Overview of the Global Arrays Parallel Software Development Toolkit

Bruce Palmer
Manoj Kumar Krishnan, Sriram Krishnamoorthy, Ahbinav Vishnu, Patrick Nichols, Jeff Daily

Pacific Northwest National Laboratory
Overview

- Programming Model
- Basic Functions in GA
- Advanced Functionality
- Applications
- Summary
Distributed Data vs Shared Memory

Distributed Data:
Data is explicitly associated with each processor, accessing data requires specifying the location of the data on the processor and the processor itself.

Data locality is explicit but data access is complicated. Distributed computing is typically implemented with message passing (e.g. MPI)
Shared Memory:

Data is an a globally accessible address space, any processor can access data by specifying its location using a global index.

Data is mapped out in a natural manner (usually corresponding to the original problem) and access is easy. Information on data locality is obscured and leads to loss of performance.
Global Arrays

Distributed dense arrays that can be accessed through a shared memory-like style

Physically distributed data

single, shared data structure/
global indexing

e.g., access $A(4,3)$ rather than $buf(7)$ on task 2
Global Arrays (cont.)

- Shared memory model in context of distributed dense arrays
- **Much** simpler than message-passing for many applications
- Complete environment for parallel code development
- Compatible with MPI
- Data locality control similar to distributed memory/message passing model
- Extensible
- Scalable
Core Capabilities

- Distributed array library
 - dense arrays 1-7 dimensions
 - four data types: integer, real, double precision, double complex
 - global rather than per-task view of data structures
 - user control over data distribution: regular and irregular

- Collective and shared-memory style operations
 - ga_sync, ga_scale, etc
 - ga_put, ga_get, ga_acc
 - nonblocking ga_put, ga_get, ga_acc

- Interfaces to third party parallel numerical libraries
 - PeIGS, Scalapack, SUMMA, Tao
 - example: to solve a linear system using LU factorization
 call ga_lu_solve(g_a, g_b)
 instead of
 call pdgetrf(n,m, locA, p, q, dA, ind, info)
 call pdgetrs(trans, n, mb, locA, p, q, dA,dB,info)
Interoperability and Interfaces

- Language interfaces to Fortran, C, C++, Python
- Interoperability with MPI and MPI libraries
 - e.g., PETSC, CUMULVS
- Explicit interfaces to other systems that expand functionality of GA
 - ScaLAPACK-scalable linear algebra software
 - Peigs-parallel eigensolvers
 - TAO-advanced optimization package
Structure of GA

Application programming language interface

Global Arrays and MPI are completely interoperable. Code can contain calls to both libraries.

Fortran 77 C C++ Python Babel

distributed arrays layer
memory management, index translation

Message Passing
Global operations

ARMCI
portable 1-sided communication
put, get, locks, etc

system specific interfaces
LAPI, GM/Myrinet, threads, VIA,...
Linking the GA library

Also, to test your GA programs, suggested compiler/linker options are as follows.
GA libraries are built in /home/d3g293/ga-4-0-5/lib/LINUX64
INCLUDES = -I/home/d3g293/ga-4-0-5/include

For Fortran Programs:
FLAGS = -g -Vaxlib -cm -w90 -w95 -align -cm -w90 -w95 -align -i8
LIBS = -L/home/d3g293/ga-4-0-5/lib/LINUX64 -lglobal -lma -llinalg -larmci -L/home/software/ia64/mpich-1.2.7-gcc/lib -ltcgmsg-mpi -lmpich -lm

For C Programs:
FLAGS = -g -nofor_main -cm -w90 -w95 -align -cm -w90 -w95 -align -i8
LIBS = -L/home/d3g293/ga-4-0-5/lib/LINUX64 -lglobal -lma -llinalg -larmci -L/home/software/ia64/mpich-1.2.7-gcc/lib -ltcgmsg-mpi -lmpich -lm -lm
Creating Global Arrays

```c
integer array handle

float, double, int, etc.

character string

array of dimensions

dimension

minimum block size on each processor

g_a = NGA_Create(type, ndim, dims, name, chunk)
```
One-sided Communication

Message Passing:
Message requires cooperation on both sides. The processor sending the message (P1) and the processor receiving the message (P0) must both participate.

One-sided Communication:
Once message is initiated on sending processor (P1) the sending processor can continue computation. Receiving processor (P0) is not involved. Data is copied directly from switch into memory on P0.

Diagram Notes:
- **receive** on P0
- **send** on P1
- **message passing**
- **MPI**
- **put** on P1
- **one-sided communication**
- **SHMEM, ARMCI, MPI-2-1S**
Remote Data Access in GA

Message Passing:

- Identify size and location of data blocks.

 Loop over processors:

 - If (me = P_N) then
 - Pack data in local message buffer.
 - Send block of data to message buffer on P0.

 - Else if (me = P0) then
 - Receive block of data from P_N in message buffer.
 - Unpack data from message buffer to local buffer.

 Endif

 End loop

- Copy local data on P0 to local buffer.

Global Arrays:

- `NGA_Get(g_a, lo, hi, buffer, ld);`

 - Global Array handle.
 - Global upper and lower indices of data patch.
 - Local buffer and array of strides.
Data Locality

What data does a processor own?

NGA_Distribution(g_a, iproc, lo, hi);

Where is the data?

NGA_Access(g_a, lo, hi, ptr, ld)

Use this information to organize calculation so that maximum use is made of locally held data.
Global Array Model of Computations

Shared Object

get

local memory

compute/update

local memory

Shared Object

put

copy to shared object

local memory
Sync

- GA_Sync is a collective operation
- It acts as a barrier, which synchronizes all the processes and also ensures that all outstanding communication operations are completed
GA programming model is very simple.

Most of the parallel programs can be written with these basic calls

- GA_Initialize, GA_Terminate
- GA_Nnodes, GA_Nodeid
- GA_Create, GA_Destroy
- GA_Put, GA_Get
- GA_Sync

```
subroutine ga_initialize()
subroutine ga_terminate()

integer function ga_nnodes()
integer function ga_nodeid()

logical function nga_create(type, dim, dims, name, chunk, g_a)
logical function ga_destroy(g_a)

subroutine nga_put(g_a, lo, hi, buf, ld)
subroutine nga_get(g_a, lo, hi, buf, ld)

subroutine ga_sync()
```
Example: Matrix Multiply

local buffers on the processor

=

=

global arrays representing matrices

nga_put

nga_get

dgemm

local buffers on the processor
Matrix Multiply
(a better version)

more scalable!
(less memory, higher parallelism)

atomic accumulate

get

dgemm

local buffers on the processor
Example: 1-D Transpose
Example: 1-D Transpose (cont.)

```c
#define NDIM 1
#define TOTALELEMS 197
#define MAXPROC 128

program main
implicit none
#include "mafdecls.fh"
#include "global.fh"

integer dims(3), chunk(3), nprocs, me, i, lo(3), hi(3), lo1(3)
integer hi1(3), lo2(3), hi2(3), ld(3), nelem
integer g_a, g_b, a(MAXPROC*TOTALELEMS), b(MAXPROC*TOTALELEMS)
integer heap, stack, ichk, ierr
logical status
heap = 300000
stack = 300000
```
Example: 1-D Transpose (cont.)

```plaintext
c c initialize communication library
call mpi_init(ierr)
c c initialize ga library
call ga_initialize()
me = ga_nodeid()
nprocs = ga_nnodes()
dims(1) = nprocs*TOTALELEMS + nprocs/2 ! Unequal data distribution
ld(1) = MAXPROC*TOTALELEMS
chunk(1) = TOTALELEMS ! Minimum amount of data on each processor
status = ma_init(MT_F_DBL, stack/nprocs, heap/nprocs)

c c create a global array
status = nga_create(MT_F_INT, NDIM, dims, "array A", chunk, g_a)
status = ga_duplicate(g_a, g_b, "array B")

c c initialize data in GA
do i=1, dims(1)
a(i) = i
end do
lo1(1) = 1
hi1(1) = dims(1)
if (me.eq.0) call nga_put(g_a,lo1,hi1,a,ld)
call ga_sync() ! Make sure data is distributed before continuing
```
Example: 1-D Transpose (cont.)

```c
invert data locally
call nga_distribution(g_a, me, lo, hi)
call nga_get(g_a, lo, hi, a, ld) ! Use locality
nelem = hi(1)-lo(1)+1
do i = 1, nelem
   b(i) = a(nelem - i + 1)
end do
```

```c
invert data globally
lo2(1) = dims(1) - hi(1) + 1
hi2(1) = dims(1) - lo(1) + 1
call nga_put(g_b,lo2,hi2,b,ld)
call ga_sync() ! Make sure inversion is complete
```
Example: 1-D Transpose (cont.)

 c check inversion
 call nga_get(g_a,lo1,hi1,a,ld)
 call nga_get(g_b,lo1,hi1,b,ld)
 ichk = 0
 do i= 1, dims(1)
 if (a(i).ne.b(dims(1)-i+1).and.me.eq.0) then
 write(6,*) "Mismatch at ", i
 ichk = ichk + 1
 endif
 end do
 if (ichk.eq.0.and.me.eq.0) write(6,*) "Transpose OK"

 status = ga_destroy(g_a) ! Deallocate memory for arrays
 status = ga_destroy(g_b)
 call ga_terminate()
 call mpi_finalize(ierr)
 stop
 end
Non-Blocking Communication

- Allows overlapping of data transfers and computations
 - Technique for latency hiding
- Nonblocking operations initiate a communication call and then return control to the application immediately
- Operation completed locally by making a call to the *wait* routine

```c
NGA_Nbget(g_a, lo, hi, buf, ld, nbhandle)
NGA_Nbwait(nbhandle)
```
SUMMA Matrix Multiplication

Issue NB Get A and B blocks
\textbf{do} (until last chunk)
\begin{itemize}
 \item issue NB Get to the next blocks
 \item wait for previous issued call
 \item compute $A*B$ (sequential \texttt{dgemm})
 \item NB atomic accumulate into "C" matrix
\end{itemize}
\textbf{done}

Advantages:
- Minimum memory
- Highly parallel
- Overlaps computation and communication
 - latency hiding
- exploits data locality
- patch matrix multiplication (easy to use)
- dynamic load balancing

patch matrix multiplication
SUMMA Matrix Multiplication: Improvement over PBLAS/ScaLAPACK

Parallel Matrix Multiplication on the HP/Quadrics Cluster at PNNL
Matrix size: 40000x40000
Efficiency 92.9% w.r.t. serial algorithm and 88.2% w.r.t. machine peak on 1849 CPUs
Read and Increment

- **nga_read_inc**: remotely updates a particular element in an integer global array and returns the original value:
 - Applies to integer arrays only
 - Can be used as a global counter for dynamic load balancing

```c
// Create task counter
call nga_create(MT_F_INT, one, one, chunk, g_counter)
call ga_zero(g_counter);

// Increment
itask = nga_read_inc(g_counter, one, one)

// Translate itask into task ...
```

NGA_Read_inc
(Read and Increment)

Global Lock
(access to data is serialized)
Many parallel applications can potentially make use of groups. These include:

- Numerical evaluation of gradients
- Monte Carlo sampling over initial conditions or uncertain parameter sets
- Free energy perturbation calculations (chemistry)
- Nudged elastic band calculations (chemistry and materials science)
- Sparse matrix-vector operations (NAS CG benchmark)
- Data layout for partially structured grids
- Multi-physics applications
If the individual calculations are small enough then each processor can be used to execute one of the tasks (embarrassingly parallel algorithms).

If the individual tasks are large enough that they must be distributed amongst several processors then the only option (usually) is to run each task sequentially on multiple processors. This limits the total number of processors that can be applied to the problem since parallel efficiency degrades as the number of processors increases.
Multiple Tasks with Groups

Tasks:
10
9
8
7
6
5
4
3
2
1

Processors:

Results:
6
5
4
3
2
1
Multiple Tasks with Groups

Tasks

10
9
8
7
6
5
4
3
2
1

Processors

Results

5
4
3
2
1
Alternatively the collection of processors can be decomposed into processor groups. These processor groups can be used to execute parallel algorithms *independently* of one another. This requires

- global operations that are restricted in scope to a particular group instead of over the entire domain of processors (world group)

- distributed data structures that are restricted to a particular group
Processor Groups (Schematic)

Group A

Group B

World Group
Multiple Tasks with Groups

Tasks

10 9 8 7 6 5 4 3 2 1

Processors

Results

6 5 4 3 2 1
integer function ga_pgroup_create(list, count)

Returns a handle to a group of processors. The total number of processors is count, the individual processor IDs are located in the array list.

subroutine ga_pgroup_set_default(p_grp)

Set the default processor to p_grp. All arrays created after this point are created on the default processor group, all global operations are restricted to the default processor group unless explicit directives are used. Initial value of the default processor group is the world group.
Explicit Operations on Groups

Explicit Global Operations on Groups

ga_pgroup_sync(p_grp)
ga_pgroup_brdcst(p_grp, type, buf, lenbuf, root)
ga_pgroup_igop(p_grp, type, buf, lenbuf, op)
ga_pgroup_dgop(p_grp, type, buf, lenbuf, op)

Query Operations on Groups

ga_pgroup_nnodes(p_grp)
ga_pgroup_nodeid(p_grp)

Access Functions

integer function ga_pgroup_get_default()
integer function ga_pgroup_get_world()
Communication between Groups

Copy and copy_patch operations are supported for global arrays that are created on different groups. One of the groups must be completely contained in the other (nested).

The copy or copy_patch operation must be executed by all processors on the nested group (group B in illustration).
MD Example

Spatial Decomposition Algorithm:

- Partition particles among processors
- Update coordinates at every step
- Update partitioning after fixed number of steps
MD Parallel Scaling

Scaling of Single Parallel Task

- Speedup
- Ideal

Number of Processors vs. Speedup
MD Performance on Groups

Scaling of Parallel MD Tasks on Groups

Number of Processors

Speedup

Ideal
Sparse Data Manipulation

- **ga_scan_add**

 g_mask: 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0
 g_src: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 g_dest: 1 3 6 10 15 21 7 15 9 19 30 12 25 39 15 16 33

- **ga_scan_copy**

 g_mask: 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0
 g_src: 5 8 7 3 2 6 9 7 3 4 8 2 3 6 9 10 7
 g_dest: 5 5 5 5 5 6 6 7 7 7 8 8 8 8 9 10 10
Sparse Data Manipulation

ga_pack

g_mask: 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0
g_src: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
g_dest: 1 6 8 11 15

ga_unpack

| g_mask: 1 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 |
| g_src: 1 6 8 11 15 |
| g_dest: 1 0 0 0 0 6 0 8 0 0 11 0 0 0 15 0 0 |
Compressed Sparse Row Matrix

\[
\begin{bmatrix}
0 & 0 & 1 & 3 & 0 \\
2 & 0 & 0 & 0 & 5 \\
0 & 7 & 0 & 9 & 0 \\
3 & 0 & 4 & 0 & 5 \\
0 & 2 & 0 & 0 & 6 \\
\end{bmatrix}
\]

VALUES: 1 3 2 5 7 9 3 4 5 2 6
J-INDEX: 3 4 1 5 2 4 1 3 5 2 5
I-INDEX: 1 3 5 7 10 12
Sparse Matrix-Vector Multiply

nga_access
nga_gather
Sparse Matrix-Vector Multiply

\[\text{ga_elem_multiply} = \text{ga_scan_add} \]

\[\text{ga_pack} \]
Block-cyclic Data Distributions

Normal Data Distribution

Block Cyclic Data Distribution
Block-cyclic Data Distributions

Simple Distribution

<table>
<thead>
<tr>
<th>0</th>
<th>6</th>
<th>12</th>
<th>18</th>
<th>24</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>13</td>
<td>19</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>14</td>
<td>20</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>16</td>
<td>22</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>17</td>
<td>23</td>
<td>29</td>
<td>35</td>
</tr>
</tbody>
</table>

Scalapack Distribution

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,00,1</td>
<td>0,00,1</td>
<td>0,00,1</td>
<td>0,00,1</td>
<td>0,00,1</td>
</tr>
<tr>
<td>1</td>
<td>1,01,1</td>
<td>1,01,1</td>
<td>1,01,1</td>
<td>1,01,1</td>
<td>1,01,1</td>
</tr>
</tbody>
</table>

0

1

0

1

0

1
Block-cyclic Data Distributions

- Most operations work exactly the same, data distribution is transparent to the user
- Some operations (matrix multiplication, non-blocking put, get) not implemented
- Additional operations added to provide access to data associated with particular sub-blocks
- You need to use the new interface for creating Global Arrays to get create block-cyclic data distributions
Creating Block-cyclic Arrays

integer function ga_create_handle()
subroutine ga_set_data(g_a,ndim,dims,type)
subroutine ga_set_array_name(g_a,name)
subroutine ga_set_block_cyclic(g_a,b_dims)
subroutine ga_set_block_cyclic_proc_grid(g_a,
 dims,proc_grid)

subroutine ga.allocate(g_a)
Block-Cyclic Methods

subroutine ga_get_block_info(g_a, num_blocks, block_dims)
integer function ga_total_blocks(g_a)
subroutine nga_access_block_segment(g_a, iproc, index, length)
subroutine nga_access_block(g_a, idx, index, ld)
subroutine nga_access_block_grid(g_a, subscript, index, ld)
Application Areas

bioinformatics

electronic structure chemistry
GA is the standard programming model

smoothed particle hydrodynamics

fluid dynamics

visual analytics

material sciences

molecular dynamics

hydrology

Others: financial security forecasting, astrophysics, fluid dynamics, climate analysis
Obtain variational solutions to the electronic Schrödinger equation

$$H \Psi = E \Psi$$

within the approximation of a single Slater determinant.

Assuming the one electron orbitals are expanded as

$$\phi_i (\mathbf{r}) = \sum_{\mu} C_{i\mu} \chi_{\mu} (\mathbf{r})$$

the calculation reduces to the self-consistent eigenvalue problem

$$F_{\mu\nu} C_{k\nu} = \varepsilon D_{\mu\nu} C_{k\nu}$$

$$D_{\mu\nu} = \sum_k C_{\mu k} C_{\nu k}$$

$$F_{\mu\nu} = h_{\mu\nu} + \frac{1}{2} \sum_{\omega\lambda} [2 (\mu\nu | \omega\lambda) - (\mu\omega | \nu\lambda)] \rho_{\omega\lambda}$$
Parallelizing the Fock Matrix

The bulk of the work involves computing the 4-index elements (___). This is done by decomposing the quadruple loop into evenly sized blocks and assigning blocks to each processor using a global counter. After each processor completes a block it increments the counter to get the next block.

```
467

Read and increment counter
```

```
do i
  do j
    do k
      do l
        F(i,j) = ..
        Evaluate block
      enddo
    enddo
  enddo
enddo
```

```
Accumulate results
```
NWChem Scaling

NWChem CCSD module

Edo Apra, ORNL
Ghost Cells

Operations:

NGA_Create_ghosts - creates array with ghosts cells
GA_Update_ghosts - updates with data from adjacent processors
NGA_Access_ghosts - provides access to "local" ghost cell elements
NGA_Nbget_ghost_dir - nonblocking call to update ghosts cells
Automatically update ghost cells with appropriate data from neighboring processors. A multiprotocol implementation has been used to optimize the update operation to match platform characteristics.
\[
f_i(r + e_i, t + \Delta t) = f_i(r, t) - \frac{1}{\tau} (f_i(r, t) - f_i^{eq}(r, t))
\]
Lattice Boltzmann Performance

- Graph showing the relationship between time (sec) and number of processors.
- Two lines indicate 'Total' and 'Update' performance.
- The graph demonstrates a decrease in time as the number of processors increases.
ScalaBLAST

- ScalaBLAST is for doing high-throughput BLAST calculations in a cluster or supercomputer.
- ScalaBLAST divides the collection of queries over available processors
 - Proportional speedup on a few processors or on thousands
 - Efficient on commodity clusters or on high-end machines
- Deals with constantly growing database size by distributing one copy of database across processors using a single Global Array
Disk Resident Arrays

- Extend GA model to disk
 - system similar to Panda (U. Illinois) but higher level APIs

- Provide easy transfer of data between N-dim arrays stored on disk and distributed arrays stored in memory

- Use when
 - Arrays too big to store in core
 - checkpoint/restart
 - out-of-core solvers
High Bandwidth Read/Write

Disk Resident Array

Disk Resident Arrays automatically decomposed into multiple files

Disks
Related Programming Tools

- Co-Array Fortran
 - Distributed Arrays
 - One-Sided Communication
 - No Global View of Data
- UPC
 - Model Similar to GA but only applicable to C programs
 - Global Shared Pointers could be used to implement GA functionality
 - C does not really support multi-dimensional arrays
- High level functionality in GA is missing from these systems
Ongoing/Future Work

- Scalability to 100k+ processes
- Support for multithreaded execution
- Autoconfig Builds
- Fault Tolerance
- Data Decomposition and Load balancing
- Support for Hybrid Platforms
- Performance tools for GA/ARMCI
Summary

- The idea has proven very successful
 - efficient on a wide range of architectures
 - core operations tuned for high performance
 - library substantially extended but all original (1994) APIs preserved
 - increasing number of application areas
- Supported and portable tool that works in real applications
Version 4.2 available

Homepage at http://www.emsl.pnl.gov/docs/global/

Platforms (32 and 64 bit)
- IBM SP, BlueGene/L, BlueGene/P
- Cray X1, XD1, XT3, XT4
- Linux Cluster with Ethernet, Myrinet, Infiniband, or Quadrics
- HP
- SGI Altix
- Solaris
- Fujitsu
- Windows
Useful GA Functions (Fortran)

```fortran
subroutine ga_initialize()
subroutine ga_terminate()

integer function ga_nnodes()
integer function ga_nodeid()

logical function nga_create(type,dim,dims,name,chunk,g_a)
  integer type (MT_F_INT, MT_F_DBL, etc.)
  integer dim
  integer dims(dim)
  character(*) name
  integer chunk(dim)
  integer g_a
logical function ga_duplicate(g_a,g_b,name)
  integer g_a
  integer g_b
  character(*) name
logical function ga_destroy(g_a)
  integer g_a

subroutine ga_sync()
```

Use GA Functions (Fortran)

subroutine nga_distribution(g_a, node_id, lo, hi)
 integer g_a
 integer node_id
 integer lo(dim)
 integer hi(dim)

subroutine nga_put(g_a, lo, hi, buf, ld)
 integer g_a
 integer lo(dim)
 integer hi(dim)
 fortran array buf
 integer ld(dim-1)

subroutine nga_get(g_a, lo, hi, buf, ld)
 integer g_a
 integer lo(dim)
 integer hi(dim)
 fortran array buf
 integer ld(dim-1)
Useful GA Functions (C)

```c
void GA_Initialize()
void GA_Terminate()

int GA_Nnodes()
int GA_Nodeid()

int NGA_Create(type, dim, dims, name, chunk) Returns GA handle g_a
    int type (C_INT, C_DBL, etc.)
    int dim
    int dims[dim]
    char* name
    int chunk[dim]
int GA_Duplicate(g_a, name) Returns GA handle g_b
    int g_a
    char* name
void GA_Destroy(g_a)
    int g_a

void GA_Sync()
```
Useful GA Functions (C)

```c
void NGA_Distribution(g_a, node_id, lo, hi)
    int g_a
    int node_id
    int lo[dim]
    int hi[dim]

void NGA_Put(g_a, lo, hi, buf, ld)
    int g_a
    int lo[dim]
    int hi[dim]
    void* buf
    int ld[dim-1]

void NGA_Get(g_a, lo, hi, buf, ld)
    int g_a
    int lo[dim]
    int hi[dim]
    void* buf
    int ld[dim-1]
```
Problems 1 and 2

- Chose Fortran or C version of problems (whichever language you prefer)
 - Xxx.c or xxx.F

- Search file for comments marked with ###

- Using the text as hints, replace the comments with subroutines or functions from the GA library to create a working code

- Compile and run
Problem 1 (1D Transpose)

- Transpose a distributed 1D vector containing N elements in the order 1,2,...,N into a distributed vector containing N elements in the order N,N-1,...,2,1
- Fortran version of this problem is in the file transp1D.F.tutorial
- C version is in transp1D.c.tutorial
- Working versions of these codes are in transp1D.F and transp1D.c
Problem 2 (Matrix Multiplication)

- A simple matrix multiply algorithm that initializes two large matrices as GAs. It then multiplies a block of columns by a block or rows from the GAs locally on each processor and copies the result into a third global array.
- Fortran version of this problem is in the file matrix.F.tutorial
- C version is in matrix.c.tutorial
- Working versions are in matrix.F and matrix.c
Both the codes in problems 1 & 2 initialize the data by initializing a local array on processor 0 with all the data and then copying it to a distributed global array. For real problems it is usually undesirable to have all the data located on one processor at any point in the calculation. Can you modify these codes (problem 1 and 2) so that each processor only initializes the data owned by that processor?

1D transpose (Problem 1)
- Modify code so that each processor only initializes the local array \(a()\) with the data owned by that processor and then copy that data to the global array \(g_a\)
- Hint: Use \(nga_distribution\) and \(nga_put\)
- You will also need to modify the result checking part of the code as well so that it also only uses smaller portions of the total GA
- Hint: copy locally held part of result GA into local array \(b\) and corresponding part of original vector into local array \(a\) and compare (use arrays \(lo, hi, lo2, hi2\) to get this data).

Matrix Multiply (Problem 2)
- Modify code so that each processor only initializes the local arrays \(a\) and \(b\) with the data held locally by that processor. Then copy that data to the global arrays \(g_a\) and \(g_b\).
- Hint: Use \(nga_distribution\) and \(nga_put\)