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 The building integrated photovoltaic (BIPV) system have recently drawn 

interest and have demonstrated high potential to assist building owners 

supply both thermal and electrical loads. In this paper, the BIPV technology 

has been reviewed, in terms of its performance, efficiency and power 

generation capacity. Specifically, the applications of the BIPV in tropical 

climate regions have been discussed, together with its prospects and 

challenges. For these schemes to be implemented in a tropical climatic 

region, the following issues must be considered: 1) Certain studies must be 

done relating to electrical load demand, predicted PV output, location of the 

buildings and its integration and constraints associated with roof design; 2) 

For the highest energy production from solar PV, the solar collectors need to 

be with the right tilt depending on the location; 3) Design criteria such as 

safety, efficiency, durability, flexibility and constructive issues need to be 

considered; 4) The government of such countries must train electricians and 

carpenters on PV installations; 5) The BIPV roofing must perform same 

function as normal roofing materials, such as noise protection, water 

tightness, insulation and climate protection, and 6) As practiced around the 

world, these countries must establish design standards for the BIPV. 
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1. INTRODUCTION 

In the contemporary world, the global community apprehended that the non-sustainable energy 

sources (e.g. fossil fuel) will be available only for a limited period. Consequently, the urgency to avail 

sufficient renewable energy sources has already become an issue of discussion. One such source, commonly 
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regarded as a complete clean energy is the solar energy [1]–[3]. Recently, due to the development of new 

regulatory frameworks coupled with rising densification of cities, there is a need to acknowledge the 

significance of applying solar technology for buildings [4]–[6]. In most European countries, buildings 

account for 40% of the total energy use [7], but still the situation has not improved despite improved 

technologies and building codes that make such buildings more comfortable. Due to the global world 

population growth, energy demand in buildings has raised up to rise up to 50% by 2020, with the global 

building region anticipated to double by 2050 [8]. 

It is vital to understand that solar energy can play a vital role in modern buildings such as solar 

heating and cooling and photovoltaic (PV) powered [9], [10]. Already, architectural firms are opting for this 

trend, joining hands with energy experts to design and construct totally solar buildings [7]. The main 

characteristics of solar PV technology and building integration technology involve a wide range of 

disciplines. Systemization and deliberate efforts from solar manufacturers, construction companies, designing 

institutions, property developers and component construction department are necessary in order to achieve 

the utilization of solar energy and building integration technology. The role of regulations department and 

national policies cannot be omitted either. For years, many problems have arisen in developing renewable 

energy, including the issues of energy security and the threat of climate change which eventually also serve 

as the prime factors for development of such energy sources. The sun is the greatest substantial sustainable 

power source [11]. The concentration of greenhouse gas due to the abuse of fossil fuel usage has resulted in 

global temperatures and environmental degradation. The declining oil and gas supplies, coupled with the 

increasing concerns for the global effect of CO2, gave rise to green buildings (i.e. buildings designed and 

constructed so as to reduce their environmental impact) [12]. 

A tremendous effort has to be made to reduce energy demand of civil structures by applying 

effective measures that maximize energy usage produced by PV [13]. From time to time, the technical 

developments of optical, electronic, thermal, and architectural and fluid mechanics also served the purpose to 

make the solar energy and integration technology more lucrative. Over the years, solar panels have produced 

green energy on the rooftops of buildings i.e. by integrating the PV elements into the building structure, 

thereby transforming it into a generating set [14]. By 2020, the industry of building integrated PV is 

predicted to reach 11.1GW [15]. In particular, Europe will have the highest utilization of this technology. In 

another perspective, James et.al [16] recommend several ways to help increase the relevance and growth of 

solar PV in buildings. These include the reduction in the PV prices and the increased interest in policies on 

solar energy. There is also little commercialization with full functionality of building materials. Generally, 

the fundamental reason for the limited BIPV deployment is that the average market price of installed systems 

is presently higher than for rack-mounted PV. 

Nonetheless, it cannot be denied that an advanced construction process of integration technology is 

required to develop the solar energy. The complex construction of the waterway and circuits are another 

method, other than the conventional one, in order to install and debug tasks of solar equipment. Nevertheless, 

solar energy remains the single extensive alternative energy resource as it offers more economic benefits, 

safety and secure process of energy production and environment friendliness. Therefore, the acceptance of 

solar energy is more apparent than any other alternative energy resources [9]. Over the years researchers have 

investigated the application of BIPV in tropical areas[17]–[19]. Recent study [20] shows that for tropical 

climate, the BIPV can increase the quantity of heat transfer through the building structure, thereby 

influencing the inner temperature and discomforting the residents. Another study [21] investigated the heat 

comfort and adaptive actions for occupants in naturally ventilated areas and proposed certain adjustments to 

the acceptance of the heat burden on the occupants; one is the improvement of the velocity of the air and 

adopting cross-ventilation, and the other is reducing the insulations related to the building. Aaditya and Mani 

[22] proposed the development of a climatic responsive BIPV scheme. For tropical climates, the design of the 

building should be done in such way to reduce heat gain while enhancing heat loss within buildings. The best 

option is to design a BIPV with controlled ventilation, higher heat mass and shading. In another study, Gut 

and Ackerknecht [23] discussed the optimum building scenarios in tropical and subtropical regions. The wind 

orientation plays a big role in the building’s thermal insulation. It was suggested that proper coatings in 

roofings and reflections in ceilings could reduce overheating. Ghazali and Abdul Rahman [24] investigated 

the application of solar tracking in tropical climates. For BIPV, the solar tracking not only enhances the PV 

output power but it also helps to reduce direct sun radiation on building envelopes. Recently, Lawal [25] 

investigated the energy conservation in buildings located at the southern part of Nigeria and concluded that 

for tropical climates, special consideration should be made in such a way that building are constructed with 

materials possessing high heating storage capacity and avoiding sustained lagging. The lag can create 

unwanted re-radiation of heat that may cause discomfort to the residents. Despite all the developments, little 

work has been made on the implementation of BIPV for tropical areas due to several factors such as high cost 

of installation and lack of awareness in the building industry. 
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One example of a tropical climatic region is Nigeria. It is a country that has abundant unutilized 

solar radiation. The average daily solar radiation in the northern region is 7 kWh/m2 while in the southern 

part of the country is about 4 kWh/m2 [26], [27]. Though, Nigeria has improved local manufacturing of PV 

[28], a lot need to be done to support this market. Solar energy is frequently utilized in Nigeria for street 

lighting and domestic energy consumption, however no visible solar technology integration within buildings 

can be remarked for both solar heating and solar power. Therefore, this paper attempts to review and discuss 

BIPV integrations advancements in many countries, using Nigeria as a case study, in order to suggest and 

recommend the further development of such technology in tropical climates. In such process of reviewing, 

this paper also evaluates the challenges associated to BIPV technology, and analyses future improvement 

options to accommodate it in the national energy mix. 

 

2. BUILDING INTEGRATED PV 

There are two main types of solar PV integration in buildings. These are the building integrated PV 

system (BIPV) and the building attached PVs (BAPV) [29]. However, there is misperception concerning the 

actual definition of BIPV within the building industry and such confusion extends to the PV industry. BIPV 

are delineated as PV modules feasible to assimilate within the building envelope by reinstating the normally 

used materials of the building, [30] while BPAV are PVs attached to the building with no direct influence on 

any structural function [31]. As stated in the literature [32], there are certainly many parameters that need to 

be carefully inspected in solar PV building integration such as: (1) buildability; (2) design; (3) durability; (4) 

environmental factors; (5) maintenance; (6) performance safety, and (7) standard regulations. 

The classification of BIPV is done based on the type solar cell, their application and market 

availability [29]. BIPV products are categorized into four; i.e. solar cell glazing, tiles, foils, and modules 

[33]. A complete schematic diagram is illustrated in Figure 1. 

 

 

 
 

Figure 1. BIPV classification. Adapted from [33]. 

 

 

BIPV refers to PV components substituting the normal building components through its 

incorporation to the usual building envelope [34], thus decreasing heat spread over the building [35]. It is 

quite established that the productivity of PV modules declines with the rise in temperature, and many studies 

have been conducted to solve this problem. One solution, as suggested in literature [29], is that the PV 

modules efficiency might be improved through heat absorption at the rear of the PV module, using fluid or 

air to generate a convention mechanism, thereby opening new inputs for hot or cold area around the PV. 

Another method to enhance the performance of the PV modules is through shadowing effect or changing the 

direction or slope of the PV.  

Chow et al. [36] modeled a 260 m2 BIPV system that was analyzed using multi-platform building 

performance software (ESP-r). The simulation was done by creating an air gap of 250 mm between the 

building and the PV. The air-gap permits the air to be heated so that it can be utilized for water pre-heating. 

Three scenarios were implemented; i.e. BIPV with cooling of cells, BIPV with air heating, and BIPVwithout 

any integration. The year-long energy outputs from those three situations were reported being 83,680, 83,584 

and 83,205 MJ, correspondingly. 

Jiménez et al. [37] developed a BIPV component for heat transfer via stochastic differential 

equation. A sequence of experiments made up of 121 polycrystalline PV modules covering 1.44 m2 areas was 

implemented in the model. The authors found that this technique is beneficial in modeling nonlinear 

stochastic heat occurrence in BIPV. 

Pantic et al. [38] examined 3 configurations of the BIPV/thermal (BIPVT) system. Configuration 

one was the base case of unglazed BIPV with air consistently run underneath it. Configuration two involves 
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1.5 m vertical glazed solar collected and incorporated into the system. And, the third configuration is the 

addition of a complete glazing on top of the PV. It was observed, from these configurations, that heating, 

ventilation, air conditioning (HVAC), and water pre-heating can be achieved using the first configuration. 

Heat energy efficiency can be achieved through the second and third configuration. In the third configuration, 

electric power creation was considerably reduced due to the overheating of PVs. 

Corbin and Zhai [39] examined a novel BIPVT consisting of absorbers, heat storage and pump. The 

authors developed two computational fluid dynamics (CFD) models. The first model is a standard model 

adjacent to the top surface, while the second comprises liquid-cooled-tube absorber for recovery effects. At 

the end of the research, it was shown that the later BIPVT has up to 5.3% better electrical efficiency. The 

whole productivity of the system was found to be within 19-34.9% respectively. 

Peng et al. [40] studied the architectural design features of BIPV systems as follows: (i) design 

procedure, (ii) life-span of the system and (iii) suitability of the BIPV. They also designed a new arrangement 

to solve matters related to the proper care of the PV components. The authors concluded that technology, 

aesthetics, function and cost are key features. Urbanetz et al. [41], examined the annual electricity generation 

of two systems. One is the 10 kWp BIPV system and the other is a curved 12 kWp PV system. The first is a 

thin film a-Si technology made up of 24 elastic modules, while the second consisted of 88 flexible panels 

made of thin-film a-Si layers. Specific findings indicated that the 10 kWp BIPV system holds more yearly 

energy revenue than the second one. 

Zogou and Stapountzis [42] conducted the experimental investigation of the transient heat analysis 

for the BIPV system, using the PV module and the Plexiglas module. The authors carried out the experiment 

in 3 main stages. No natural convection (i.e. fan) in the first stage, while fans were operated at 110 m3/h, and 

190 m3/h flow for the second and third approaches respectively. Findings show that the temperature variation 

of air for various approaches was between 4.5°C and 8.9°C with the power ranged between 74.7 W–85.5 W. 

Observation on the least panel temperature in mode 3 suggested that total cooling and transfer of heat rises as 

more air flows.  

Yoon et al. [43] developed the pioneer BIPV application, with thin-film a-Si cells mounted on the 

windows. The authors observed the system for about 2 years and noted the monthly power generation sum to 

be 48.4kWh/kWp. Additionally, the annual generation amount is 580.5kWh/kWp. The simulation effects 

confirm that particular electrical energy generation for the system can reach up to 47% if the azimuth and 

shading effects are adjusted. 

There are two BIPV/BAPV systems examined by Santos and Rüther [10] on the possibility of 

implementation of both systems for a current domestic building. One is the 2.25 kWp c-Si system and the 

other is the 10 kWp a-Si system. The findings revealed that 87% of the PV sets can create 95% of the peak 

hypothetical potential. In addition, only 3% of the systems were able to create 85% of the peak theoretical 

output value. Their results show that the PV kits are able to produce separate yearly energy demand for the 

whole buildings. 

Ban-Weiss et al. [44], examined the cooling system and electricity production saving effects of PV 

modules, made up of thin-film a-Si triple junction solar cells. After installation of BIPV, the solar 

absorptance of roof reduces from 0.75 to 0.38. The outcomes show that the daily energy output range of the 

system appears to be 0.4kWh/m2 in the summer and 0.15kWh/m2 in the winter. They further concluded that 

the BIPV system mounted in an office building in Phoenix, Arizona, USA would cause 9.6kWh/m2 yearly 

cooling and 2.9 MJ/m2 heating power savings. 

Han et al. [45] compared the performance of 2 different types of PVs, i.e. conventional clear façade 

and ventilated double-sided. The conventional clear façade is a PV layer made up of a-Si PV cell, while the 

second one is a transparent glass and screen on the façade. The authors show that the interior air temperature 

for the ventilated double-sided PV scheme was lower than the conventional clear façade. Moreover, their 

results show that the module temperature on the efficiency of PV was small for all these modules. Apart from 

power generation, the ventilated double-sided PV can contribute to power savings via decreasing the load on 

the air-conditioning. 

Drif et al. [46] shows a technique for power evaluation losses as a result of the partial covering of 

BIPV systems. In this scenario, 9 sub-arrays of PV modules were split to 2.5 kWp each. For a 1 sub-

generator, measurements were 10.6 2 kWh/day, against theoretical measurements of 12.41 kWh. The authors 

concluded that the daily power losses caused by covering were 1.79 kWh. That is equivalent to 14.4% of the 

overall BIPV system power generation. 

The 22 PV arrays performance under different tilt and orientations were investigated by Wittkopf et 

al. [47]. These systems comprise an on-grid BIPV system of 142.5 kWp. The monthly average performance 

ratio was recorded to be 0.81 and the monthly mean power generation was 12.1 MWh. The authors also 

studied the influence of different criterion on the BIPV performance such as irradiance changes, partial 

covering, PV temperature changes. 
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Defaix at al. [48] evaluated the BIPV’s technical potential within the EU-27 using the available 

statistical fingerprints. The BIPV is assumed to be a mixture of crystalline wafer. The performance ratio for 

the thin film of PV panels was 0.8, while the mean of efficiency was 17.9%. The obtained for the BIPV’s 

potential within the EU was 951 GWp and the annual potential power production was 840 TWh. This power 

can meet approximately 22% of the expected electricity needed by the European continent. 

The cost-effectiveness of BIPV was investigated by Wei et al. [49] and it was compared with 

domestic solar water heater (DSWH). The lifespan of the BIPV system is approximately 25 years with power 

generation capacity of 140kWh/m2. The authors were able to show that the BIPV system was more favorable 

with 6 m2 roof area and the domestic solar water heater (DSWH) of the BIPV is more beneficial as it can be 

better installed if the cost of the BIPV is RMB 0.9/kWh. 

López, and Sangiorgi [50] examined the influence of BIPV modules on human comfort using 

identically two 10 m2 rooms. Their first trial shows that the thin-film related PV modules have better 

performance compared to hygro-thermal comfort. Amorphous silicon (a-Si) PV modules have higher energy 

generation capacity. In terms of heating and lightning, CIS PV modules appear to have higher energy 

consumption. They conducted another test using the m-Si PV modules and found that it has higher lightning 

demand than the CIS modules. The m-Si PV modules have higher energy generation within 0.09-1.31 

kWh/day as compared to the CIS PV modules. 

In another study, Yang and Athienitis [51] examined BIPVTs thermal efficiency using two inlets. 

Results show two inlet panels having 5% higher thermal effectiveness in comparison to a single input semi-

transparent panel. Apart from this, they concluded it is preferable to design a simple and cheap two inlet 

panel. The authors also carried out the performance assessment of BIPVT having different inlets. They 

developed a correlation regarding some inlet solar simulators and BIPVT prototype. Findings show that a 

four inlet type has 7% higher efficiency when compared to one inlet type. 

Bigaila et al. [52] investigated a BIPVT system made up of 1030 x 548 mm m-Si panel, 5 x 10 cm 

insulation, and 7 cm air gap. The experiment was conducted with 8 lamps; each has a maximum power of 4.6 

kW. The lamps can be attuned within 0°-90°. Their results show that the solar heat collectors possess similar 

efficiency to the unglazed thermal collector (UTC), with up to 15% higher efficiency.  

Eke and Demircan [53] studied the shadowing effect of BIPV on a structure comprising five floors, 

and each floor was installed with a three a-Si (triple junction amorphous PV) modules. The results show that 

the yearly energy rating for the first array is 1072 kWh/kWp while for the second array is 885kWh/kWp. 

Low electricity output was measured towards the end of the year due to the lowest radiation at that time. It 

was concluded that the shading effect has substantial effect due to the building direction, PV tilt angle and 

the ambient temperature. 

Timchenko et al. [54] applied certain system specifications (i.e. 1.5m x 0.7m x 0.1m size) to 

evaluate open channel PV. Three different two-wall configurations were used, (i) uniform, (ii) staggered, and 

(iii) non-uniform. Their results show that there must be alternative inputs between hot and cold zones in order 

to improve the heat transfer. 

Ritzen et al. [55] mentioned four vital aspects of PV market such as BIPV, PV efficiency, electrical 

storage and PV market. Some tests were carried out under different conditions of condensation, coloring and 

backstring ventilation. Test 1 showed that the output of PV varies between 10-40% on autumn and spring 

period respectively. Due to 100% relative humidity, the PV output was reduced by 0.5%. Test 2 comparing 

between black module and color module, there is a difference of 10% for the PV output. Vertical and zig-zag 

type lineup showed a difference of 62%. There were better advantages of zigzag type module lineup during 

the autumn-spring period. 

Chen and Yin [56], designed a BIPVT system for heating liquid with water through cooling the PV. 

The PV module was developed by aluminum high density polyethylene that contained aluminum water tubes. 

In this situation, there is reduction of temperature through heat transfer from PV to the water tubes. 

Laboratory results indicated enhanced energy conversion efficiency. There is almost 5% reduction in the 

module temperature. There is also a flow rate increase by 500%. At particular flow measure of 150 ml/min, 

the electricity production was of 32.94 W and 44.91 W correspondingly for 800 W/m2 and 1000 W/m2.  

Lu et al. [57] experimentally developed a new PV parabolic reflector with a concentration ratio of 2, 

suitable for building façade applications. In this paper, a broad enclosed test was conducted to assess the 

thermal and electrical categorization of the developed scheme. The factors affecting the output power of the 

system were also discussed. In comparison to the non-concentrating PV, the results indicate that Building 

Façade Integrated Asymmetric Compound Parabolic Photovoltaic concentrator (BFI-ACPPV) scheme has the 

capacity to raise the output power per unit area of the solar cell by 2. The results further indicate that the BFI-

ACPPV coupled with phase change material have higher efficiency in comparison with a non-phase change 

system. The results were obtained at solar radiation intensity of 280 W/m2 and 69 W/m2. At 280 W/m2, the 

measured power output is 3.51 W. 
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Table 1 shows a summary of literature review regarding the BIPV systems. In summary, the BIPV is 

expected to be highly beneficial in the future design of buildings. According to literature, and in many 

countries, BIPV is capable of satisfying building energy requirements of 70% [58]. In most BIPV researches 

and applications, monocrystalline solar PV has been widely used due to its higher efficiency and heat 

tolerance. The façade application is mostly to take advantage of shading and heat insulation on walls. In 

tropical climates, the thermal shielding effect of BIPV can reduce space cooling by around 30% [11]. Either 

as a rooftop or façade application, the BIPV can, in the long term, have good investment returns. BIPV can 

also give buildings better visual appearance and ensure reduced electricity tariff. One major issue is the 

likelihood of the BIPV experiencing higher temperatures, because of their attachment to the building 

structure, thereby reducing the conversion efficiency of the PV module. Some highlighted barriers that may 

hinder the development of BIPV [59], include: i) lack of awareness of the BIPV especially in developing 

countries as a means of energy saving and reduction of greenhouse gas emission, and ii) lack of economic 

and technical solutions about BIPV technology. 

Generally, incorporating BIPV to the building structure give rise to net-zero energy buildings. This 

depends on many factors such as building topology, availability of surfaces for polarization, total energy 

needs and techno-economic feasibility analysis. 

 

 

Table 1. Summary of the BIPV systems 

Reference Energy Generation 
Nominal 

Power 

Electrical 

conversion 

Efficiency (%) 

PV type Application 

Chow et al. [36] - - - Monocrystalline Façade and roof 

Jiménez et al. [37] - - - 
Monocrystalline/ 

polycrystalline 
Façade 

Pantic et al. [38] 19-40kWh 7000 10.5-15 Monocrystalline Roof 

Corbin and Zhai [39] - - 14.5-17.2 - Roof 

Peng at al. [40] - - - Amorphous - 

Urbanetz et al. [41] 1265-1110kWh/kWp 10-12kWp - polycrystalline - 

Zogou and Stapountzis [42]  <9 - - Façade 

Yoon et al. [43] 1277kWh/year  7 Amorphous Façade 

Santos and Rüther [10] 5.8-12.3GWh/year 5.11MWp - Amorphous Roof 

Ban-Weiss et al. [44] 0.15-0.40kWh/m2  5 Amorphous Roof 

Han et al. [45] 4.43-4.72kWh/year - - Amorphous Façade 

Drif et al. [46] 10.62kWh/day   Monocrystalline Façade 

Wittkopf et al. [47] 12.1MWh 142500 13.15 polycrystalline Façade 

Defaix et al. [48] 850TWh/year 951GWp 17.9 
Monocrystalline/ 

polycrystalline 
Roof 

Wei et al. [49] 140kWh/m2 - - - Roof 

López and Sangiorgi [50] 0-1.32kWh/day 31-85Wp 6-17 
Monocrystalline/ 

Amorphous 
Façade 

Yang and Athienitis [51]   5-7.6 Monocrystalline Façade 

Bigaila et al. [52]   10-15 Monocrystalline Façade 

Eke and Demircan [53] 46-125kWh/m2. month 40.3kWp 0.92 Amorphous Façade 

Timchenko et al. [54] -- - - - Façade 

Ritzen et al. [55] - 90-246Wp - Monocrystalline Façade 

Chen and Yin [56] - - 10.48-15.82 Monocrystalline Roof 

Lu et al. [57]   15.8 Monocrystalline Facade 

 

 

3. PV PANELS BUILDING INTEGRATION CONFIGURATIONS 

In this section, it is explained the results of research and at the same time is given the 

comprehensive discussion. Results can be presented in figures, graphs, tables and others that make the reader 

understand easily [2], [5]. The discussion can be made in several sub-chapters. 

 

3.1.  Slope glazing 

Sloped glazing includes atriums, titled walls, sunspace or green house on top overhead of the walls. 

Such glazing also incorporates framed aluminum, coated with tinted frames, glasses with lamination, or 

plastic glazing in case of semi-transparent glazing systems. One of the examples of Atrium with integrated 

amorphous silicon PV panels has been shown in Figure 2, which is taken from the Doxford International 

Park, situated in Sunderland. PV panels majorly work for the transmission of the ample amounts of diffused 

light, therefore, day lighting is essential solution of buildings. 

It is always desirable to have a diffused day lighting condition in office buildings in order to 

produce sufficient energy, however, excessive sunlight can cause generates overheating which eventually 

ends up excessive glare [60]. Regular glass provides more transparent basis than the PV glazing glass (5-10% 
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transparency). Regarding such transparency, excessive daylight substantially impacts in the building. 

Therefore, a balanced design should be the prime concern in order to advance PV glazing and the daylight in 

the building. 

For BIPV, and in order to achieve the maximum supply of daylight, window is always advised to be 

20% of the facade area on the south orientation in the northern hemisphere. According to [61], that number 

varies when the systems are built with crystalline silicon (increase to 24%) and thin-film PV panels (increase 

to 32%). 

 

 

 
 

Figure 2. Atrium with integrated amorphous silicon PV panels in the solar office of Doxford International 

Park, in Sunderland, UK [62]. 

 

 

3.2. Vertical panel 

Vertical orientation of the PV panel reduces the results of PV output, because they possess the same 

construction characteristics as atria/sloped-glazing. Curtain walls are appropriate for a wide range of PV 

products; they contain opaque surfaces (spandrel areas) in multi-story buildings, whereas, materials of non-

transparent products can also be used. To adopt such configuration, compromises should be made between 

overheating, density, and the glare of PV panels that are employed in the façade. Example of such 

configuration at APS office building situated in California is shown in Figure 3.  
 

 

 
 

Figure 3. APS office facility in California [60] 

 

 
Amorphous PV modules shown in Figure 3 at the APS Facility in California with integrated PV 

panels, are generally combined with the panels that are constructed with vision glasses and framed with 

standard curtain wall [60]. Just like the spandrel panels in a multi-story curtain wall, PV modules are also 

sealed at the back with an opaque insulating panel. If the PV glazing can be formed in a way where the clear 

glass can be adjusted between the upper and lower part of the entire construction, then the glare can be 

prevented, as shown in Figure 4. In addition, such structure provides the necessary daylight with the view 
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sight as the clear glass is situated in the middle part of it. As seen in Figure 4, PV panels do not take the 

whole space of the window and provide enough room for the clear glass. 

 

 

 
 

Figure 4. APS Facility in California, interior space. 

 

 

3.3.  Inclined walls with PV panels 

 In this particular type of arrangement, the efficiency of PV panels is enhanced as they are tilted, that 

includes complexity in the design of the building. Figure 5 provides a detailed picture of the inclined PV 

panels at the University of North Umbria, UK [62]. The most amazing thing of this configuration is that such 

design can be utilized with any kind of commercial PV panels, which means, its use is not limited to 

window-based technology, because such design creates a degree of self-shading. 

 

 

 
 

Figure 5. Inclined PV panels at the University of Northumbria, UK [62]. 

 

 

3.4. Fixed Sunshade 

 Configurations such as shown in Figure 6 can enhance the shading benefits in order to reduce glare. 

However, such structures can avoid the proper access of daylight. In this kind of configuration, mostly 

standard PV modules are attached using a metal frame to the envelope of the building. The construction of 

such configuration is also easy as it takes the same procedure as installing regular sunshades on the building.  

Nonetheless, the main advantage of this configuration is that it can be constructed even with shading 

from adjacent buildings and, in such case, all kinds of PV panels are functional. The nature of this 

configuration is more convenient as it provides different alternative choices to the designers and maintenance 

[62]. In Figure 7, the example is taken from a commercial office building in Switzerland, built in 1993 which 

shows how a fixed sunshade can be operated in an efficient way.  

The tilting of the panels increases the efficiency of the PV panels. Moreover, in such configuration, 

PV laminates are accommodated in a way that can provide a flat surface for shading elements and also rear 

ventilation that dissipates the generated heat. 
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Figure 6. Samsung commercial office building in Seoul, Korea, integrated in fixed sunshades and the roof of 

the system [63] 

 

 

 
 

Figure 7. Fixed sunshades in the SUVA building. A commercial office building in Switzerland, built in 1993 

[64] 

 

 

3.5.  Moveable sunshades 

Moveable sunshades are the most efficient configuration in regards to solar panel, as it can achieve 

the greatest efficiency with all the advantages of fixed sunshades. Such configuration works with the change 

of tilting according to solar radiation level. Such adjustments can be made either manually or electrical and 

mechanical means.  

Example of moveable sunshades applied in a commercial office building is shown in Figure 8 which 

is situated in Switzerland. It is true that due to the added feature of moving sunshades, such configuration 

may be a little expensive; nevertheless, the efficiency of producing energy is greater than other solar 

configurations.  

 

 
 

Figure 8. Moveable sunshades in a commercial office building, in Switzerland [62] 
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4. POSSIBILITY OF BIPV IN TROPICAL CLIMATES: CASE STUDY OF NIGERIA 

Nigeria is known for its tropical weather. Nigeria is situated approximately between latitude 4°-

14°N and longitude 2°-15°E with a landmass of 9.24 x 105 km2 and receives 6.25 hours of average daily 

sunshine, which ranges between 3.5 hours at the coastal areas and, in case of northern border, it turns out to 

be 9.0 hours [65]. The country is also known for its huge energy consumption, estimated as 15 x 106kWh per 

year, according to 2001 index [65]. In addition, only 3.7% of Nigeria's land area is required to produce 

energy through solar means in comparison with conventional energy reserves of fossil fuel the that has been 

in process now [66]. 

The climate depends on the tropical to subtropical regions. Nigerian territory has two seasons: dry 

season, which lasts from October to March, and rainy season, from April to October. Northern region 

generally has hot and dry climate where the rainy season lasts from April to September. Whereas, in the 

southern region, the climate is generally hot and wet, and the rainy season extends from March to December. 

Therefore, in general, Nigeria enjoys a long dry season from December to March [67]. In the coastal area, the 

temperature may rise above 32°C in this time. Meanwhile, the north enjoys drier temperatures, ranged 

between 32°C and 42°C. Generally, the humidity remains approximately 95% during this period of time [66].  

Furthermore, in Nigeria, solar PV installations have steeply declined over the years and are 

forecasted to continue declining due to the struggles in the optimal harnessing of the solar electricity as a 

sustainable resource. The challenge remains to be the development of solar energy which solves 

technological installation problems, unclear governmental policy and politics, economic inefficiency in 

purchasing such power, lack of public awareness and cultural integration. It is already a fact that solar energy 

is the most abundant renewable resource in Nigeria because of the broad daylight which on average provides 

sunshine of 6.5 hour/day.  

According to the literature [68], the best PV energy production results in Nigeria are achieved when 

using a 60 tilting angle. In addition, it was suggested that between January and March, the best tilting angle 

will be 60, 240 and 300 respectively, and 00 between April and September, and 180, 300 and 360 between 

October and December respectively. An energy amount of 192.70 W/m2 can be produced with the adjustment 

of the tilting angle to its optimum angle, according to the month. It increases significantly about 3 % in 

comparison to applying fixed angle, which produces 186.86 W/m2. 

To obtain maximum power output from solar PV, and since Nigeria is close to the equator, the solar 

collectors must be with a slight tilt of 60 near the north or south, as shown in Figure 9. The maximum amount 

of energy year-round can be absorbed by inclining the solar panel at an angle closer to the latitude of the area 

as possible. These requirements are necessary for maximum power from BIPV. 

 

 

 
 

Figure 9. Mounting angles for fixed solar collectors in Africa [70] 

 

 

Although BIPV has not been yet implemented in Nigeria, it is possible to introduce it in Nigerian 

buildings, if some issues are addressed. Such considerations include market failure and distortions, financial 

and economic constraints, lack of government and institutional policies and incentives, lack of awareness and 

public information. A large number of abandoned PV initiatives in Nigeria are should also be addressed, 

including all the already installed renewable energy infrastructures that are inefficient [69]. For BIPV to be 

fully implemented in a tropical region, like Nigeria, buildings must be constructed with materials having high 
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thermal storage capability. There is also need for proper coating in roofing and ceilings. Solar tracking can 

also be an option to minimize direct sun radiation on buildings and increase the power output. Since these 

technologies are serving two functions (i.e. electricity and heating in buildings), they must conform to the 

codes and standards of both solar and building industry. To encourage builders and private investors to use 

BIPV, the governments should establish appropriate environmental policies and subsidies, with well-

structured feed-in tariffs. Also, for successful implementation of the BIPV technologies, the building 

engineers must have a good understanding of building design that includes solar technology because the solar 

elements must replace other building components and may reduce the overall building cost. This is vital, 

because, nowadays most solar works on building are done solely by solar engineers without any input from 

other building professionals. 

 

 

5. CONCLUSION  

This paper provides an overview of BIPV technologies. Specifically, the paper analyses the possible 

implementation of this scheme in tropical climatic conditions. First, the BIPV technology has been reviewed 

and several author contributions have been tabulated. Most BIPV concentrates on new designs to improve the 

efficiency, such as novel cooling techniques and system arrangements. Literature extensively reports the 

electric power generating capacity of BIPV, with efficiency reaching between 5-18%, as well as many 

applications relating to roof top and façade BIPV.  

In order to get higher power output from the BIPV, certain factors need to be considered, for 

example, slope of the PV, shadowing effect, temperature and the direction of the building. A lot of research 

on BIPV shows simulation and computational analysis because it is easier and cheaper for evaluation and 

encouraging results have been reported. In general, silicon-based PV modules have been applied to BIPV 

applications. Recently, there have been rising interests in BIPV systems with low cost and investment 

feasibility. Recent researches proposed the application of dye-sensitive solar cell technology as a solution for 

BIPV technology. 

The BIPV-thermal is another system that made tremendous progress due to its high cost of 

implementation. It has the advantage of providing both power and heating systems for buildings. Several 

researches proposed that it is a promising technology for the future. 

After reviewing the literature, some of the lessons that tropical climate regions can learn from the 

BIPV include: (1) In order to fully implement BIPV with high efficiency, certain studies must be done 

relating to electrical load demand, predicted PV output, location of the buildings and its integration and 

constraints associated with roof design, (2) To obtain maximum power output from solar PV the solar 

collectors must be tilted to the correct position, (3) To implement BIPV, design criteria such as safety, 

efficiency, durability, flexibility and construction issues need to be considered, (4) To be able to implement 

BIPV, the government must train electricians and carpenters on PV installations, (5) To implement a good 

system, the BIPV roofing must perform same function as normal roofing, that is, noise protection, water 

tightness, insulation and climate protection, (6) As practiced around the world, each country should establish 

design standards for the BIPV. These standards shall provide protection from wind, precipitation, 

temperature and solar irradiation for greater comfort, (7) For a tropical region like Nigeria, thermal comfort 

for residents must be considered when designing BIPV technology. If possible, techniques to reduce thermal 

heating on buildings surfaces must be implemented. 
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