or the loglm() formula interface (the
resulting mosaic plot is shown in Figure 34):

> mosaic(tab, expected = ~(survival + operation * xray) *

+ stage, split_vertical = split)

Thus, based on this data, only pre-diagnosis seems to matter in ovarian cancer therapy.

7. Conclusion

In this paper, we describe the “strucplot” framework for the visualization of multi-way contingency
tables. Strucplot displays include popular basic plots such as mosaic, association, and sieve plots,
integrated in a unified framework: all can be seen as visualizations of hierarchical conditional flat
tables. Additionally, these core strucplot displays can be combined into more complex, specialized
plots, such as pairs and trellis-like displays for visualizing conditional independence. Residual-
based shadings permit the visualization of log-linear models and the results of independence tests.
The framework’s modular design allows flexible customization of the plots’ graphical appearance,
including shading, labeling, spacing, and legend, by means of graphical appearance control (“grap-
con”) functions. These “graphical hyperparameters” are customized and created by generating
functions. Our work includes a set of predefined grapcon generators for typical analysis tasks, and
user-level extensions can easily be added.
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A. Data sets

The data set names in the paper are those from the R system. In the following, we give a short
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Arthritis Data from a double-blind clinical trial investigating a new treatment for rheumatoid
arthritis. Source: Koch and Edwards (1988). Taken from: Friendly (2000). Package: vcd.
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HairEyeColor Distribution of hair and eye color and gender in 592 statistics students. The
gender information is artificial. Source: Snee (1974). Taken from: Friendly (2000). Package:
datasets (included in base R).

OvaryCancer Data about a retrospective study of ovary cancer carried out in 1973. Information
was obtained from 299 women, who were operated for ovary cancer 10 years before. Source:
Obel (1975). Taken fromn: Andersen (1991). Package: vcd.

PreSex Data on pre- and extra-marital sex and divorce. Source: Thornes and Collard (1979).
Taken from Gilbert (1981). Package: vcd.

Titanic Information on the fate of passengers on the fatal maiden voyage of the ocean liner
“Titanic”, summarized according to economic status (class), gender (Sex), age and survival.
Data originally collected by the British Board of Trade in their investigation of the sinking.
Taken from: Dawson (1995). Package: datasets (included in base R).

UCBAdmissions Aggregate data on applicants to graduate school at Berkeley for the six largest
departments in 1973 classified by admission and gender. Source: Bickel, Hammel, and
O’Connell (1975). Taken from: Friendly (2000). Package: datasets (included in base R).
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