Homogeneous orthocomplete effect algebras are covered by MV-algebras

Josef Niederle and Jan Paseka
Department of Mathematics and Statistics
Masaryk University
Brno, Czech Republic
niederle, paseka@math.muni.cz
Supported by

TACL 2011 July 26-30
Marseille, France
Outline

1. Introduction
2. Basic definitions
3. The condition \((W+)\)
4. Main theorem and its generalizations
Introduction

Joint work of J. Niederle and J. Paseka

Special types of effect algebras E called homogeneous were introduced by G. Jenča.

The aim of our paper is to show that every block of an Archimedean homogeneous effect algebra satisfying the property (W^+) is lattice ordered. Therefore, any Archimedean homogeneous effect algebra satisfying the property (W^+) is covered by MV-algebras.

As a corollary, this yields that every block of a homogeneous orthocomplete effect algebra is a Heyting effect algebra.
Joint work of J. Niederle and J. Paseka

Special types of effect algebras E called homogeneous were introduced by G. Jenča.

The aim of our paper is to show that every block of an Archimedean homogeneous effect algebra satisfying the property (W+) is lattice ordered. Therefore, any Archimedean homogeneous effect algebra satisfying the property (W+) is covered by MV-algebras.

As a corollary, this yields that every block of a homogeneous orthocomplete effect algebra is a Heyting effect algebra.
Joint work of J. Niederle and J. Paseka

Special types of effect algebras E called homogeneous were introduced by G. Jenča.

The aim of our paper is to show that every block of an Archimedean homogeneous effect algebra satisfying the property (W^+) is lattice ordered. Therefore, any Archimedean homogeneous effect algebra satisfying the property (W^+) is covered by MV-algebras.

As a corollary, this yields that every block of a homogeneous orthocomplete effect algebra is a Heyting effect algebra.
Introduction

Joint work of J. Niederle and J. Paseka

Special types of effect algebras E called homogeneous were introduced by G. Jenča.

The aim of our paper is to show that every block of an Archimedean homogeneous effect algebra satisfying the property (W^+) is lattice ordered. Therefore, any Archimedean homogeneous effect algebra satisfying the property (W^+) is covered by MV-algebras.

As a corollary, this yields that every block of a homogeneous orthocomplete effect algebra is a Heyting effect algebra.
Forerunners of our work

- Anatolij Dvurečenskij
- Gejza Jenča
- Mirko Navara
- Sylvia Pulmannová
- Zdenka Riečanová
- Josef Tkadlec
Forerunners of our work

- Anatolij Dvurečenskij
- Gejza Jenča
- Mirko Navara
- Sylvia Pulmannová
- Zdenka Riečanová
- Josef Tkadlec
Forerunners of our work

- Anatolij Dvurečenskij
- Gejza Jenča
- Mirko Navara
- Sylvia Pulmannová
- Zdenka Riečanová
- Josef Tkadlec
Forerunners of our work

- Anatolij Dvurečenskij
- Gejza Jenča
- Mirko Navara
- Sylvia Pulmannová
- Zdenka Riečanová
- Josef Tkadlec
Forerunners of our work

- Anatolij Dvurečenskij
- Gejza Jenča
- Mirko Navara
- Sylvia Pulmannová
- Zdenka Riečanová
- Josef Tkadlec
Forerunners of our work

- Anatolij Dvurečenskij
- Gejza Jenča
- Mirko Navara
- Sylvia Pulmannová
- Zdenka Riečanová
- Josef Tkadlec
Outline

1. Introduction
2. Basic definitions
3. The condition (W+)
4. Main theorem and its generalizations
Basic definition – effect algebras

Definition (D. Foulis and M.K. Bennett, 1994)

A partial algebra $(E; \oplus, 0, 1)$ is called an **effect algebra** if 0, 1 are two distinct elements and \oplus is a partially defined binary operation on E which satisfy the following conditions for any $x, y, z \in E$:

(Ei) $x \oplus y = y \oplus x$ if $x \oplus y$ is defined,

(Eii) $(x \oplus y) \oplus z = x \oplus (y \oplus z)$ if one side is defined,

(Eiii) for every $x \in E$ there exists a unique $y \in E$ such that $x \oplus y = 1$ (we put $x' = y$),

(Eiv) if $1 \oplus x$ is defined then $x = 0$.

Example

Let $E = [0, 1] \subseteq \mathbb{R}$. We put $x \oplus y = x + y$ iff $x + y \leq 1$. Hence $\frac{3}{4} \oplus \frac{4}{5}$ does not exist in E.
Definition (D. Foulis and M.K. Bennett, 1994)

A partial algebra \((E; \oplus, 0, 1)\) is called an **effect algebra** if 0, 1 are two distinct elements and \(\oplus\) is a partially defined binary operation on \(E\) which satisfy the following conditions for any \(x, y, z \in E\):

- **(Ei)** \(x \oplus y = y \oplus x\) if \(x \oplus y\) is defined,
- **(Eii)** \((x \oplus y) \oplus z = x \oplus (y \oplus z)\) if one side is defined,
- **(Eiii)** for every \(x \in E\) there exists a unique \(y \in E\) such that \(x \oplus y = 1\) (we put \(x' = y\)),
- **(Eiv)** if \(1 \oplus x\) is defined then \(x = 0\).

Example

Let \(E = [0, 1] \subseteq \mathbb{R}\). We put \(x \oplus y = x + y\) iff \(x + y \leq 1\). Hence \(\frac{3}{4} \oplus \frac{4}{5}\) does not exist in \(E\).
Basic definition – effect algebras

Definition (D. Foulis and M.K. Bennett, 1994)

A partial algebra \((E; \oplus, 0, 1)\) is called an **effect algebra** if 0, 1 are two distinct elements and \(\oplus\) is a partially defined binary operation on \(E\) which satisfy the following conditions for any \(x, y, z \in E\):

\[(E_i) \quad x \oplus y = y \oplus x \text{ if } x \oplus y \text{ is defined},\]

\[(E_{ii}) \quad (x \oplus y) \oplus z = x \oplus (y \oplus z) \text{ if one side is defined},\]

\[(E_{iii}) \quad \text{for every } x \in E \text{ there exists a unique } y \in E \text{ such that } x \oplus y = 1 \text{ (we put } x' = y),\]

\[(E_{iv}) \quad \text{if } 1 \oplus x \text{ is defined then } x = 0.\]

Example

Let \(E = [0, 1] \subseteq \mathbb{R}\). We put \(x \oplus y = x + y \text{ iff } x + y \leq 1\). Hence \(\frac{3}{4} \oplus \frac{4}{5}\) does not exist in \(E\).
Basic definition – effect algebras

Definition (D. Foulis and M.K. Bennett, 1994)

A partial algebra \((E; \oplus, 0, 1)\) is called an **effect algebra** if 0, 1 are two distinct elements and \(\oplus\) is a partially defined binary operation on \(E\) which satisfy the following conditions for any \(x, y, z \in E\):

1. **(Ei)** \(x \oplus y = y \oplus x\) if \(x \oplus y\) is defined,
2. **(Eii)** \((x \oplus y) \oplus z = x \oplus (y \oplus z)\) if one side is defined,
3. **(Eiii)** for every \(x \in E\) there exists a unique \(y \in E\) such that \(x \oplus y = 1\) (we put \(x' = y\)),
4. **(Eiv)** if \(1 \oplus x\) is defined then \(x = 0\).

Example

Let \(E = [0, 1] \subseteq \mathbb{R}\). We put \(x \oplus y = x + y\) iff \(x + y \leq 1\). Hence \(\frac{3}{4} \oplus \frac{4}{5}\) does not exist in \(E\).
Basic definition – effect algebras

Definition (D. Foulis and M.K. Bennett, 1994)
A partial algebra \((E; \oplus, 0, 1)\) is called an **effect algebra** if 0, 1 are two distinct elements and \(\oplus\) is a partially defined binary operation on \(E\) which satisfy the following conditions for any \(x, y, z \in E\):

(Ei) \(x \oplus y = y \oplus x\) if \(x \oplus y\) is defined,

(Eii) \((x \oplus y) \oplus z = x \oplus (y \oplus z)\) if one side is defined,

(Eiii) for every \(x \in E\) there exists a unique \(y \in E\) such that \(x \oplus y = 1\) (we put \(x' = y\)),

(Eiv) if \(1 \oplus x\) is defined then \(x = 0\).

Example

Let \(E = [0, 1] \subseteq \mathbb{R}\). We put \(x \oplus y = x + y\) iff \(x + y \leq 1\). Hence \(\frac{3}{4} \oplus \frac{4}{5}\) does not exist in \(E\).
Definition (D. Foulis and M.K. Bennett, 1994)

A partial algebra \((E; \oplus, 0, 1)\) is called an **effect algebra** if 0, 1 are two distinct elements and \(\oplus\) is a partially defined binary operation on \(E\) which satisfy the following conditions for any \(x, y, z \in E\):

\[(Ei)\] \(x \oplus y = y \oplus x\) if \(x \oplus y\) is defined,

\[(Eii)\] \((x \oplus y) \oplus z = x \oplus (y \oplus z)\) if one side is defined,

\[(Eiii)\] for every \(x \in E\) there exists a unique \(y \in E\) such that \(x \oplus y = 1\) (we put \(x' = y\)),

\[(Eiv)\] if \(1 \oplus x\) is defined then \(x = 0\).

Example

Let \(E = [0, 1] \subseteq \mathbb{R}\). We put \(x \oplus y = x + y\) iff \(x + y \leq 1\). Hence \(\frac{3}{4} \oplus \frac{4}{5}\) does not exist in \(E\).
A subset $Q \subseteq E$ is called a \textit{sub-effect algebra} of E if

(i) $1 \in Q$

(ii) if out of elements $x, y, z \in E$ with $x \oplus y = z$ two are in Q, then $x, y, z \in Q$.

An effect algebra E is called an \textit{orthoalgebra} if $x \oplus x$ exists implies that $x = 0$.

On every effect algebra E the partial order \leq and a partial binary operation \ominus can be introduced as follows:

$x \leq y$ and $y \ominus x = z$ iff $x \oplus z$ is defined and $x \oplus z = y$.

If E with the defined partial order is a (complete) lattice then $(E; \oplus, 0, 1)$ is called a \textit{(complete) lattice effect algebra}.
Basic definitions – effect algebras

A subset $Q \subseteq E$ is called a *sub-effect algebra* of E if

(i) $1 \in Q$

(ii) if out of elements $x, y, z \in E$ with $x \oplus y = z$ two are in Q, then $x, y, z \in Q$.

An effect algebra E is called an *orthoalgebra* if $x \oplus x$ exists implies that $x = 0$.

On every effect algebra E the partial order \leq and a partial binary operation \ominus can be introduced as follows:

$x \leq y$ and $y \ominus x = z$ iff $x \oplus z$ is defined and $x \oplus z = y$.

If E with the defined partial order is a (complete) lattice then $(E; \oplus, 0, 1)$ is called a (complete) lattice effect algebra.
A subset $Q \subseteq E$ is called a sub-effect algebra of E if

(i) $1 \in Q$

(ii) if out of elements $x, y, z \in E$ with $x \oplus y = z$ two are in Q, then $x, y, z \in Q$.

An effect algebra E is called an orthoalgebra if $x \oplus x$ exists implies that $x = 0$.

On every effect algebra E the partial order \leq and a partial binary operation \ominus can be introduced as follows:

$x \leq y$ and $y \ominus x = z$ iff $x \oplus z$ is defined and $x \oplus z = y$.

If E with the defined partial order is a (complete) lattice then $(E; \oplus, 0, 1)$ is called a (complete) lattice effect algebra.
A subset $Q \subseteq E$ is called a sub-effect algebra of E if

(i) $1 \in Q$

(ii) if out of elements $x, y, z \in E$ with $x \oplus y = z$ two are in Q, then $x, y, z \in Q$.

An effect algebra E is called an orthoalgebra if $x \oplus x$ exists implies that $x = 0$.

On every effect algebra E the partial order \leq and a partial binary operation \ominus can be introduced as follows:

$$x \leq y \quad \text{and} \quad y \ominus x = z \quad \text{iff} \quad x \oplus z \quad \text{is defined and} \quad x \oplus z = y.$$

If E with the defined partial order is a (complete) lattice then $(E; \oplus, 0, 1)$ is called a (complete) lattice effect algebra.
A subset \(Q \subseteq E \) is called a sub-effect algebra of \(E \) if

(i) \(1 \in Q \)

(ii) if out of elements \(x, y, z \in E \) with \(x \oplus y = z \) two are in \(Q \), then \(x, y, z \in Q \).

An effect algebra \(E \) is called an orthoalgebra if \(x \oplus x \) exists implies that \(x = 0 \).

On every effect algebra \(E \) the partial order \(\leq \) and a partial binary operation \(\ominus \) can be introduced as follows:

\[
x \leq y \quad \text{and} \quad y \ominus x = z \quad \text{iff} \quad x \oplus z \quad \text{is defined and} \quad x \oplus z = y.
\]

If \(E \) with the defined partial order is a (complete) lattice then \((E; \oplus, 0, 1)\) is called a (complete) lattice effect algebra.
Basic definitions – effect algebras

A subset $Q \subseteq E$ is called a sub-effect algebra of E if

(i) $1 \in Q$

(ii) if out of elements $x, y, z \in E$ with $x \oplus y = z$ two are in Q, then $x, y, z \in Q$.

An effect algebra E is called an orthoalgebra if $x \oplus x$ exists implies that $x = 0$.

On every effect algebra E the partial order \leq and a partial binary operation \ominus can be introduced as follows:

$$x \leq y \text{ and } y \ominus x = z \text{ iff } x \oplus z \text{ is defined and } x \oplus z = y.$$

If E with the defined partial order is a (complete) lattice then $(E; \oplus, 0, 1)$ is called a (complete) lattice effect algebra.
An effect algebra E satisfies the *Riesz decomposition property* (or \(\text{RDP}\)) if, for all $u, v_1, v_2 \in E$ such that $u \leq v_1 \oplus v_2$, there are u_1, u_2 such that $u_1 \leq v_1, u_2 \leq v_2$ and $u = u_1 \oplus u_2$.

(i) Every lattice effect algebra with \(\text{RDP}\) can be organized into an MV-algebra and conversely.

(ii) Every MV-algebra which is an orthoalgebra is a Boolean algebra.

An effect algebra E is called *homogeneous* if, for all $u, v_1, v_2 \in E$ such that $u \leq v_1 \oplus v_2 \leq u'$, there are u_1, u_2 such that $u_1 \leq v_1, u_2 \leq v_2$ and $u = u_1 \oplus u_2$.

A subset B of E is called a *block* of E if B is a maximal sub-effect algebra of E with the Riesz decomposition property.
An effect algebra E satisfies the *Riesz decomposition property* (or RDP) if, for all $u, v_1, v_2 \in E$ such that $u \leq v_1 \oplus v_2$, there are u_1, u_2 such that $u_1 \leq v_1, u_2 \leq v_2$ and $u = u_1 \oplus u_2$.

(i) Every lattice effect algebra with RDP can be organized into an MV-algebra and conversely.

(ii) Every MV-algebra which is an orthoalgebra is a Boolean algebra.

An effect algebra E is called *homogeneous* if, for all $u, v_1, v_2 \in E$ such that $u \leq v_1 \oplus v_2 \leq u'$, there are u_1, u_2 such that $u_1 \leq v_1, u_2 \leq v_2$ and $u = u_1 \oplus u_2$.

A subset B of E is called a *block* of E if B is a maximal sub-effect algebra of E with the Riesz decomposition property.
Basic definitions – effect algebras

An effect algebra E satisfies the *Riesz decomposition property* (or RDP) if, for all $u, v_1, v_2 \in E$ such that $u \leq v_1 \oplus v_2$, there are u_1, u_2 such that $u_1 \leq v_1, u_2 \leq v_2$ and $u = u_1 \oplus u_2$.

(i) Every lattice effect algebra with RDP can be organized into an MV-algebra and conversely.

(ii) Every MV-algebra which is an orthoalgebra is a Boolean algebra.

An effect algebra E is called *homogeneous* if, for all $u, v_1, v_2 \in E$ such that $u \leq v_1 \oplus v_2 \leq u'$, there are u_1, u_2 such that $u_1 \leq v_1, u_2 \leq v_2$ and $u = u_1 \oplus u_2$.

A subset B of E is called a *block* of E if B is a maximal sub-effect algebra of E with the Riesz decomposition property.
Basic definitions – effect algebras

An effect algebra E satisfies the \textit{Riesz decomposition property} (or RDP) if, for all $u, v_1, v_2 \in E$ such that $u \leq v_1 \oplus v_2$, there are u_1, u_2 such that $u_1 \leq v_1, u_2 \leq v_2$ and $u = u_1 \oplus u_2$.

(i) Every lattice effect algebra with RDP can be organized into an MV-algebra and conversely.
(ii) Every MV-algebra which is an orthoalgebra is a Boolean algebra.

An effect algebra E is called \textit{homogeneous} if, for all $u, v_1, v_2 \in E$ such that $u \leq v_1 \oplus v_2 \leq u'$, there are u_1, u_2 such that $u_1 \leq v_1, u_2 \leq v_2$ and $u = u_1 \oplus u_2$.

A subset B of E is called a \textit{block} of E if B is a maximal sub-effect algebra of E with the Riesz decomposition property.
Basic definitions – effect algebras

An effect algebra E satisfies the **Riesz decomposition property** (or RDP) if, for all $u, v_1, v_2 \in E$ such that $u \leq v_1 \oplus v_2$, there are u_1, u_2 such that $u_1 \leq v_1, u_2 \leq v_2$ and $u = u_1 \oplus u_2$.

(i) Every lattice effect algebra with RDP can be organized into an MV-algebra and conversely.

(ii) Every MV-algebra which is an orthoalgebra is a Boolean algebra.

An effect algebra E is called **homogeneous** if, for all $u, v_1, v_2 \in E$ such that $u \leq v_1 \oplus v_2 \leq u'$, there are u_1, u_2 such that $u_1 \leq v_1, u_2 \leq v_2$ and $u = u_1 \oplus u_2$.

A subset B of E is called a **block of E** if B is a maximal sub-effect algebra of E with the Riesz decomposition property.
An effect algebra E satisfies the **Riesz decomposition property** (or RDP) if, for all $u, v_1, v_2 \in E$ such that $u \leq v_1 \oplus v_2$, there are u_1, u_2 such that $u_1 \leq v_1, u_2 \leq v_2$ and $u = u_1 \oplus u_2$.

(i) Every lattice effect algebra with RDP can be organized into an MV-algebra and conversely.

(ii) Every MV-algebra which is an orthoalgebra is a Boolean algebra.

An effect algebra E is called **homogeneous** if, for all $u, v_1, v_2 \in E$ such that $u \leq v_1 \oplus v_2 \leq u'$, there are u_1, u_2 such that $u_1 \leq v_1, u_2 \leq v_2$ and $u = u_1 \oplus u_2$.

A subset B of E is called a **block** of E if B is a maximal sub-effect algebra of E with the Riesz decomposition property.
(i) Every orthoalgebra is homogeneous.
(ii) Every lattice effect algebra is homogeneous.
(iii) Every effect algebra with the Riesz decomposition property is homogeneous.

An element w of an effect algebra E is called *sharp* if $w \wedge w' = 0$.

The well known fact is that in every lattice effect algebra E the subset $S(E) = \{ w \in E \mid w \wedge w' = 0 \}$ is a sub-lattice effect algebra of E being an orthomodular lattice.
(i) Every orthoalgebra is homogeneous.
(ii) Every lattice effect algebra is homogeneous.
(ii) Every effect algebra with the Riesz decomposition property is homogeneous.

An element w of an effect algebra E is called *sharp* if $w \wedge w' = 0$.

The well known fact is that in every lattice effect algebra E the subset $S(E) = \{ w \in E \mid w \wedge w' = 0 \}$ is a sub-lattice effect algebra of E being an orthomodular lattice.
Basic definitions – Effect algebras

(i) Every orthoalgebra is homogeneous.

(ii) Every lattice effect algebra is homogeneous.

(ii) Every effect algebra with the Riesz decomposition property is homogeneous.

An element w of an effect algebra E is called sharp if $w \land w' = 0$.

The well known fact is that in every lattice effect algebra E the subset $S(E) = \{ w \in E \mid w \land w' = 0 \}$ is a sub-lattice effect algebra of E being an orthomodular lattice.
Basic definitions – Effect algebras

(i) Every orthoalgebra is homogeneous.
(ii) Every lattice effect algebra is homogeneous.
(iii) Every effect algebra with the Riesz decomposition property is homogeneous.

An element w of an effect algebra E is called \textit{sharp} if $w \land w' = 0$.

The well known fact is that in every lattice effect algebra E the subset $S(E) = \{w \in E \mid w \land w' = 0\}$ is a sub-lattice effect algebra of E being an orthomodular lattice.
Basic definitions – Effect algebras

(i) Every orthoalgebra is homogeneous.
(ii) Every lattice effect algebra is homogeneous.
(ii) Every effect algebra with the Riesz decomposition property is homogeneous.

An element w of an effect algebra E is called **sharp** if $w \wedge w' = 0$.

The well known fact is that in every lattice effect algebra E the subset $S(E) = \{ w \in E \mid w \wedge w' = 0 \}$ is a sub-lattice effect algebra of E being an orthomodular lattice.
Basic definitions – Effect algebras

(i) Every orthoalgebra is homogeneous.
(ii) Every lattice effect algebra is homogeneous.
(iii) Every effect algebra with the Riesz decomposition property is homogeneous.

An element w of an effect algebra E is called *sharp* if $w \wedge w' = 0$.

The well known fact is that in every lattice effect algebra E the subset $S(E) = \{ w \in E \mid w \wedge w' = 0 \}$ is a sub-lattice effect algebra of E being an orthomodular lattice.
Blocks of E and $S(E)$ - Example 1 - The diamond

$S(E) = \{0, 1\}$ is a Boolean algebra, but E has two blocks, $\{0, a, 1\}$ and $\{0, b, 1\}$.

For any block B of E, $S(E) \cap B = \{0, 1\}$ is a block of $S(E)$.

$a \oplus a = b \oplus b = 1$
Blocks of E and $S(E)$ - Example 1 - The diamond

- $S(E) = \{0, 1\}$ is a Boolean algebra, but E has two blocks, $\{0, a, 1\}$ and $\{0, b, 1\}$.
- For any block B of E, $S(E) \cap B = \{0, 1\}$ is a block of $S(E)$.

\[a \oplus a = b \oplus b = 1 \]
Blocks of E and $S(E)$ - Example 2

$S(E) = \{0, a, b, 1\}$ is a Boolean algebra and E has again two blocks. Namely, there are two blocks here, the Boolean algebra $S(E)$ and a 3-element chain $C_3 = \{0, c, 1\}$.

$S(E) \cap C_3 = \{0, 1\}$ is not a block of $S(E)$.

$a \oplus b = c \oplus c = 1$
$S(E) = \{0, a, b, 1\}$ is a Boolean algebra and E has again two blocks. Namely, there are two blocks here, the Boolean algebra $S(E)$ and a 3-element chain $C_3 = \{0, c, 1\}$.

$S(E) \cap C_3 = \{0, 1\}$ is not a block of $S(E)$.

$a \oplus b = c \oplus c = 1$
Meager and hypermeager elements

In what follows set

\[M(E) = \{ x \in E \mid \text{if } v \in S(E) \text{ satisfies } v \leq x \text{ then } v = 0 \}. \]

We also define

\[HM(E) = \{ x \in E \mid \text{there is } y \in E \text{ such that } x \leq y \text{ and } x \leq y' \} \]

and

\[UM(E) = \{ x \in E \mid \text{for every } y \in S(E) \text{ such that } x \leq y \text{ it holds } x \leq y \oplus x \}. \]

An element \(x \in M(E) \) is called \textit{meager}, an element \(x \in HM(E) \) is called \textit{hypermeager} and an element \(x \in UM(E) \) is called \textit{ultrameager}.
Meager and hypermeager elements

In what follows set

\[M(E) = \{ x \in E \mid \text{if } v \in S(E) \text{ satisfies } v \leq x \text{ then } v = 0 \}. \]

We also define

\[HM(E) = \{ x \in E \mid \text{there is } y \in E \text{ such that } x \leq y \text{ and } x \leq y' \} \]

and

\[UM(E) = \{ x \in E \mid \text{for every } y \in S(E) \text{ such that } x \leq y \text{ it holds } x \leq y \oplus x \}. \]

An element \(x \in M(E) \) is called meager, an element \(x \in HM(E) \) is called hypermeager and an element \(x \in UM(E) \) is called ultrameager.
Meager and hypermeager elements

In what follows set

\[M(E) = \{ x \in E \mid \text{if } v \in S(E) \text{ satisfies } v \leq x \text{ then } v = 0 \}. \]

We also define

\[\text{HM}(E) = \{ x \in E \mid \text{there is } y \in E \text{ such that } x \leq y \text{ and } x \leq y' \} \]

and

\[\text{UM}(E) = \{ x \in E \mid \text{for every } y \in S(E) \text{ such that } x \leq y \text{ it holds } x \leq y \ominus x \}. \]

An element \(x \in M(E) \) is called meager, an element \(x \in \text{HM}(E) \) is called hypermeager and an element \(x \in \text{UM}(E) \) is called ultrameager.
Meager and hypermeager elements - Example 3

$1 = 4b = a \oplus b \oplus c$

$3b = a \oplus c$

$UM(E)$

$a \oplus b$

$b \oplus c$

a

c

b

$2b$

$M(E) = HM(E)$

0
Meager and hypermeager elements - Example 4

1 = 6b = a \oplus b \oplus c

\begin{align*}
a \oplus b & \quad 5b = a \oplus c & b \oplus c \\
a & \quad b & c
\end{align*}

\begin{align*}
4b & \\
3b & \\
2b & \\
0 & \quad \text{HM}(E) & \quad \text{M}(E)
\end{align*}

\text{UM}(E)
Meager and hypermeager elements

Lemma

Let E be an effect algebra. Then $\text{UM}(E) \subseteq \text{HM}(E) \subseteq M(E)$. Moreover, for all $x \in E$, $x \in \text{HM}(E)$ iff $x \oplus x$ exists and, for all $y \in M(E)$, $y \neq 0$ there is $h \in \text{HM}(E)$, $h \neq 0$ such that $h \leq y$.

Lemma

In every homogeneous effect algebra E, $\text{UM}(E) = \text{HM}(E)$.

For an element x of an effect algebra E we write $\text{ord}(x) = \infty$ if $nx = x \oplus x \oplus \cdots \oplus x$ (n-times) exists for every positive integer n and we write $\text{ord}(x) = n_x$ if n_x is the greatest positive integer such that $n_x x$ exists in E. An effect algebra E is Archimedean if $\text{ord}(x) < \infty$ for all $x \in E$, $x \neq 0$.
Meager and hypermeager elements

Lemma

Let E be an effect algebra. Then $\text{UM}(E) \subseteq \text{HM}(E) \subseteq \text{M}(E)$. Moreover, for all $x \in E$, $x \in \text{HM}(E)$ iff $x \oplus x$ exists and, for all $y \in \text{M}(E)$, $y \neq 0$ there is $h \in \text{HM}(E)$, $h \neq 0$ such that $h \leq y$.

Lemma

In every homogeneous effect algebra E, $\text{UM}(E) = \text{HM}(E)$.

For an element x of an effect algebra E we write $\text{ord}(x) = \infty$ if $nx = x \oplus x \oplus \cdots \oplus x$ (n-times) exists for every positive integer n and we write $\text{ord}(x) = n_x$ if n_x is the greatest positive integer such that $n_x x$ exists in E. An effect algebra E is Archimedean if $\text{ord}(x) < \infty$ for all $x \in E$, $x \neq 0$.
Meager and hypermeager elements

Lemma

Let E be an effect algebra. Then $\text{UM}(E) \subseteq \text{HM}(E) \subseteq \text{M}(E)$. Moreover, for all $x \in E$, $x \in \text{HM}(E)$ iff $x \oplus x$ exists and, for all $y \in \text{M}(E)$, $y \neq 0$ there is $h \in \text{HM}(E)$, $h \neq 0$ such that $h \leq y$.

Lemma

In every homogeneous effect algebra E, $\text{UM}(E) = \text{HM}(E)$.

For an element x of an effect algebra E we write $\text{ord}(x) = \infty$ if $nx = x \oplus x \oplus \cdots \oplus x$ (n-times) exists for every positive integer n and we write $\text{ord}(x) = n_x$ if n_x is the greatest positive integer such that $n_x x$ exists in E. An effect algebra E is Archimedean if $\text{ord}(x) < \infty$ for all $x \in E$, $x \neq 0$.
Orthogonal systems

We say that a finite system $F = (x_k)_{k=1}^n$ of not necessarily different elements of an effect algebra E is \textit{orthogonal} if $x_1 \oplus x_2 \oplus \cdots \oplus x_n$ (written $\bigoplus_{k=1}^n x_k$ or $\bigoplus F$) exists in E.

An arbitrary system $G = (x_\kappa)_{\kappa \in H}$ of not necessarily different elements of E is called \textit{orthogonal} if $\bigoplus K$ exists for every finite $K \subseteq G$.

We say that for a orthogonal system $G = (x_\kappa)_{\kappa \in H}$ the element $\bigoplus G$ exists iff $\bigvee \{\bigoplus K \mid K \subseteq G \text{ is finite}\}$ exists in E and then we put $\bigoplus G = \bigvee \{\bigoplus K \mid K \subseteq G \text{ is finite}\}$. We say that $\bigoplus G$ is the \textit{orthogonal sum} of G and G is \textit{orthosummable}. (Here we write $G_1 \subseteq G$ iff there is $H_1 \subseteq H$ such that $G_1 = (x_\kappa)_{\kappa \in H_1}$). We denote $G^\oplus := \{\bigoplus K \mid K \subseteq G \text{ is finite}\}$.

E is called \textit{orthocomplete} if every orthogonal system is orthosummable.
Orthogonal systems

We say that a finite system \(F = (x_k)_{k=1}^n \) of not necessarily different elements of an effect algebra \(E \) is orthogonal if \(x_1 \oplus x_2 \oplus \cdots \oplus x_n \) (written \(\bigoplus_{k=1}^n x_k \) or \(\bigoplus F \)) exists in \(E \).

An arbitrary system \(G = (x_\kappa)_{\kappa \in H} \) of not necessarily different elements of \(E \) is called orthogonal if \(\bigoplus K \) exists for every finite \(K \subseteq G \).

We say that for a orthogonal system \(G = (x_\kappa)_{\kappa \in H} \) the element \(\bigoplus G \) exists iff \(\bigvee \{ \bigoplus K \mid K \subseteq G \text{ is finite} \} \) exists in \(E \) and then we put \(\bigoplus G = \bigvee \{ \bigoplus K \mid K \subseteq G \text{ is finite} \} \). We say that \(\bigoplus G \) is the orthogonal sum of \(G \) and \(G \) is orthosummable. (Here we write \(G_1 \subseteq G \) iff there is \(H_1 \subseteq H \) such that \(G_1 = (x_\kappa)_{\kappa \in H_1} \). We denote \(G^{\oplus} := \{ \bigoplus K \mid K \subseteq G \text{ is finite} \} \).

\(E \) is called orthocomplete if every orthogonal system is orthosummable.
Orthogonal systems

We say that a finite system $F = (x_k)_{k=1}^n$ of not necessarily different elements of an effect algebra E is orthogonal if $x_1 ⊕ x_2 ⊕ \cdots ⊕ x_n$ (written $\bigoplus_{k=1}^n x_k$ or $\bigoplus F$) exists in E.

An arbitrary system $G = (x_\kappa)_{\kappa \in H}$ of not necessarily different elements of E is called orthogonal if $\bigoplus K$ exists for every finite $K \subseteq G$.

We say that for a orthogonal system $G = (x_\kappa)_{\kappa \in H}$ the element $\bigoplus G$ exists iff $\bigvee \{\bigoplus K \mid K \subseteq G \text{ is finite} \}$ exists in E and then we put $\bigoplus G = \bigvee \{\bigoplus K \mid K \subseteq G \text{ is finite} \}$. We say that $\bigoplus G$ is the orthogonal sum of G and G is orthosummable. (Here we write $G_1 \subseteq G$ iff there is $H_1 \subseteq H$ such that $G_1 = (x_\kappa)_{\kappa \in H_1}$). We denote $G^\oplus := \{\bigoplus K \mid K \subseteq G \text{ is finite} \}$.

E is called orthocomplete if every orthogonal system is orthosummable.
Orthogonal systems

We say that a finite system $F = (x_k)_{k=1}^n$ of not necessarily different elements of an effect algebra E is orthogonal if $x_1 \oplus x_2 \oplus \cdots \oplus x_n$ (written $\bigoplus_{k=1}^n x_k$ or $\bigoplus F$) exists in E.

An arbitrary system $G = (x_\kappa)_{\kappa \in H}$ of not necessarily different elements of E is called orthogonal if $\bigoplus K$ exists for every finite $K \subseteq G$.

We say that for a orthogonal system $G = (x_\kappa)_{\kappa \in H}$ the element $\bigoplus G$ exists iff $\bigvee \{ \bigoplus K \mid K \subseteq G \text{ is finite} \}$ exists in E and then we put $\bigoplus G = \bigvee \{ \bigoplus K \mid K \subseteq G \text{ is finite} \}$. We say that $\bigoplus G$ is the orthogonal sum of G and G is orthosummable. (Here we write $G_1 \subseteq G$ iff there is $H_1 \subseteq H$ such that $G_1 = (x_\kappa)_{\kappa \in H_1}$.) We denote $G^{\oplus} := \{ \bigoplus K \mid K \subseteq G \text{ is finite} \}$.

E is called orthocomplete if every orthogonal system is orthosummable.
Outline

1. Introduction
2. Basic definitions
3. The condition \((W+)\)
4. Main theorem and its generalizations
The condition \((W+)\)

An effect algebra \(E\) fulfills the condition \((W+)\) (introduced by Tkadlec) if for each orthogonal subset \(A \subseteq E\) and each two upper bounds \(u, v\) of \(A^{\oplus}\) there exists an upper bound \(w\) of \(A^{\oplus}\) below \(u, v\).

Statement (Tkadlec 2010)

Lattice effect algebras and orthocomplete effect algebras fulfill the condition \((W+)\).

Every orthocomplete effect algebra is Archimedean.

Proposition

Let \(E\) be an Archimedean effect algebra fulfilling the condition \((W+)\). Then every meager element of \(E\) is the orthosum of a system of hypermeager elements.
The condition \((W+)\)

An effect algebra \(E\) fulfills the condition \((W+)\) (introduced by Tkadlec) if for each orthogonal subset \(A \subseteq E\) and each two upper bounds \(u, v\) of \(A^\oplus\) there exists an upper bound \(w\) of \(A^\oplus\) below \(u, v\).

Statement (Tkadlec 2010)

Lattice effect algebras and orthocomplete effect algebras fulfill the condition \((W+)\).

Every orthocomplete effect algebra is Archimedean.

Proposition

Let \(E\) be an Archimedean effect algebra fulfilling the condition \((W+)\). Then every meager element of \(E\) is the orthosum of a system of hypermeager elements.
The condition \((W+)\)

An effect algebra \(E\) fulfills the condition \((W+)\) (introduced by Tkadlec) if for each orthogonal subset \(A \subseteq E\) and each two upper bounds \(u, v\) of \(A^\oplus\) there exists an upper bound \(w\) of \(A^\oplus\) below \(u, v\).

Statement (Tkadlec 2010)

Lattice effect algebras and orthocomplete effect algebras fulfill the condition \((W+)\).

Every orthocomplete effect algebra is Archimedean.

Proposition

Let \(E\) be an Archimedean effect algebra fulfilling the condition \((W+)\). Then every meager element of \(E\) is the orthosum of a system of hypermeager elements.
The condition (W+)

An effect algebra E fulfills the condition (W+) (introduced by Tkadlec) if for each orthogonal subset $A \subseteq E$ and each two upper bounds u, v of A^\oplus there exists an upper bound w of A^\oplus below u, v.

Statement (Tkadlec 2010)

Lattice effect algebras and orthocomplete effect algebras fulfill the condition (W+).

Every orthocomplete effect algebra is Archimedean.

Proposition

Let E be an Archimedean effect algebra fulfilling the condition (W+). Then every meager element of E is the orthosum of a system of hypermeager elements.
Lemma (Shifting lemma)

Let E be an Archimedean effect algebra fulfilling the condition (W^+), let $u, v \in E$, and let a_1, b_1 be two maximal lower bounds of u, v. There exist elements y, z and two maximal lower bounds a, b of y, z for which $y \leq u$, $z \leq v$, $a \leq a_1$, $b \leq b_1$, $a \land b = 0$, a, b are maximal lower bounds of y, z and y, z are minimal upper bounds of a, b. Furthermore, $(y \lor a) \land (z \lor a) = 0$, $(y \lor b) \land (z \lor b) = 0$, $(y \lor a) \land (y \lor b) = 0$, $(z \lor a) \land (z \lor b) = 0$.

The Shifting lemma provides the following minimax structure.
Proposition

Let E be an Archimedean homogeneous effect algebra fulfilling the condition (W+). Every two hypermeager elements u, v possess $u \land v$.

Proposition

Let E be an Archimedean homogeneous effect algebra fulfilling the condition (W+). For every orthogonal elements u, v, $u \land v$ and $u \lor [0, u \oplus v]$ v exist and $[0, u \land v] \subseteq B$ for every block B containing u or v.

Corollary

Let E be an Archimedean homogeneous effect algebra fulfilling the condition (W+). For every element u, $u \land u'$ and $u \lor u'$ exist and $[0, u \land u'] \subseteq B$ for every block B containing u.
Meets in Archimedean homogeneous effect algebra fulfilling the condition (W+)

Proposition

Let \(E \) be an Archimedean homogeneous effect algebra fulfilling the condition (W+). Every two hypermeager elements \(u, v \) possess \(u \wedge v \).

Proposition

Let \(E \) be an Archimedean homogeneous effect algebra fulfilling the condition (W+). For every orthogonal elements \(u, v \), \(u \wedge v \) and \(u \vee [0, u \oplus v] \) exist and \([0, u \wedge v] \subseteq B\) for every block \(B\) containing \(u \) or \(v \).

Corollary

Let \(E \) be an Archimedean homogeneous effect algebra fulfilling the condition (W+). For every element \(u \), \(u \wedge u' \) and \(u \vee u' \) exist and \([0, u \wedge u'] \subseteq B\) for every block \(B\) containing \(u \).
Meets in Archimedean homogeneous effect algebra fulfilling the condition \((W+)\)

Proposition

Let \(E\) be an Archimedean homogeneous effect algebra fulfilling the condition \((W+)\). Every two hypermeager elements \(u, v\) possess \(u \wedge v\).

Proposition

Let \(E\) be an Archimedean homogeneous effect algebra fulfilling the condition \((W+)\). For every orthogonal elements \(u, v\), \(u \wedge v\) and \(u \vee [0, u \oplus v]\) exist and \([0, u \wedge v] \subseteq B\) for every block \(B\) containing \(u\) or \(v\).

Corollary

Let \(E\) be an Archimedean homogeneous effect algebra fulfilling the condition \((W+)\). For every element \(u\), \(u \wedge u'\) and \(u \vee u'\) exist and \([0, u \wedge u'] \subseteq B\) for every block \(B\) containing \(u\).
Main theorem

Theorem

Let E be an Archimedean homogeneous effect algebra fulfilling the condition $(W+)$. Then every block in E is a lattice and E can be covered by MV-algebras.

Corollary

Let E be an orthocomplete homogeneous effect algebra. Then E can be covered by Heyting MV-effect algebras.
Main theorem

Theorem

Let E be an Archimedean homogeneous effect algebra fulfilling the condition (W^+). Then every block in E is a lattice and E can be covered by MV-algebras.

Corollary

Let E be an orthocomplete homogeneous effect algebra. Then E can be covered by Heyting MV-effect algebras.
Generalization of the Main theorem

Definition

An effect algebra E has the *maximality property* if \{u, v\} has a maximal lower bound w for every $u, v \in E$.

It is easy to see that an effect algebra E has the maximality property if and only if \{u, v\} has a maximal lower bound w, $w \geq t$ for every $u, v, t \in E$ such that t is a lower bound of \{u, v\}. As noted by Tkadlec E has the maximality property if and only if \{u, v\} has a minimal upper bound w for every $u, v \in E$.

Statement (Tkadlec 2010)

Lattice effect algebras and orthocomplete effect algebras fulfill the maximality property.
Generalization of the Main theorem

Definition
An effect algebra E has the *maximality property* if $\{u, v\}$ has a maximal lower bound w for every $u, v \in E$.

It is easy to see that an effect algebra E has the maximality property if and only if $\{u, v\}$ has a maximal lower bound w, $w \geq t$ for every $u, v, t \in E$ such that t is a lower bound of $\{u, v\}$. As noted by Tkadlec E has the maximality property if and only if $\{u, v\}$ has a minimal upper bound w for every $u, v \in E$.

Statement (Tkadlec 2010)
Lattice effect algebras and orthocomplete effect algebras fulfill the maximality property.
Generalization of the Main theorem

Definition

An effect algebra E has the *maximality property* if $\{u, v\}$ has a maximal lower bound w for every $u, v \in E$.

It is easy to see that an effect algebra E has the maximality property if and only if $\{u, v\}$ has a maximal lower bound w, $w \geq t$ for every $u, v, t \in E$ such that t is a lower bound of $\{u, v\}$. As noted by Tkadlec E has the maximality property if and only if $\{u, v\}$ has a minimal upper bound w for every $u, v \in E$.

Statement (Tkadlec 2010)

Lattice effect algebras and orthocomplete effect algebras fulfill the maximality property.
Generalization of the Main theorem

Statement (Tkadlec 2010)

Let E be an Archimedean effect algebra fulfilling the condition (W^+), and let $y, z \in E$. Every lower bound of y, z is below a maximal one and every upper bound of y, z is above a minimal one. Then E has the maximality property.

Theorem

Let E be a homogeneous effect algebra having the maximality property. Then every block B in E is a lattice and E can be covered by MV-algebras.

Corollary (Riečanová 2000)

Let E be a lattice effect algebra. Then E can be covered by MV-algebras which are blocks of E.
Generalization of the Main theorem

Statement (Tkadlec 2010)

Let E be an Archimedean effect algebra fulfilling the condition $(W+)$, and let $y, z \in E$. Every lower bound of y, z is below a maximal one and every upper bound of y, z is above a minimal one. Then E has the maximality property.

Theorem

Let E be a homogeneous effect algebra having the maximality property. Then every block B in E is a lattice and E can be covered by MV-algebras.

Corollary (Riečanová 2000)

Let E be a lattice effect algebra. Then E can be covered by MV-algebras which are blocks of E.
Generalization of the Main theorem

Statement (Tkadlec 2010)
Let E be an Archimedean effect algebra fulfilling the condition $(W+)$, and let $y, z \in E$. Every lower bound of y, z is below a maximal one and every upper bound of y, z is above a minimal one. Then E has the maximality property.

Theorem
Let E be a homogeneous effect algebra having the maximality property. Then every block B in E is a lattice and E can be covered by MV-algebras.

Corollary (Riečanová 2000)
Let E be a lattice effect algebra. Then E can be covered by MV-algebras which are blocks of E.
Example 5 - orthoalgebra E

a and b have two different minimal upper bounds, $a \oplus b = f'$ and $a \oplus c = e'$.

References

References

Thank you for your attention.