Orthogonal Mechanism for Answering Batch Queries with Differential Privacy

Presented by Huang Dong

01 July, 2015
Outline

- Background
- Motivation
- Proposed Work
- Performance Evaluation
- Conclusions
• The use of personal data has grown vastly in the past few years and privacy protection is a major issue

• Differential privacy is a promising technique in achieving data privacy guarantee

• Noise magnitude affects the accuracy significantly, leading to unmeaningful results

• Recent works attempt to reduce noise magnitude but cause high computational complexity, inapplicable to large-scale datasets
Motivation

• Correlation among multiple queries causes high noise magnitude
• Decompose the original queries into new queries can reduce noise magnitude
• Existing works rarely focus on the correlation analysis
• The decomposition based on query orthogonality have two distinct advantages:
 – Smaller required noise magnitude
 – Lower computational complexity
Proposed Work

• Scenario: Data analysts want to make queries on the count of individuals in a dataset under differential privacy framework

• Suppose a query set consists of m queries expressed as:

\[Q(D) = WD \]

• The Laplace mechanism (LM) is:

\[K(Q, D) = WD + \text{Lap}(S(Q)/\epsilon)^m \]

• The noisy results obtained by LM may be unmeaningful due to high noise magnitude
• We decompose the query matrix W by \[W = B\tilde{W}, \]
where \tilde{W} is the new query matrix.

• \tilde{W} is constructed first, then derive B. The construction of \tilde{W} is based on orthogonality.

• The proposed orthogonal mechanism (OM) is

\[F(Q, D) = B(\tilde{W}D + \text{Lap}(S(\tilde{Q})/\epsilon)^s) \]

• Construction procedure of \tilde{W}:
 - Suppose $\text{rank}(W) = r$, then randomly select r independent queries.
Proposed Work (cont’d)

• Construction Procedure of \hat{W}:
 – Given r independent queries, count the number of occurrence of each domain x_i and find the index with the largest count
 – Find the query set containing domain x_i from the r independent queries
 – Find the intersect of the above query set
 – Construct a new query set \hat{Q}, consisting of s queries, from the intersect to represent the original query set.

• When the new query matrix, \hat{W}, is derived, the matrix B is easy to be resolved
A Practical Example

- Consider a query set Q with workload matrix

$$W = \begin{bmatrix}
0.3657 & 0 & 0.9812 & 0 \\
0 & 0.0645 & 0 & 0 \\
0 & 0.5879 & 0.7602 & 0 \\
0 & 0 & 0 & 0.7310 \\
0 & 0.7313 & 0 & 0 \\
0 & 0 & 0.7122 & 0.9053
\end{bmatrix}$$

- Decomposition results:

$$B = \begin{bmatrix}
0 & 0.9812 & 0.3657 & 0 \\
0.0645 & 0 & 0 & 0 \\
0.5879 & 0.7602 & 0 & 0 \\
0 & 0 & 0 & 0.7310 \\
0.7313 & 0 & 0 & 0 \\
0 & 0.7122 & 0 & 0.9053
\end{bmatrix}$$

$$\tilde{W} = \begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

- Noise variance comparison:
 - Before decomposition: $\approx \frac{75}{\epsilon^2}$ since $S(Q) \approx 2.5$
 - After decomposition: $< \frac{18}{\epsilon^2}$ due to $S(\tilde{Q}) = 1$
Performance Evaluation

- Accuracy comparison
Performance Evaluation (cont’d)

- Execution time comparison

(b) W with $\tau = 0.4$
Conclusions

• We propose a novel mechanism, orthogonal mechanism (OM), for answering a batch of queries with differential privacy.
• The proposed OM significantly reduces the noise magnitude by removing the correlation between queries.
• The computational complexity of the proposed OM is much lower than that of existing work.
Thank You! Q&A