

A V2X Message Evaluation Methodology and Cross-Domain Modeling of Safety Applications in V2Xenabled E/E- Architectures

<u>Harald Bucher</u>, Marius-Florin Buciuman, Alexander Klimm, Oliver Sander, Jürgen Becker

Outline

- Motivation & Challenges
- Fundamentals
- Heterogeneous Co-Simulation Tool-Chain
- V2X Message Evaluation Methodology
 - System Design
 - Cluster-based Message Evaluation Strategy
 - Cost Functions and Acceptance Policies
 - Network Monitoring and Evaluation
- Case Studies: Cross-Domain CACC Evaluation
 - Scenario I Plattoon Turnaround: Message Savings
 - Scenario II CACC Verification

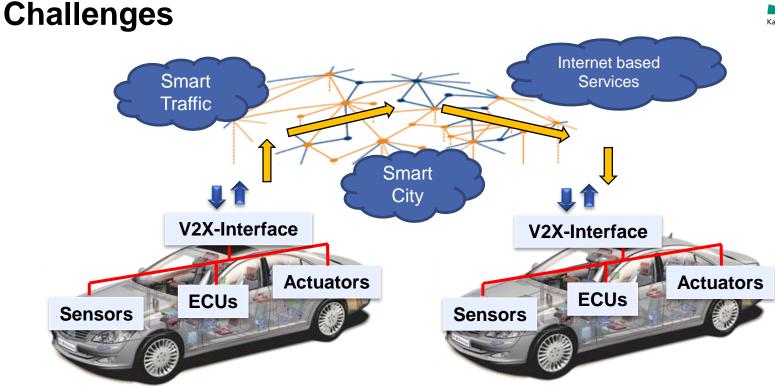
Summary & Outlook

Motivation

- Communication between vehicles as well as infrastructure and environment (V2X Communication)
 - Enlargement of information exchange area beyond line of sight by cooperative applications

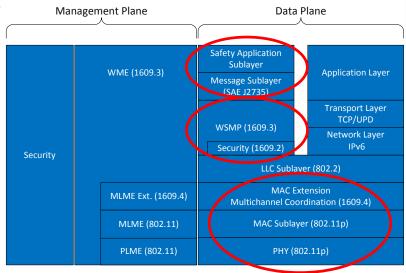
Enhancement of Efficiency

- Traffic Flow Management
- Energy Usage
- Energy Preservation
- •


. . .

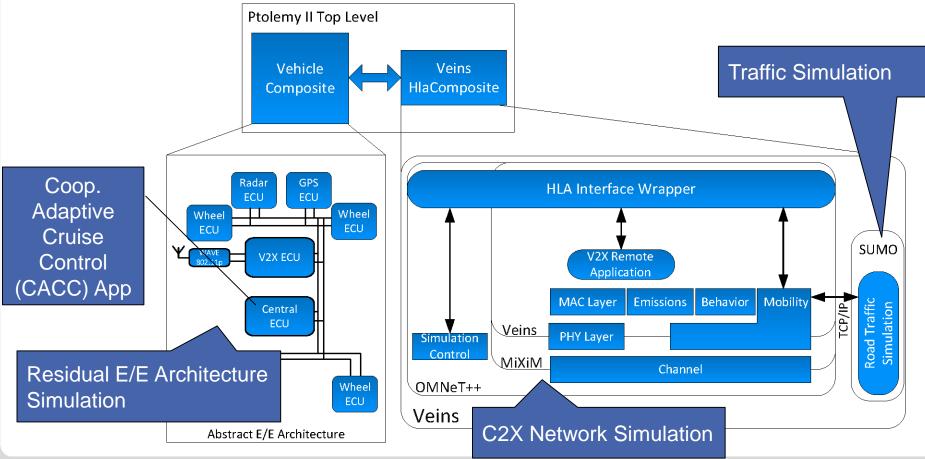
Increasing Vehicle Safety

- Collision Warning
- Adaptive Cruise Control
- Traffic Jam Warning


Challenge I: How to holistically model and simulate V2X processing and communication chain?

Challenge II: How to cope with heavy incoming data traffic (up to 2500 Msg/s*) in E/E Architecture and (real-time) safety applications?

Fundamentals – V2X Communication


- Vehicles regularly broadcasting their state as beacons or SAE Basic Safety Message (BSM) at 2-10Hz
- New Protocol and Message Type with minimized protocol overhead optimized for V2X and safety applications
 - PHY & MAC based on ordinary Wi-Fi with some extensions
 - One Control Channel (CCH) for Safety Messages and Beacons
 - 4-6 Service Channels for non-safety traffic
 - IEEE WAVE Short Message Protocol (WSMP)
 - IEEE WAVE Short Message (WSM) contains
 - Service Identifier (PSID)
 - Priority
 - Channel Number
 - Receiver Address
 - Payload (e.g. BSM)
 - ...

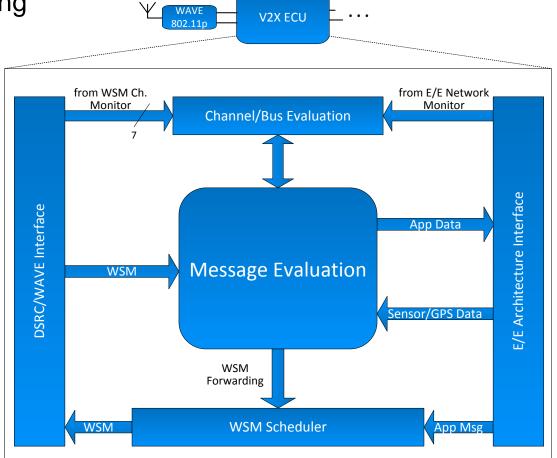
Solution Challenge I: Heterogeneous Co-Simulation Tool-Chain*

- Framework based on Ptolemy II as central heterogeneous manager tool and High-Level Architecture (HLA) as simulation backbone
- Used for Case Studies

6 26.08.2015

* C. Roth, H. Bucher et al.,"A Simulation Tool Chain for Investigating Future V2X-based Automotive E/E Architectures," in Embedded Real Time Software and Systems (ERTS²), 7th European Congress on, Feb. 2014, pp. 1739-1748.

Solution Challenge II: Proposed V2X Message Evaluation Methodology for Safety Applications

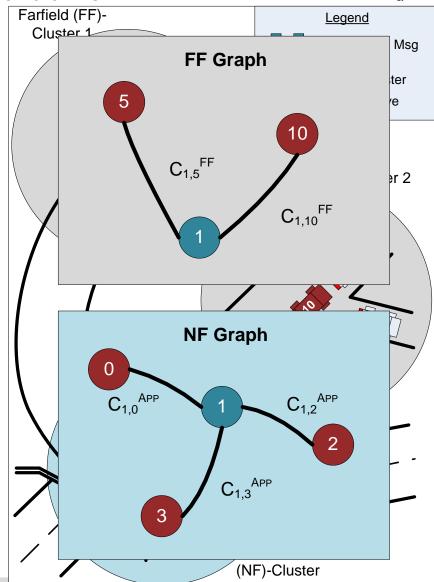


- Goal: Reduce internal E/E processing efforts and network traffic by discarding irrelevant V2X messages
- ldea
 - WAVE compliant methodology
 - Needs only beacon's WSM header and payload data for evaluation
 - *Cluster-based* evaluation reduces evaluation complexity
 - Adaptive Acceptance Policies based on network and vehicle state monitoring

V2X Message Evaluation System Design

Intelligent Gateway inside V2X ECU for evaluation based on incoming beacons as well as local sensor data and network/vehicle state monitoring

8 26.08.2015 H. Bucher – A V2X Message Evaluation Methodology and Cross-Domain Modelling of Safety Applications in V2X-enabled E/E-Architectures

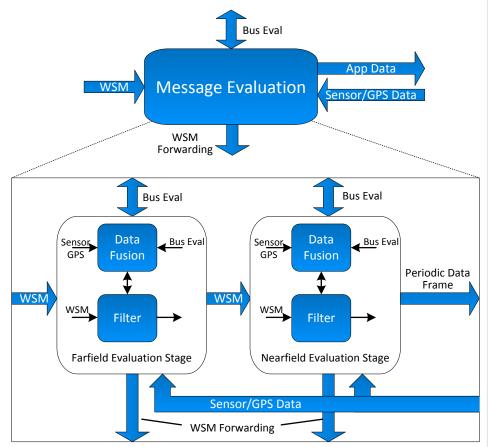


Cluster-based V2X Message Evaluation

- Create virtual traffic view
- Classification into *Farfield* and *Nearfield* Networks (FFN / NFN)
 - Vehicles within NF range are potentially safety-critical
 - Vehicles outside NF range are clustered

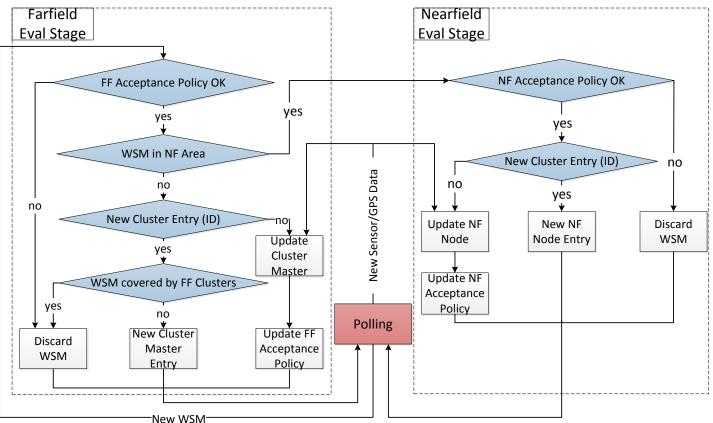
→ FF Master/Slave with own NF
 range (First-Come-First-Serve)
 → inherent prefiltering of slaves

- Weighting of relations between nodes (vehicles) with costfunctions
 - Generic FF function
 - individual application-specific nearfield functions



9 26.08.2015 H. Bucher – A V2X Message Evaluation Methodology and Cross-Domain Modelling of Safety Applications in V2X-enabled E/E-Architectures

Refined Cluster-based V2X Message Evaluation System


- NF and FF Stage composed of
 - Static *Filter* Unit
 - Dynamic Data Fusion Unit
- Filter Unit
 - Compares current Acceptance Policies with incoming WSM data
- Data Fusion Unit
 - Determines Acceptance Policies based on network monitoring and vehicle state
 - Forwards incoming event-driven WSMs based on PSID
 - Calculates cost functions C^{FF} and $C^{NF(CACC)}$
 - Periodic forwarding of most relevant NF data frames to destination application (in this work CACC)

Hybrid Clustering and Hierarchical Evaluation Strategy Procedure

- Update FF/NF Node: Updates mobility information between local vehicle v_i and remote vehicle v_j and calculates cost functions $C_{i,j}^{FF} \forall j \in FFN$ and $C_{i,j}^{CACC} \forall j \in NFN, j \neq i$
- Update FF/NF Acceptance Policy: Update Acceptance Policies A_{FF} and A_{NF} based on cost function and vehicle state as well as network utilization

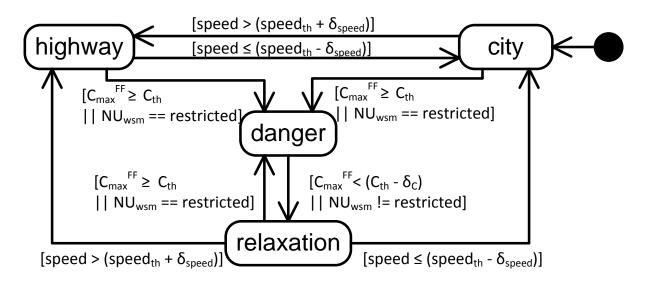
 11
 26.08.2015
 H. Bucher – A V2X Message Evaluation Methodology and Cross-Domain Modelling of Safety Applications in V2X-enabled E/E-Architectures

Cost Functions and Acceptance Policy Sets

• FF cost function detects hot-spots and serves as premature warning

 $\begin{aligned} C_{i,j}^{FF} &= a * compDriveDir() + b * psidEval() + c * normDistance() + d * compRelPos(), \\ a &= c = 0.1, b = 0.5, d = 0.3 and a + b + c + d = 1.0 \end{aligned}$

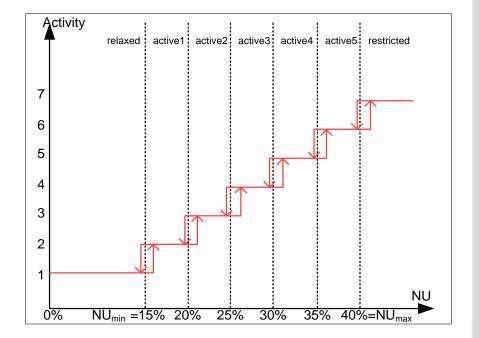
- NF cost function for detection of the leading vehicle for CACC app.
 - CACC Frame Rate $\lambda_{CACC} = 10$ Hz


 $C_{i,j}^{CACC} = compDriveDir() * normDistance() * compRelPos(), [0.0, 1.0]$

- Individual strong and weak Acceptance Policies for FF and NF
 - $A_{FF} = \{ID, psid, prio, age, range\}$
 - $A_{NF} = \{prio, age, range\}$

Acceptance Policy Adjustments

• *A_{FF}* are mainly determined by *Driving State FSM*



- A_{NF} must not depend on FSM but mainly on internal network utilization (NU) because of the prefiltering in FF stage
 - High network utilization results in strong policies in order to relax internal network traffic for safety critical applications

Network Monitoring and Evaluation

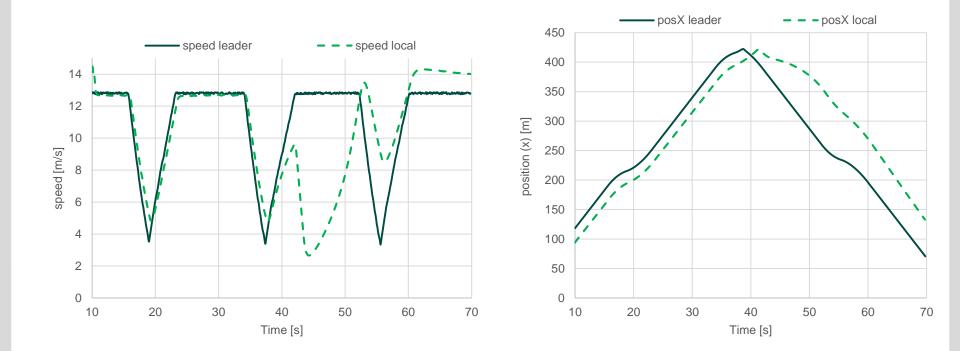
- Protocol independent metric for monitoring
 - Based on byte-rate B_{wsm}, B_{ee} measured over time interval T and nominal byte-rate N_{wsm}, N_{ee}
- Smoothed linearly*
 - $NU_x(\tau) = 0.5 * NU_x(\tau 1) + 0.5 * \frac{B_x}{N_x},$ $x = \{wsm, ee\}$
- Discretized into 7 NU activity states*

14 26.08.2015 * "Intelligent Transport Systems (ITS); De-centralized Congestion Control Mechanisms for Intelligent Transport Systems operating in the 5 GHz range; Access layer part," ETSI TS 102 687 V1.1.1, Jul. 2011.

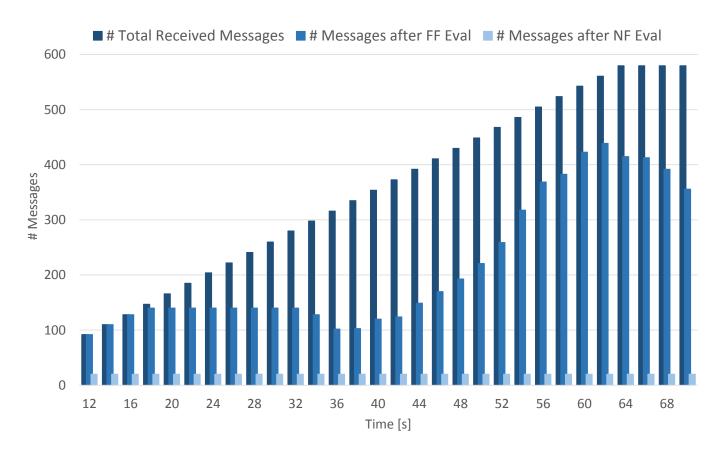
Case Study: Cross-Domain CACC Evaluation

- Simulation Setup
 - Plattoon following scenario
 - Approaching intersections every 200m
 - OMNeT++
 - Transmit Power: 20 dBm
 - WSM Channel: CCH
 - WSM Bitrate $N_{wsm} = 6 Mbps$
 - Beacon Rate: 10Hz
 - SUMO
 - Vehicles: 30
 - Max. Speed: ~50 km/h
 - Mobility Update Rate: 10Hz
 - Message Evaluation (Ptolemy)
 - Sensor Update Rate: 10Hz
 - $N_{ee} = 500kbps$
 - CACC Frame Rate $\lambda_{CACC} = 10Hz$
 - Acceptance Policies: cp. Table 1

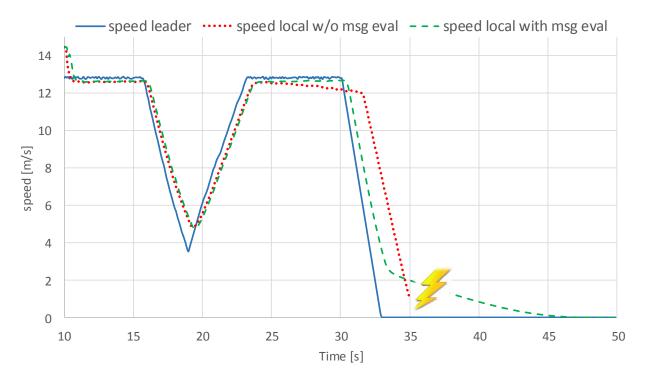
Table 1: Acceptance Policy Specification


A_{FF}		
	weak	strong
PSID	all	safety related
prio	all	prio(BSM)
range (x,y,z)	300m	150m
age	1.0s	0.5s
A_{NF}		
	weak	strong
prio	all	prio(BSM)
range (x,y,z)	300m	100m
age	0.5s	0.2s

 15
 26.08.2015
 H. Bucher – A V2X Message Evaluation Methodology and Cross-Domain Modelling of Safety Applications in V2X-enabled E/E-Architectures

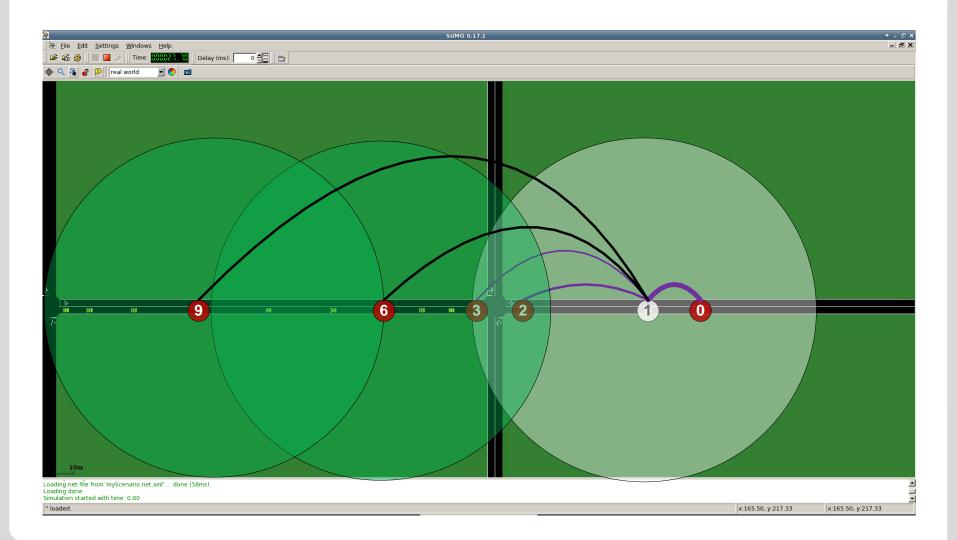

Results Scenario I: Plattoon Turnaround

Results Scenario I: Plattoon Turnaround



- Message Saving after FF Eval: Max. 69,3% and 37,0% in average
- Overall Message Saving after NF Eval: Max. 96,6% and 92,7% in average

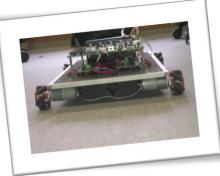
Results Scenario II: CACC Verification


- Broke down leading vehicle after 30s
 - Event-Driven warning with PSID 0×8005 sent out \rightarrow strong A_{FF}
- Modeled worst case reception latency per beacon inside E/E architecture model: 10ms*
- Comparison of CACC behavior w/ and w/o Message Evaluation

 18
 26.08.2015
 * SAE Standard for Dedicated Short Range Communications (DSRC) Message Set Dictionary, SAE Std J2735, Nov. 2009.

Example Simulation Snapshot

Summary


- Presentation of a WAVE compliant V2X Message Evaluation Methodology
 - Hierarchical vehicle clustering strategy
 - Vehicle and network (internal/external) state monitoring (Cost Functions)
 - Adaptive Acceptance Policies
- Modeled inside V2X ECU together with abstract E/E architecture components reducing internal network traffic and message processing efforts
- Model-based cross-domain evaluation of CACC application with co-simulation framework
 - Taking into account internal processing and communication latencies
 - Enables early and deterministic exploration and evaluation of (abstract) E/E architectures in V2X scenarios
- Significant reduction of V2X messages need to be processed during run-time
 - 92.7% in average in reverse traffic scenario
 - Accident-free CACC behavior in case of worst-case WSM latencies and broke down leading vehicle

Outlook

- Investigation of more complex traffic scenarios
- Deeper analysis of acceptance policies
- Analysis of power/energy consumption reduction of signature verification modules by the approach
- Implementing the approach on real target platforms
- Validation of the approach and CACC scenario by means of robot prototypes

 21
 26.08.2015
 H. Bucher – A V2X Message Evaluation Methodology and Cross-Domain Modelling of Safety Applications in V2X-enabled E/E-Architectures

Thank you very much for your attention!