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Proinflammatory cytokines are potent mediators of numerous biological processes and are tightly regulated in the body. Chronic
uncontrolled levels of such cytokines can initiate and derive many pathologies, including incidences of autoimmunity and
cancer. Therefore, therapies that regulate the activity of inflammatory cytokines, either by supplementation of anti-inflammatory
recombinant cytokines or by neutralizing them by using blocking antibodies, have been extensively used over the past decades.
Over the past few years, new innovative biological agents for blocking and regulating cytokine activities have emerged. Here,
we review some of the most recent approaches of cytokine targeting, focusing on anti-TNF antibodies or recombinant TNF
decoy receptor, recombinant IL-1 receptor antagonist (IL-1Ra) and anti-IL-1 antibodies, anti-IL-6 receptor antibodies, and TH17
targeting antibodies. We discuss their effects as biologic drugs, as evaluated in numerous clinical trials, and highlight their
therapeutic potential as well as emphasize their inherent limitations and clinical risks. We suggest that while systemic blocking
of proinflammatory cytokines using biological agents can ameliorate disease pathogenesis and progression, it may also abrogate
the hosts defense against infections. Moreover, we outline the rational need to develop new therapies, which block inflammatory
cytokines only at sites of inflammation, while enabling their function systemically.

1. Introduction

The use of recombinant proteins as biological drugs has been
known for the past three decades; however, this field is contin-
uously emerging and in the last decade an increasing number
of new biologic entities (biologics) in the area of cytokines
were developed. Biologics can be an antibody which neutral-
izes an inflammatory cytokine or blocks its receptors, decoy
receptors targeting the cytokine, or a recombinant protein,
which can either be receptor agonist or, alternatively, an
antagonist that occupies and prevents receptor binding.

The benefits of cytokines as therapeutic targets are as
follows: (i) unlike in chemical drugs, specific protein which
mediate the inflammatory process can be inhibited; (ii)
cytokines are well studied in animal models using neu-
tralizing antibodies or genetic models like knockout mice;
thus the process in which these cytokines are involved can
be thoroughly researched; (iii) with the advancement of
biotechnology techniques, the expression and isolation of

highly purified recombinant proteins becomes a relatively
easier and cheaper process than in the past years.

The drawbacks of cytokine therapy come due to the basic
properties of cytokines: (i) cytokines are pleiotropic,meaning
that they affect several processes in parallel; (ii) cytokines
are also known to have redundancy, meaning that the effects
achieved by blocking one specific cytokine activity can be
compensated by others (although this can be also beneficial,
since a biological agent can be replaced to different cytokine
blocker when incomplete remission or in case of intolerance);
(iii) the cytokine network is a regulated and balanced system
and its alteration may lead to impaired immune response.
For example, inhibiting proinflammatory cytokines can result
in compromised host defense against infections. On the
other hand, inhibition of regulatory cytokines can result in
autoimmunity or tissue damage; (iv) the production and
manufacturing of biologics is still an expensive process,
since their production requires sterile conditions (i.e., GMP
conditions) and multiple stages of purification; (v) compared
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to chemical drugs, recombinant cytokines and antibodies
have limited shelf half-life, require special/controlled storage
conditions, and are typically administrated by a physician.

In this review we discuss some of the key approaches
of anticytokine blockers focusing on approved anti-
inflammatory biologics. In particular, we highlight their
beneficial effects and present their possible side effects and
risk factors. Most importantly, we suggest several potential
solutions for the anticytokine adverse effects and propose
new approaches to this emerging field.

2. Therapeutic Use of
Proinflammatory Cytokines

Cytokine therapy emerged from the need to increase immu-
nity against tumors using the lymphocyte activator and pro-
liferative factor, interleukin-2 (IL-2). Based on its remarked
efficacy in mice, cancer patients bearing renal cell carcinoma
(RCC) and melanoma were administered high doses of IL-2
in order to increase antitumor immunity [1, 2]. Unfortunately,
systemic administration of IL-2 has been related to severe
toxicity, mainly capillary leak syndrome, associated with
edema and hypotension, damage to the kidneys, heart, and
brain (as well as tachycardia, atrial fibrillation, fever and
chills, muscle and joint pain, and catheter related urinary
tract infections) [2, 3]. In spite of numerous restrictions
and warnings, a recombinant modified version of IL-2
(aldesleukin) was approved in 1992 for metastatic RCC and
in 1998 for metastatic melanoma patients [4].

As early as the 1990s, several years following the discovery
of IL-1 by Auron et al. [5], IL-1 was used to treat cancer
patients undergoing chemotherapy or patients suffering from
anemia. It was assumed that since IL-1 has neutrophilic
effects, it could restore neutrophil counts back to normal
numbers in neutropenic patients [6–8]. However, IL-1 is a
potent proinflammatory cytokine; thus the treatment resulted
in toxicity with side effects such as fever, rigors, fatigue, joint
aches, headache, and nausea.

Another example is IFN𝛼, a cytokine involved in the
response to viral infections. IFN𝛼 in a PEGylated form is
given in order to increase antiviral immunity by elevated
CD8+ cell response in cases of chronic hepatitis-B virus
(HBV) and hepatitis-C virus (HCV) [9, 10] or in the case of
immediate treatment for acute HCV. The IFN𝛼 can be given
alone [11, 12] or together with the nucleoside analog, ribavirin
[13].This treatment facilitates the clearance of the HCV virus
and can prevent the chronic disease which can result in cir-
rhosis and hepatocellular carcinoma [14].However, this type I
IFN cytokine can cause serious adverse effects that can result
in limitation of the doses given or even in discontinuation
of the treatment. Among these adverse effects are decreased
granulocytes and thrombocytes production in the bone-
marrow, flu-like symptoms, neuropsychiatric disorders, and
autoimmunity syndromes, mainly thyroiditis [15].

3. Anti-Inflammatory Cytokine Biologics

3.1. Anti-TNF-𝛼 Biologics. TNF-𝛼 is a proinflammatory
cytokine; it appears early during the response to trauma or

bacterial infections and was first cloned in 1985 by several
groups [16–19]. Initially it was described as a soluble factor
with two important abilities, inducing hemorrhagic necrosis
of tumors in vivo, combined with the ability to kill tumor
cells in vitro [20]. TNF-𝛼 is a central alarm cytokine, which
is mainly secreted from activated macrophages or dendritic
cells in response to ligation of pattern-recognition receptors.
Both TNF and IL-1 are attractive therapeutic targets, since
they are the upstream factors of the inflammatory cascade.
The role of TNF receptor signaling has been correlated
with several diseases including rheumatoid arthritis (RA),
Crohn’s disease, atherosclerosis, psoriasis, sepsis, diabetes,
and obesity [21]. TNF-𝛼 is expressed as a precursor, anchored
to the cell membrane and further cleaved to its soluble
form. TNF-𝛼 binds the inflammatory TNFR1 and regulatory
TNFR2 and in addition to the inflammatory cascade affects
cell death, proliferation, and differentiation [21].

The TNF-𝛼 inhibitor etanercept was the first biologic on
the market for the treatment of RA. Etanercept is a FC fused
recombinant form of a natural TNF inhibitor that was first
described in 1988 [22] and later was found to be a soluble
TNF receptor [23, 24]. Infliximab is a monoclonal chimeric
human-mouse anti-TNF antibody and was approved by the
FDA together with etanercept in 1998. Later on, by 2002,
a fully human monoclonal antibody against TNF-𝛼 (adal-
imumab) was approved as well. Etanercept and anti-TNF
antibodies carry differences in their abilities to bind TNF.
While infliximab binds both monomeric and trimeric forms
of TNF (the inactive and active forms), etanercept binds
mainly the active trimeric form in a less stable manner [25],
as well as binding TNF-𝛽 [26]. The anti-TNF antibodies are
capable of lysing cells they bind by recruiting the complement
system [27]. These differences appear in the molecules effec-
tiveness against different inflammatory diseases andmight be
related to the antibodies binding to membranal TNF-𝛼 on T
cells [28]. Infliximab was first approved for the treatment of
severe Crohn’s disease and later also for RA, where etanercept
was first approved only for the treatment of RA. Infliximab
was further approved for ulcerative colitis, psoriatic arthri-
tis, ankylosing spondylitis, and chronic plaque psoriasis,
and etanercept was further approved for psoriatic arthritis,
ankylosing spondylitis, chronic plaque psoriasis, and juvenile
idiopathic arthritis in children. Adalimumab is approved for
rheumatoid arthritis, psoriatic arthritis, ankylosing spondyli-
tis, Crohn’s disease, ulcerative colitis, moderate-to-severe
chronic psoriasis, moderate-to-severe hidradenitis suppura-
tiva, juvenile idiopathic arthritis, and noninfectious uveitis.
These days, certolizumab and golimumab are the newer, less
studied anti-TNF-𝛼 antibodiesmost recently approved by the
FDA for the treatment of RA, psoriatic arthritis, ankylosing
spondylitis, Crohn’s disease unresponsive to regular medica-
tions (certolizumab), and ulcerative colitis (golimumab).

Although the TNF inhibitors were shown effective for
the treatment of skin and joint inflammation [29], they
carry the risk of several adverse effects, mainly concerning
infections. TNF-𝛼 is a fundamental factor for fighting intra-
cellular bacteria and is therefore not surprising that TNF-
𝛼 inhibition was shown to increase the risk for reactivation
of tuberculosis [30]. In a 3-year French study of 69 newly
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diagnosed tuberculosis patients undergoing anti-TNF ther-
apy, it was concluded that anti-TNF antibodies (infliximab
and adalimumab) have a high risk for tuberculosis. Etaner-
cept, the soluble TNF receptor, also carries such a risk but at
a lower level [31]. It can be assumed that the differences in the
anti-TNF strategies, which allow antibodies to be more effec-
tive against IBD, affect also the ability to inhibit the immune
system to fight tuberculosis. Similarly, reactivation of HBV is
higher during TNF inhibition [32]. Additionally, RA patients
who were treated with anti-TNF antibodies experienced
a higher rate of outbreaks of herpes zoster virus (HZV)
compared to etanercept or disease-modifying antirheumatic
drug (DMARD) treatments [33]. Blocking TNF plays an
opposing role regarding the development of malignancies.
On the one hand, TNF is an inflammatory mediator and the
inflammatory process itself can lead to cancerous diseases
[34]; hence, inhibiting TNF, like other proinflammatory
molecules, can be beneficial in the aspect of cancer initiation
and progression. On the other hand, TNF plays a role in
cell proliferation, differentiation, and apoptosis [35], and,
therefore, its inhibition can be a result and indeed was
correlated with hematological malignancies, like increased
hepatosplenic T cell lymphoma in young IBD patients treated
with infliximab [36]. In addition, since TNF inhibitors are
immunosuppressive drugs, they carry the risk for develop-
ment ofmalignancies. Indeed, TNF inhibitors carry warnings
for increased risk of hematological malignancies in children,
adolescents, and young adults, primarily treated for ulcerative
colitis or Crohn’s disease also treated with immunosuppres-
sant (azathioprine and/or mercaptopurine). The fact that
TNF inhibitors are often combined with methotrexate which
also increases the risk for malignancy [37] and, in addition,
the association of diseases treated with TNF inhibitors, for
example, IBD or RA, with increased risk for cancer [38–
41] is making the direct link between TNF inhibitors and
malignancies harder to determine. TNF inhibition, using
infliximab or etanercept, was trialed for the treatment of
congestive heart disease and not only were they shown to
be inefficient but also increased the chance of hospitalization
or death due to heart failure [42, 43]. Patients treated
with anti-TNF therapy were also reported for increased risk
for demyelinating disorders, like multiple sclerosis, optic
neuritis, and acute transverse myelitis [44, 45]; paradoxical
psoriasis consisting of severe skin lesions was observed in
IBD patients treated with anti-TNF agents [46]. In addition,
unlike anti-TNF antibodies, etanercept, which is not effective
for the treatment of IBD,was correlatedwith the development
of newly diagnosed ulcerative colitis and Crohn’s disease
in treated patients [47, 48].

3.2. Anti-IL-1 Therapy. Following the failure to use IL-1 as
a therapeutic agent in order to treat neutropenic patients
and the increasing data demonstrating the potency of this
cytokine to induce inflammation, it was comprehended that
IL-1 inhibition rather than IL-1 administration could be
beneficial. Following inflammatory stimuli, like bacterial
products, the proinflammatory cytokines, IL-1𝛼 and IL-
1𝛽, are elevated. However, an additional inhibitory protein
that reduces these IL-1 molecules is secreted [49, 50]. The

anti-inflammatory mediator was isolated in 1990, and the
sequence of the IL-1 receptor antagonist (IL-1Ra) was pub-
lished [51]. It is a cytokine, which belongs to the IL-1 family
with about 40% similarity to IL-1𝛽 that binds the same IL-1
receptor type 1 (IL-1R1) albeit occupying it without inducing
the signal transduction. The significance of the IL-1Ra as
a natural anti-inflammatory cytokine is demonstrated by
the genetic loss of function of the IL1RN gene. This results
in a lethal systemic inflammatory disease with severe skin
and bone involvement, termed deficiency of interleukin-1
receptor antagonist (DIRA) [52].

Anakinra is a recombinant nonglycosylated form of IL-
1Ra that was approved in 2001 for the treatment of RA in
adult patients that did not respond to other antirheumatoid
drugs, like DMARD. Anakinra was shown beneficial for the
treatment of RA by reducing symptoms and joint damage;
however it is recommended to use when other biologics,
like anti-IL-6 or anti-TNF therapies which are preferable, are
refractory or contraindicated [53–55].

Anakinra competes with IL-1𝛽 for the receptor bind-
ing. The inflammasome-caspase-1 pathway mediates IL-1𝛽
activation and secretion. Mutations in the inflammasome
related genes can result in autoinflammatory syndromes due
to excess IL-1 [56]. Anakinra is therefore approved for the
treatment of patients suffering from a form of Cryopyrin-
Associated Periodic Syndromes (CAPS) called Neonatal-
Onset Multisystem Inflammatory Disease (NOMID). CAPS
is a common name for three autoinflammatory syndromes
(familial cold autoinflammatory syndrome, Muckle-Wells
syndrome, and NOMID), in which dysregulated inflamma-
some results in IL-1𝛽 activation and secretion and a broad
inflammation occurs. Since IL-1 is the major mediator of
these autoinflammatory diseases, it is obvious why anakinra,
which blocks IL-1 activity, is preferable for therapy [57–60].
Anakinra is also given to other inflammatory or autoin-
flammatory diseases off-label. Familial Mediterranean Fever
(FMF) is a hereditary chronic inflammatory disease which
IL-1 plays a major role in, and blocking IL-1 reduces the
symptoms [61, 62]. Anakinra was also shown to be effective in
the case of nonhereditary chronic systemic inflammatory dis-
eases like the adult-onset Still disease [63, 64], which involves
arthritis, fever, and systemic inflammation or the childhood
version—systemic-onset juvenile idiopathic arthritis (SJIA)
[65–67]. In addition, there are more common inflammatory
diseases like gout [68], hemodialysis patients [69], post-
myocardial infarction cardiac remodeling [70], and type 2
diabetes, in which the glycaemia and beta-cell secretory
function are improved [71], in addition to vast types of other
inflammatory disorders responding to anakinra (reviewed n
[72–75]).

Anakinra has a short half-life of about 6 h; treatment
therefore requires frequent subcutaneous injections and the
most common side effect of anakinra is injection site reaction.
The short half-life of anakinra allows immediate withdrawal
of the treatment if needed. During the administration of
anakinra, the immune systems ability to fight infections
is reduced. Meta-analysis of four RA trials using anakinra
showed increased risk of infections, mainly pneumonia but
also osteomyelitis, cellulitis, bursitis, herpes zoster, infected
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bunion, and gangrene [76]. Gouty arthritis patients treated
with anakinra were also in increased risk for infections,
mostly by S. aureus [68]. Since IL-1 is a neutrophil attractant
and growth factor, the risk for neutropenia in patients treated
with anakinra increased as well [77, 78], and during admin-
istration of anakinra neutrophil numbers must be followed.
Anakinra is forbidden to patients receiving TNF blockers or
patients getting live vaccines. The combination of anakinra
together with corticosteroids or other immunosuppressive
drugs increases the risk of infections. Combining anakinra
with prednisolone was shown to risk RA patient with serious
infections of S. aureus, hemolytic streptococci, and E. coli
[79]. Patients with a history of tuberculosis are not recom-
mended for anakinra treatment or for those participating in
clinical trials, since the chance for reactivation of tuberculosis
during administration of anakinra is high [76].

Rilonacept (also termed IL-1 trap), a dimer of IL-1R
and IL-1R accessory protein (IL-1RacP) extracellular chains
fused to the Fc fragments of IgG, was trialed and found
effective for the treatment of CAPS [80]. Rilonacept was
approved as biological drug in 2008, and canakinumab, a
monoclonal anti-IL-1𝛽 antibody that was also shown ben-
eficial for the treatment of CAPS [81–86], was approved in
2009. Like anakinra, both were shown to reduce symptoms
in additional inflammatory diseases, such as gout [87, 88],
and canakinumab was also shown to be effective for SJIA.
Side effects associated with canakinumab resemble those
of anakinra, such as increased risk of infections [89], neu-
tropenia, and low platelet count [90]; therefore it is not
recommended for patients with a high risk for infections.
Canakinumab is administered once every four to eight weeks,
dependent on disease severity, due to its extended half-life.
Nonetheless, withdrawal will not terminate the effects of the
drug immediately, like in the case of anakinra. Hyper-IgD
syndrome (HIDS) is a genetic autoinflammatory syndrome
associated with high IgD blood levels, caused by a muta-
tion in the gene encoding mevalonate kinase (MK) [91].
TNFR1-associated periodic syndrome (TRAPS) is caused by
intracellular accumulation of misfolded mutated TNFR1 and
an elevated IL-1 production [92]. HIDS and TRAPS were
shown to respond to anakinra [93–100]. Canakinumab is
currently tested in a phase III trial in colchicine resistant
FMF, HIDS/MK deficiency, and TRAPS patients (Clinical-
Trials.gov identifier: NCT02059291). In addition, the effect of
canakinumab on cardiovascular events and type 2 diabetes
is currently held by the Canakinumab Anti-Inflammatory
Thrombosis Outcome Study (CANTOS) trial [101].

3.3. Anti-IL-6. IL-6 is another major proinflammatory
cytokine with pleotropic effects on the immune system. IL-6
is the ligand for IL-6 receptor (IL-6R). Following its binding,
gp130, a transmembranal glycoprotein forms a homodimer
and transmits the signaling. Unlike IL-1R1 or TNFR1, which
are ubiquitous, IL-6R is restricted to hepatocytes, monocytes,
macrophages, and lymphocytes. Another difference from the
IL-1 and TNF cytokines is that the soluble form of IL-6R
facilitates and induces the signal rather than serving as an
inhibitor. Soluble IL-6R binds IL-6 and this complex further
binds membranal gp130, which, unlike IL-6R, is expressed in

all cell types. This kind of signaling is termed trans-signaling
[102], a process which allows IL-6 to mediate its response on
cells that lack IL-6R; among these are embryonic stem cells,
endothelial cells, hematopoietic progenitor cells, osteoclasts,
and neuronal cells [102]. The proinflammatory cytokines,
IL-1 and TNF-𝛼, were assumed to be responsible for the
acute phase response of liver cells in vivo. Nevertheless, when
hepatocytes response to stimulation by crude macrophage
cytokines was compared to isolated cytokines IL-6, IL-1,
and TNF, only IL-6 could induce fully comparable response
[103]. Among the many IL-6 effects, it was found that it
induces immunologic and metabolic responses. IL-6 can
alter the T helper cell phenotype programming [104]; it
can stimulate B cells, NK cells, osteoclasts, and cancer cells
[105] and is secreted by a variety of cells; among these are
lymphocytes, macrophages, endothelial cells, epithelial cells,
and fibroblasts; these then play a major role in autoimmune
diseases, especially RA, in which increased levels of IL-6 are
found in synovial fluid [106].Themyeloma receptor antibody
(MRA), a humanized antibody against IL-6R, was first trialed
in 2003. It was then demonstrated to decrease serum acute
phase protein in RA patients, which were not responsive
to DMARD or other immunosuppressive drugs [107]. The
MRA antibody was renamed tocilizumab and its efficiency
for RA was demonstrated in a large trial consisting of 633
patients. The trial showed reduced disease activity [108] and
the FDA approved tocilizumab in 2010 for the treatment
of RA patients refractory to TNF inhibitors; additionally it
was also shown efficient in another trial for the treatment
of SJIA [109] where in 2011 the FDA expanded the use
of the antibody to include the treatment of SJIA patients.
Unfortunately, together with the benefits of IL-6 inhibition
came adverse effects. Data pooled from five clinical trials,
two ongoing extension trials, and one clinical pharmacology
study summarized the following adverse effects among trial
participants: serious infections mainly pneumonia, gastroen-
teritis, and urinary tract infections, opportunistic infections
(such as tuberculosis, candidiasis), gastrointestinal perfo-
ration, and anaphylactic reactions. Other side effects were
neutropenia and increased lipid levels, which are assumed
to induce cardiovascular events [110]. Since IL-6 elevates
CRP levels, its inhibition by tocilizumab results in milder
elevation of CRP during infections. This can put the patients
at risk since it is harder to diagnose an infection in patients
undergoing treatment [111]. One of SJIA complications is
Macrophage-Activating Syndrome (MAS), a life threatening
disease, associated with impaired bone-marrow and liver
functions. Tocilizumab treatment does not prevent or worsen
MAS [112]; however, it does mask the clinical symptoms,
again by reducing the CRP levels, which allow diagnosing the
outbreak of this syndrome [113]. Blocking IL-1 with anakinra,
on the other hand, was shown to reduceMAS severity in SJIA
patients [114–116].

Siltuximab is a human-mouse chimeric anti-IL-6 anti-
body approved in 2014 for HIV-negative and herpes virus-
8 negative patients for the treatment of multicentric Castle-
man’s disease, a lymphoproliferative disorder associated with
increased IL-6 in the enlarged hyperplastic lymph nodes
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[117]. Siltuximab was further studied for its beneficial anti-
IL-6 effects in other malignancies, like multiple myeloma,
myelodysplastic syndrome, prostate cancer, ovarian cancer
and lung cancer, and cancer-associated cachexia and anorexia
[118–122]. However, the treatment with siltuximab increases
the risk of upper respiratory tract infections and other
adverse effects including nausea, fatigue pruritus, increased
weight gain, rash, hyperuricemia, thrombocytopenia, dysp-
nea, leukopenia, and neutropenia [123, 124].

3.4. Biologics Targeting TH17 Cytokines. Ustekinumab is a
human monoclonal antibody against IL-12 and IL-23, which
share the same IL-12p40 subunit. The antibody recognition
of this cytokine reduces the differentiation of näıve CD4+ T
helper cells into effector T cells, TH1, and TH17. Previously
termed “IL-23-derived autoreactive CD4 T cells,” TH17 cells
were named after IL-17 cytokine (which they produce) and
are correlated with autoimmunity disorders including RA,
lupus, colitis, and EAE [125, 126]. IL-12 and IL-23 and their
associated T helper cells are correlated to psoriasis which is an
immune-mediated chronic inflammatory skin disease, and
psoriasis patients have an increased risk to develop psoriatic
arthritis [127]. Ustekinumab was shown to be more effective
compared to etanercept [128] and was approved in 2009 for
plaque psoriasis and in 2013 for psoriatic arthritis. However,
ustekinumab treated patients are recommended to receive
prophylactic treatment due to increased risk of tuberculosis
reactivation [129], as well as the issue of reduced CD4+
lymphocytes during this treatment, that should be taken into
account [130, 131].

Secukinumab is a human anti-IL-17A antibody that was
trialed and shown ineffective in clinical trials for the treat-
ment of Crohn’s disease, as the treatment aggravated the
disease severity in addition to increased adverse effects, like
upper respiratory tract infections and local fungal infections
[132]. However, much like ustekinumab, IL-17 inhibition
using secukinumab reduced symptoms and improved phys-
iological functioning compared to placebo or etanercept in
plaque psoriasis and was approved by the FDA in 2015.
Secukinumab was also reported for its efficiency for psoriatic
arthritis [133] and ankylosing spondylitis [134] and was
approved for these indications. In March 2016 an addi-
tional monoclonal anti-IL-17 antibody—ixekizumab—was
approved for patients with plaque psoriasis [135, 136]. Long-
term data from experiences of these antibodies targeting
effector helper T cells cytokines is required for further
evaluation of the adverse effects and safety of these biologics.

4. Reducing Infections in
Anti-Inflammatory Biologics

Anticytokine therapy is a powerful tool to fight autoimmune
and autoinflammatory diseases in addition tomany other dis-
eases inwhich the inflammatory process enhances the disease
activity. For example, IL-1Ra, anakinra, was shown beneficial
in vast types of diseases, among which are autoimmune
RA [54], autoinflammatory diseases like CAPS [57–60],
hereditary inflammatory FMF, improved beta cells function

in type 2 diabetes [71], remodeling following myocardial
infarction [70], smoldering myeloma [137], and a variety
of other disorders [72]. Other inflammatory mediators like
TNF-𝛼 and IL-6 have also great potential as targets in anti-
inflammatory treatment. However, there is always a major
cause for concern when systemically reducing inflammation
by biologics that can compromise the patient ability to
overcome infections. For example, the ability to reduce the
rheumatoid process in patient’s joints without inhibiting
the neutrophils migration into the lungs in order to fight
pneumonia is the objective for new biologics. One strategy
to do so is to inject the patient with inactive biologic that
would be activated whenever it meets the inflammatory
site; the chimeric-IL-1Ra recently published carries such an
approach [138].This molecule is composed of the N-terminal
peptide of IL-1𝛽 fused to IL-1Ra in its C-terminal side that
mimics the structure of the precursor of IL-1𝛽; thus it is
expressed as an inactive procytokine. In the inflammatory
sites, increased levels of neutrophil serine proteases (like
elastase, cathepsin G, or chymotrypsin) [139], macrophages-
derived PR3 and caspase-1 [140, 141], or granzymes from
NK cells [142] are released from activated or dying cells and
these enzymes cleave the N-terminal peptide of IL-1𝛽 and
release the active free C-terminal cytokine part (Figure 1).
For example in the inflamed joint of gouty arthritis patients,
IL-1𝛽 is active due to the increased activity of neutrophils
where the short-lived neutrophils are rich in serine proteases
and are released to the site of inflammation [140]. As for the
chimeric-IL-1Ra, the active IL-1Ra part is released in the same
manner as IL-1𝛽 (i.e., an inactive precursor that transforms
into an active cytokine due to the inflamed environment).
At the same time, the patient’s unaffected tissues are spared
from the excessive systemic IL-1R1 blockade. Chronic inflam-
mation in the microenvironment of tumors facilitates the
tumors mechanisms of invasion and growth [143].The tumor
is surrounded with myeloid cells, rich with inflammatory
enzymes and cytokines when IL-1 facilitates tumor growth,
angiogenesis, and metastases [144, 145]. It was shown that
the inflammatory tumorigenic microenvironment is derived
from IL-1𝛽 secreted from themyeloid cells around the tumor,
and the IL-1𝛼 secreted from the tumor cells accompanied
with hypoxia, necrosis, or DNA damage [146–149]. It was
therefore why anti-IL-1 therapy was suggested for trials in
cancer patients [150, 151]. Recently, it was shown that IL-
1𝛼 neutralization using a monoclonal antibody would be
beneficial in cancer patients in prolonging their survival
[152, 153]. Cancer patients are often treated with immunosup-
pressive and bone-marrow suppressing drugs; therefore, they
are exposed to increased risk of infections. Thus, biologics
like the chimeric-IL-1Ra that might reduce the inflammatory
process in the tumor site without reducing the patient’s
ability to fight infection is a desirable approach. In order
to inhibit cell surface TNF, in a cell-type restricted manner,
Efimov et al. constructed bispecific antibody that recognizes
both the F4/80 macrophage marker and the membranal
TNF-𝛼 [154]. In this manner, the antibody favors binding
of TNF-𝛼 on myeloid cells rather than free TNF-𝛼 or T
lymphocytes derivedTNF-𝛼.The aimwas to reduce anti-TNF
side effects by blocking macrophage-derived inflammation,
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Figure 1: Biological drugs strategies for targeting inflammatory cytokines. The biologics can be composed of anticytokine or antireceptor
neutralizing antibodies (1) or a soluble receptor that binds the cytokine (2). An inflammatory cytokine, like IL-1𝛽, binds the IL-1R1 and the
coreceptor IL-1R accessory protein (3) and transmits cell signaling, while an antagonist, like IL-1Ra, binds the receptor without recruiting the
coreceptor (4), thus inhibiting signaling from the receptor and reducing the inflammation. Inflammation-dependent anticytokine strategy:
enzymes such as neutrophil serine proteases or macrophage caspase-1 are released into the environment and cleave the two parts of the
chimeric-IL-1Ra inactive precursor into an active antagonist (5), which blocks the receptors of tissue cells and the inflammatory cells.

while maintaining T cell activity. The authors claim that this
antibody can prevent reactivation of latent tuberculosis and
reduce anti-TNF liver toxicity.

5. Concluding Remarks

Unregulated levels of cytokines are central mediators of
many inflammatory diseases. Targeting these cytokines using
recombinant anti-inflammatory cytokines, recombinant sol-
uble receptors, or antibodies against cytokines has demon-
strated preferable clinical outcomes in patients with autoim-
mune diseases, which are refractory to glucocorticoids treat-
ments. However, systemic cytokine blocking suffers from a
number of serious limitations. For one, the lack of danger
signals, which is crucial for adequate immune cell activation
as well as hematopoiesis alterations, common features in all
biologics, expose the host to increased risks of infections. In
addition, the pleiotropic nature of most cytokines and their
necessity to the function ofmultiple cell types across different
organs make it almost impossible to inhibit their signaling
cascade in a long-term therapy without severe complications.
Therefore, new approaches based on site-restricted biologics,
which maintain the cytokine activity in other sites, are highly
advised.
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