How densely should Traffic BSs be deployed in Hyper Cellular Networks?

Zhisheng Niu

(Joint work with Dongxu Cao, Yiqun Wu, Shan Zhang, Jie Gong, Sheng Zhou)

Electronic Engineering Department, Tsinghua University
Tsinghua National Lab for Information Science and Technology
Dec.11, 2014 @ USC
Summary of Talk #1

• **What’s 5G?**
 – 5G should be a *paradigm shift* of cellular architecture for **Green** and **Smart**

• **Major approaches towards 5G**
 – Reduce Energy Waste by Adapting to Real-traffic Dynamics (*REWARD*)
 – Traffic-Aware Network Planning and Green Operation (*TANGO*)
 – Collaborative and Harmonized Open Radio Ubiquitous Systems (*CHORUS*)

• **A novel Hyper Cellular architecture for 5G**
 – Decoupling signaling functions from data services to make cellular more adaptive and intelligent
 – Always-on hyper cells for coverage guarantee and on-demand data cells

• **Enabling technologies for 5G**
 – Separation of control and data coverage
 – Resource/network virtualization and network dimensioning
 – Traffic adaptation technologies, including cell zooming, BS sleeping, coverage extension, ……
 – Energy-delay tradeoff can help to shift the peak and therefore save energy
Traffic BSs in Hyper Cellular Networks

- Deployment of TBSs is typically random
- Operation of TBSs can also be dynamic
How should TBSs be Deployed?

- How densely should TBSs be deployed?
- Which and when should TBSs go to sleep?
- How long should a TBS sleep (when to wake up a TBS)?
- How to guarantee coverage & QoS when TBSs are sleeping?
- How to associate a user to the best TBS?

All these answers depend on TRAFFIC dynamics
Non-Uniformity of Mobile Traffic

• Mobile traffic is highly dynamic \((\text{non-uniform})\) in both temporal and spatial domains

• Mobile traffic is getting more and more diverse in content \((\text{voice, data, video, IM, M2M, \ldots})\)

• Mobile traffic also shows group behavior in applications
Mobile Traffic Dynamics – Time Domain

• **Highly dynamic in time domain**
 – day and night, weekday and weekend (*large- and small-scale*)

Mobile Traffic Dynamics: Spatial Domain

Mobile Traffic Dynamics: Our Measurement

Spatial Dynamics

- Real Measurement, Chengdu, China, 1500 3G BSs, 2012.7, One week

(Rural) Outside 3rd Ring Road

(Urban) (2nd ~ 3rd Ring Road)

(Dense urban) (Inside 1st Ring Road)

More smooth

More burst

Close to **PPP**

(Poisson Point Process)
Two-step Modeling – BS Distribution

• GSM/TD-SCDMA network in a city of Zhejiang, China
 – 20 MSCs, 15000 BSs, 3000 km2, 7 million users
 – 5 billion records within Feb.-Mar., 2012
Two-step Modeling – BS Density

PPP (Poisson Point Process) approximation is not always appropriate. Better approximated by Power-Law distribution (non-uniformity).

Two-step Modeling - Traffic Distribution

Traffic volume in a cell in every one hour

Weibull distribution or Log-normal mixture have the best fits
Two-step Modeling - Peak Traffic Density

- Log-normal distribution is the best

\[
\text{Peak traffic density} = \frac{\text{Uplink peak traffic volume (byte)}}{\text{Voronoi cell area (km}^2\text{)}}
\]

Two-step Modeling - Peak Traffic Density

- Coherence distance of Traffic Density
 - the distance where auto-correlation reduced to half

Two-step Modeling - Peak Traffic Density

- Long-range dependence (fractal) of Peak Traffic Density

![Image of traffic density maps](image)

Macro Cells Small Cells

Two-step Modeling - Signaling Traffic \((\text{indirectly})\)

- Arrived customers in an unit area

\[
p_a(k) = \begin{cases}
1 - e^{-\lambda k} & \text{ exponential} \\
\frac{k^{-\alpha}}{\Gamma(\alpha)} & \text{ power-law} \\
\frac{2^{\frac{\alpha}{2}} \Gamma\left(\frac{\alpha+1}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)} k^{-\alpha} & \text{ log-normal} \\
\frac{2^{\frac{\alpha}{2}} \Gamma\left(\frac{\alpha+1}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)} k^{-\alpha} & \text{ weibull} \\
\frac{\sqrt{2 \pi} \Gamma\left(\frac{\alpha+1}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)} k^{-\alpha} & \text{ rayleigh} \\
\end{cases}
\]

Power law is also the best approximation \((\text{non-uniformity})\)

Two-step Modeling - Signaling Traffic (indirectly)

Call Inter-Arrival Time (Power-law Distribution)

Call Dwell Time (Power-law Distribution)

Two-step Modeling – IM Traffic (WeChat)

Two-step Modeling – IM Traffic (WeChat)

- **Modeling IM traffic by joint ON-OFF model**
 - OFF-period and ON-period of IM traffic are *strongly correlated*: there must be an ON-period of length l_m after an OFF-period of length t_{KA} (Keep Alive)

\[
f(t_m, \frac{l_m}{r}) = \begin{cases}
\alpha \cdot \delta(t_m - t_{KA}); & t_m = t_{KA}, l_m = l_{KA} \\
(1 - \alpha) \cdot f_i(t_m) \cdot g_u(l_m); & t_m < t_{KA} \\
0; & t_m > t_{KA}
\end{cases}
\]

- α: Ratio of KA messages
- g_u: Power-Law Dist.
- r: transmission rate

Two-step Modeling – Traffic Content Correlation

- Average Traffic Volume of 133 cells within one week

Traffic contents show some correlation and hence predictable to some extent.
Performance of the Prediction

- **Train** the prediction algorithm by randomly selecting 800 TV drama videos from YouKu
- **Predict** 800 TV dramas randomly selected from TuDou
- **Compared with the real hitting performance**
 - Average prob of over-prediction = 14.83%
 - Average prob of under-prediction = 17.9%

More than 82% hot TV dramas can be predicted with quite low complexity

Does Traffic Burstiness (Non-uniformity) Harms System Performance?

- **Traffic-Aware Dynamic BS Sleeping**
 - 10x10 hexagon cells
 - Cell Radius 200m
 - Binary BS power
 - Link parameters according to ITU micro-cell test environment
 - Traffic:
 - 3 hotspots in the network – space
 - Hotspot center traffic $\lambda_h(t)$, 1st tier traffic $\alpha_1 \lambda_h(t)$, 2nd tier traffic $\alpha_2 \lambda_h(t)$ others $\alpha_3 \lambda_h(t)$, $0 \leq \alpha_3 \leq \alpha_2 \leq \alpha_1 \leq 1$
 - Average intensity varies - time

Traffic-Aware Dynamic BS Sleeping

- Compare with uniform sleeping algorithm [Marsan’09]

DP algorithm being more energy saving gain as traffic non-uniformity increases
Problem: For given QoS, how densely should BSs be deployed and how should the spectrum be allocated?

- BS density should adapt to traffic dynamics (e.g., cell zooming, BS sleeping)
- **Deploying more smaller BSs may save energy?** (increasing sleeping opportunity)

Optimal BS Density for Green
(Regular Deployment Case)

- Normalized EC vs Inter-BS Distance ($P_B < 2\%$)

Deploying more smaller BSs can save energy!!!

Optimal BS Density for Green

(Heterogeneous & Stochastic Deployment Case)

1. Two-tier PPP models with BS density ρ_M and ρ_m
2. Always connect to the BS with highest SNR *(not necessarily the nearest)*

Weighted Poisson-Voronoi Tessellation:

\[f(A) \text{ follows } \Gamma\text{-distribution with density} \]

\[
\overline{A}_M = \mathbb{E}\{A_M\} = \frac{c}{c\rho_M + \rho_m}
\]

\[
\overline{A}_m = \mathbb{E}\{A_m\} = \frac{1}{c\rho_M + \rho_m}
\]

where:

\[c = \left(\frac{P_M}{P_m} \right)^{\frac{2}{\alpha}} \]

Verification of PPP Models

Bay area of Sydney, Australia.
Dense deployment: 81.64 per Km^2

Australian Geographical Radio Frequency Map (http://spench.net/)

Verification of PPP Models

Rural

Dense Urban

Distribution of BSs in a Square Area of a Chinese Operator

PDF

No. of BSs

PDF

No. of BSs

Real measurement
Poisson distribution

\[P_A(n) = \frac{(\lambda A)^n}{n!} \exp(-\lambda A). \]
Verification of Gamma Distribution

Distribution of Cell Areas of a Chinese Operator

\[f_{M}(x) = x^{K_{M}-1} \frac{\exp\left(-\frac{c\rho_{M} + \rho_{m}}{c} K_{M} x\right)}{\left(\frac{1}{c\rho_{M} + \rho_{m}} K_{M}\right)^{K_{M}} \Gamma(K_{M})} \]

\[f_{m}(x) = x^{K_{m}-1} \frac{\exp\left(-\frac{c\rho_{M} + \rho_{m}}{1} K_{m} x\right)}{\left(\frac{1}{c\rho_{M} + \rho_{m}} K_{m}\right)^{K_{m}} \Gamma(K_{m})} \]
QoS Metrics

• **Coverage Probability**

\[
\Pr(\text{SINR} \geq T) = \frac{1}{1 + T^{2/\alpha} \int_{T^{-2/\alpha}}^{\infty} \frac{1}{1 + x^{\alpha/2}} dx}
\]

If \(\alpha=4 \),

\[
\Pr(\text{SINR} \geq T) = \frac{1}{1 + \sqrt{T}(\pi/2 - \arctan(1/\sqrt{T}))}
\]

■ **Service Outage Probability**

\[
\mathbb{E}_{\{N, A\}} \left\{ \Pr \left(\frac{W}{N} \log_2(1 + \text{SINR}) < u \mid N, A \right) \right\}
\]

\[
= \mathbb{E}_A \mathbb{E}_{n \mid A} \left\{ \Pr \left(\frac{W}{n + 1} \log_2(1 + \text{SINR}) < u \mid n, A \right) \right\}
\]

\[
= \int_0^\infty \sum_{n=0}^\infty \Pr \left(\text{SINR} < 2^{\frac{(n+1)u}{W}} - 1 \mid n, A \right) P_A(n) f(A) dA.
\]
Optimal BS Density - Formulation
(Homogeneous Case)

\[
\begin{align*}
\min \quad & \rho \\
\text{s.t.} \quad & \int_0^\infty \sum_{n=0}^\infty \frac{1}{1 + (2(n+1) \frac{u}{W} - 1)^{\frac{2}{\alpha}}} \int_0^\infty \frac{1}{1 + x^{\alpha/2}} \, dx \\
& \frac{(\lambda A)^n}{n!} \exp(-\lambda A) \frac{K^K}{\Gamma(K)} A^{K-1} \exp(-K \rho A) \, dA \\
& \geq 1 - \eta.
\end{align*}
\]

(8)

Theorem 1. The optimal BS density in the interference-limited homogeneous cellular network (8) is linear with the user density, i.e., \(\rho^* \sim \lambda \).
Theorem 2. The optimal BS density in the interference-limited homogeneous cellular network (8) has an upper bound \(\hat{\rho} \), which satisfies the following expression:

\[
\frac{\alpha - 2}{2} \overline{\frac{u}{W}} \sum_{m=0}^{\infty} \left(\frac{4 - \alpha}{2} \overline{\frac{u}{W}} \right)^m \left\{ \frac{K \hat{\rho}}{(1 - 2^{(m+1)} \overline{\frac{u}{W}}) \lambda + K \hat{\rho}} \right\}^K = 1 - \eta. \tag{9}
\]

For the special case \(\alpha = 4 \), the upper bound has a closed-form expression:

\[
\bar{\rho} \triangleq \frac{\lambda}{W_u \log_2 \left(\frac{\alpha - 2 + 4 - \alpha}{2} \frac{1 - \eta}{1 - \eta} \right) - 1} \tag{10}
\]

Further, the upper bound \(\hat{\rho} \) has the following property as

\[
\lim_{\frac{u}{W} \to 0} \frac{\hat{\rho}}{\rho^*} = 1.
\]
Theorem 3. The optimal BS density in the interference-limited homogeneous cellular network (8) has a lower bound $\tilde{\rho}$, which satisfies the following expression:

$$\frac{1}{2} \sum_{m=0}^{\infty} 2^{-(\frac{3u}{4W} + 1)m - \frac{u}{4W}} \left\{ \frac{K \tilde{\rho}}{(1 - 2^{-\frac{3m+1}{4} \frac{u}{W}}) \lambda + K \tilde{\rho}} \right\}^K = 1 - \eta.$$

(14)

$\alpha=4$, $u=1\text{Mbps}$, and $W=20\text{MHz}$

$\alpha = 4$ and $\eta = 0.3$.

The ratio of user data threshold over network bandwidth (u/W)
Optimal BS Density and Tx Power
(Homogeneous Case)

Table: Optimal BS density with transmit power adaption (EARTH model)

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Rural</th>
<th>Suburban</th>
<th>Dense urban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed full transmit power</td>
<td>$\rho^* = 0.1384 \text{ BSs/Km}^2$</td>
<td>$\rho^* = 0.9424 \text{ BSs/Km}^2$</td>
<td>$\rho^* = 1.2713 \text{ BSs/Km}^2$</td>
</tr>
<tr>
<td></td>
<td>$P_M = 20W$</td>
<td>$P_M = 20W$</td>
<td>$P_M = 20W$</td>
</tr>
<tr>
<td>Optimal transmit power adaption</td>
<td>$\rho^* = 0.1604 \text{ BSs/Km}^2$</td>
<td>$\rho^* = 1.0699 \text{ BSs/Km}^2$</td>
<td>$\rho^* = 1.4121 \text{ BSs/Km}^2$</td>
</tr>
<tr>
<td></td>
<td>$P^*_M = 12.2W$</td>
<td>$P^*_M = 3.8W$</td>
<td>$P^*_M = 3.1W$</td>
</tr>
</tbody>
</table>

Conclusion: Joint BS density adjustment and transmit power adaption can help to save more energy!

Optimal BS Density - Performance
(Homogeneous Case)

Table: Optimal BS density for 3 typical scenarios (in BSs/Km2, EARTH model)

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>optimal BS density with noise</th>
<th>optimal BS density without noise</th>
<th>upper bound in Theorem 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td>0.1384</td>
<td>0.0542</td>
<td>0.0551</td>
</tr>
<tr>
<td>Suburban</td>
<td>0.9424</td>
<td>0.9017</td>
<td>0.9177</td>
</tr>
<tr>
<td>Dense urban</td>
<td>1.2713</td>
<td>1.2390</td>
<td>1.2610</td>
</tr>
</tbody>
</table>

Conclusion: Noiseless assumption is acceptable for suburban and dense urban scenarios, but not in rural scenario.
Optimal BS Density - Formulation
(Heterogeneous Case)

$$\min C_M \rho_M + C_m \rho_m$$

s.t. $$G_M = \mathbb{E}_{\{N_M, A_M\}} \left\{ \Pr \left(\frac{W}{N_M} \log_2(1 + \text{SINR}) < u \mid N_M, A_M \right) \right\} < \eta,$$

$$G_m = \mathbb{E}_{\{N_m, A_m\}} \left\{ \Pr \left(\frac{W}{N_m} \log_2(1 + \text{SINR}) < u \mid N_m, A_m \right) \right\} < \eta,$$

Coverage guarantee

$$\varnothing_0 \leq \rho_M \leq \rho_2,$$

$$\rho_1 \leq \rho_m \leq \rho_3.$$

where \(\{C_M, C_m\}\) are deployment (energy) cost of macro and micro BSs, respectively and

\[T \triangleq \frac{\rho_m}{\rho_M} \]

Optimal BS Density – Near-optimal Solution
(Heterogeneous Case)

\[\rho_M = \frac{1 - 2^{-\frac{u}{\bar{w}}}}{c + \tau \cdot K_M \left\{ [2^{-\frac{u}{\bar{w}}} (1 - \eta)]^{-\frac{1}{K_M}} - 1 \right\}} \lambda, \]

\[\tau^* = \begin{cases}
\min\{\tau_0, \tau_3\}, & 0 \leq \xi < \frac{1}{c}; \\
\max\{\tau_1, \tau_2\}, & \frac{1}{c} < \xi \leq 1.
\end{cases} \]

\[\xi = \frac{C_m}{C_M}; \quad c = \left(\frac{P_M}{P_m}\right)^{\frac{2}{\alpha}} \]

\[\tau_0 \approx \frac{1 - 2^{-\frac{u}{\bar{w}}}}{\rho_0 \log\left(\frac{1}{2^{-\frac{u}{\bar{w}}} (1-\eta)}\right)} c \lambda - c, \quad \tau_1 \approx \frac{1}{\rho_1 \log\left(\frac{1}{2^{-\frac{u}{\bar{w}}} (1-\eta)}\right)} \lambda - \frac{1}{c}, \]

\[\tau_2 \approx \frac{1 - 2^{-\frac{u}{\bar{w}}}}{\rho_2 \log\left(\frac{1}{2^{-\frac{u}{\bar{w}}} (1-\eta)}\right)} c \lambda - c, \quad \tau_3 \approx \frac{1}{\rho_3 \log\left(\frac{1}{2^{-\frac{u}{\bar{w}}} (1-\eta)}\right)} \lambda - \frac{1}{c}. \]
Optimal BS Density – Performance
(Heterogeneous Case)

\[\xi = \frac{C_m}{C_M} \]

Deployment energy cost ratio of micro- over Macro-BSs

\[C = \left(\frac{P_M}{P_m} \right)^{\frac{2}{\alpha}} \]

Approximation

Optimal

Network Energy Consumption

\[\rho_M^{+\xi_d}_M \]
Optimal BS Density – Optimal Policy
(Heterogeneous Case)

If $\xi < 1/c = 0.3162$, preferentially add micro BSs or sleep macro BSs
If $\xi > 1/c = 0.3162$, preferentially add macro BSs or sleep micro BSs

$$\xi = \frac{C_m}{C_M} ; \quad C = \left(\frac{P_M}{P_m}\right)^\frac{2}{\alpha}$$
Optimal BS Density – Performance
(Heterogeneous Case)

- **Dynamic BS Sleeping in Dense Urban Scenario** (EARTH Model)
 - $C_M = 780 + 28.2P_M$, $C_m = 112 + 5.2P_m$
 - $P_M = 20W$, $P_m = 2.42W \rightarrow \zeta = 0.0927 < c^{-1} = 0.3162$
 - Reference model: macro-only homogeneous network with no BS sleeping:
 total energy consumption = 3.26 KW/Km2

<table>
<thead>
<tr>
<th>Time</th>
<th>normalized traffic to the peak</th>
<th>macro BS sleeping probability $\frac{\rho_2 - \rho_M^*}{\rho_2 - \rho_0}$</th>
<th>micro BS sleeping probability $\frac{\rho_3 - \rho_m^*}{\rho_3}$</th>
<th>energy consumption (KW/Km2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00-11:00</td>
<td>90%</td>
<td>28.1%</td>
<td>0%</td>
<td>1.59</td>
</tr>
<tr>
<td>11:00-13:00</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>1.91</td>
</tr>
<tr>
<td>13:00-15:00</td>
<td>70%</td>
<td>84.2%</td>
<td>0%</td>
<td>0.95</td>
</tr>
<tr>
<td>15:00-18:00</td>
<td>80%</td>
<td>56.2%</td>
<td>0%</td>
<td>1.27</td>
</tr>
<tr>
<td>18:00-23:00</td>
<td>55%</td>
<td>100%</td>
<td>15.5%</td>
<td>0.68</td>
</tr>
<tr>
<td>23:00-09:00</td>
<td>20%</td>
<td>100%</td>
<td>72.5%</td>
<td>0.36</td>
</tr>
</tbody>
</table>

0.82 (average)
(75% saving)
Heterogeneous Networks with PSR

- **PSR** (Partial Spectrum Reuse) to reduce over-provisioning and potential interference (to macro BSs and among micro BSs)

- **Optimization Problem:**

 \[
 \min_{\beta} \quad \max \{ G_M(\beta), G_m(\beta) \}
 \]

 What’s the optimal $\beta = W_m/W_M$?

Lemma 1. In the heterogeneous cellular network model with the β-PSR scheme, the user SINR distribution follows:

$$\Pr(\text{SINR} \geq T) = \frac{1}{1 + \frac{c\rho_M + \beta \rho_m}{c\rho_M + \rho_m} T^{2/\alpha} \int_{T-2/\alpha}^{\infty} \frac{1}{1 + x^{\alpha/2}} \, dx}.$$ \hspace{1cm} (11)

Lemma 2. In the heterogeneous cellular network model with the β-PSR scheme, $G_M(\beta)$ is increasing, while $G_m(\beta)$ is decreasing with the PSR factor β.

Lemma 3. In the problem (3), the optimal PSR factor β^* is achieved if and only if,

$$G_M(\beta^*) = G_m(\beta^*).$$ \hspace{1cm} (15)
Optimal β^* in PSR

Theorem 1. In the heterogeneous cellular network model with the β-PSR scheme, the optimal PSR factor β^* of the problem (3) has the following property:

\[
\lim_{\frac{u}{W} \to 0} \beta^* = \frac{u_m}{u_M} \frac{c\rho_M + \rho_m + \lambda_m}{c\rho_M + \rho_m + c\lambda_M}
\]

If $\beta^* < 1$, allocate **FULL** spectrum to *macro* BSs and **PARTIAL** spectrum to *micro* BSs

If $\beta^* > 1$, allocate **PARTIAL** spectrum to *macro* BSs and **FULL** spectrum to *micro* BSs

\[
e = \frac{C_m}{C_M}; \quad c = \left(\frac{P_M}{P_m}\right)^{\frac{2}{\alpha}}
\]
Energy Saving Gain by PSR

PSR scheme can save up to 50% of network energy consumption
Application to Network Planning – Capacity Extension
(EARTH Model: Dense Urban, Peak Traffic increases up to 74.3/Km²)

\[\rho_M = 1 \text{ BS/km}^2 \ (\frac{3}{4} \text{ used for coverage}), \ EC = 5.9 \text{kW/km}^2 \]

Network Topology before capacity extension
- Macro BSs for coverage guarantee
- Other macro BSs (could be switched off)
- Newly added BSs for capacity extension

Adding macro BSs: \(\rho_M \rightarrow 1.75 \text{ BS/km}^2 \)
EC \(\rightarrow 3.56 \text{ kW/km}^2 \) (40% saving)

Adding micro-BSs: \(\rho_m \rightarrow 4.25/\text{Km}^2 \)
EC \(\rightarrow 1.87 \text{ kW/km}^2 \) (48% further savings)
Application to Energy Saving – BS Sleeping
(EARTH Model, Dense Urban)

Network Topology during Peak Traffic (75/Km²)

- ▲ Macro BSs for coverage guarantee
- ★★ Other macro BSs (could be switched off)
- ● Micro BSs

ρ_M = 1 BS/km², ρ_m = 4.25 BS/km², EC = 1.87 KW/Km²

Traffic Load up to 50% (37/Km²)

All unnecessary BSs going to sleep,
ρ_M = 0.75/km², EC = 0.97KW/Km² (↓50%)

Traffic load down to 20% (15/Km²)

Awake 35% micro BSs: ρ_m = 1.5 /km²,
EC = 1.18KW/Km2 (↓37%)
Summary

- **Modeling of traffic dynamics and traffic-aware network planning and operation**
 - Mobil traffic is highly dynamic in temporal, spatial, and content domains
 - Signaling and IM traffic are non-uniform either
 - Mobile Internet traffic and mobile video show strong group behavior and therefore should be served more intelligently by pushing and multicasting

- **Optimal BS density in heterogeneous networks**
 - If e is lower than a threshold $1/c$, deploying or switching on more *micro* BSs is more beneficial, and vice versa.
 - Heterogeneous cellular network with **BS sleeping** can reduce the total energy consumption by up to 75%
 - PSR scheme can save up to 50% of network energy consumption compared with no PSR schemes.
For more information,
visit http://network.ee.tsinghua.edu.cn/niulab/?category_name=publications