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ABSTRACT

Atmospheric air pollution turbulent fluxes can be assumed to be proportional to the mean concentration gradient. This
assumption, along with the equation of continuity, lead#¢oadvection-diffusion equation. Many models simulating

air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation as-
suming turbulence parameterization for realistic physical scenarios. We present the general steady three-dimensional
solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for
arbitrary vertical profiles of wind and eddy-diffusion dagénts. Numerical results and comparison with experimental

data are shown.
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1. Introduction combination of the trajectories of such particles simulates
he paths of the air particles situated, at the initial mo-
ent, in the same position. The motion of the particles
fan be reproduced both in a deterministic way and in a

The processes governing the transport and diffusion o%
pollutants are numerous, and of such complexity that i
would be impossible to describe them without the use o .
mathematical models. Such models therefore constitutétOChaSt'c way.

an indispensable technical instrument of air quality man- In this paper We,l'm'ted ourselves to the Eulerian ap-
agement proach, and in particular to the K model, where the flow

The theoretical approach tine problem essentially of a given field is as;umed to be proportional to the gra-
assumes two basic forms. tie Eulerian approach, dif- diént of an appropriate mean variable [2]. K-theory has
fusion is considered, at a fixed point in space, proporitS OWn limits, but its simplicity has led to a widespread
tional to the local gradient of the concentration of theUse as the mathematical basis for simulating pollution
diffused material and is based on the resolution, on &lispersion. Most of Eulerian models are based on the
fixed spatial-temporal grid, of the equation of the masshumerical solution of the equation of mass conservation
conservation of the pollutant chemical species. Lagran©f the pollutant chemical spies. Such models are most
gian models are the seconcbegach and they differ from Suitable to confronting complex problems, for example,
Eulerian ones in adopting a system of reference that folthe dispersion of pollutants over complex terrain or the
lows atmospheric motions. Initially, the term Lagrangian diffusion of non-inert pollutants.
was used only to refer to moving box models that fol- However, a progressive and continuous effort to obtain
lowed the mean wind trajectofg]. Currently, this class analytical solutions of the advection-diffusion equation
includes all models that decompose the pollutant cloudADE) has been made in the la&ars. In fact analytical
into discrete “elements”, sk as segments, puffs or solutions of equations are of fundamental importance in
computer virtual particles [1]. In Lagrangian particle understanding and describing physical phenomena. Ana-
models pollutant dispersion is simulated through the modytical solutions explicitly take into account all the pa-
tion of computer virtual particles whose trajectories al-rameters of a problem, so that their influence can be re-
low the calculation of the concentration field of the liably investigated and it is easy to obtain the asymptotic
emitted substance. The underlying hypothesis is that thbehavior of the solution, which is usually very much
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more tedious to generate through numerical calculationsial and in Cartesian geometry it can be written as [27]:

Moreover, like the Gaussian solution, that was the first _oc _oc _ac

solution of ADE with the wind and the eddy diffusivity U&+Va—y+ WE

coefficients supposed constant in space, they may sug- (1)
gest the construction of operative analytic model. Gaus- :Q( a_fjJri( @}rﬁ( @j

sian models, so named because they are based on the ox\_ “ox) oyl Yoy) oz ‘oz

Gaussian solution, are forcéal represent real situations Here © denotes the mean concentration of a passive
by means of empirical parameters, referred to as “sig- P

mas”. Gaussian models are fast, simple, do not requirt%‘:()r]t"’lrn'r"’Int (g/M), U,v,w are the Cartesian compo-

S . .. . _nents of the mean wind (m/s) in the directiar® < x<
complex meteorological input, and describe the diffusive
: . . Ly, y(O<y<Lj)andz(0<<hand K,,K, K, arethe
transport in an Euleriandmework, making easy use of e 4 Xy
. eddy diffusivities (mfYs). Equation (1) isubjected to the
the Eulerian nature of measurements. For these reaso

they are still widely employed for regulatory applications ?cﬁlowmg boundary and source conditions:

by environmental agencies all over the world although KV5|(0,0,0) =K VE|(LX,Ly,h) =0, 2)
their well known intrinsic limits.
A significant number of works regarding ADE ana- uc(0,y,9= F( Ys( = H), 3)

lytical solution (mostly two-dimensional solutions) is . . : e
\ , : > where K =diag( K,, K,,K,) is the diagonal diffusion
available in the literature. References [3-16] are con atrix, Q is the emission rate (g/d),the height of the

sidered relevant by the authors. However, the abov .

solutions are valid for very specialized situations: only’, B.L (m)’ Hsthe helght of the source (m), andL, are the
ground level sources or infinite height of the Atmos- limits in the x and-axis an.d far away from.the source (m)
pheric Boundary Layer (ABL) or specific wind and eddy and'f’i rgpresents the Dirac delta function. The source
diffusivities vertical profiles. Vilhenzet al. [17] pre-  PoSitionisak=0y=yoandz=Hs.

sented an analytical solution, called ADMM (Advection !N order to solve problem (1), taking advantage of the
Diffusion Multilayer Method) method, for a limited ABL Well-known soldion of the two-dimerisnal problem with
and general wind and eddy diffusivities vertical profiles, 2dvection in thecdirection by the GILTT method [25],

but expressed by a stepwise function (see also [18-20])V€ .initially app!y the integratansform technique in the y
Many of the above solutions were utilized in operative Variable. To this end, we pand the pollutant concentra-

air pollution models [21]. tion as:
Finally a general two-dimensional solution without T(x Y, z):Z:FO_g]( x3X( Y 4
where Ym(y) are a set of orthogonal eigenfunctions,

any restriction in the spatial function of wind and eddy
diffusion coefficients was presented in Wortmaetral. '

[22] and Moreiraet al. [23,24]. The solving methodology 91Ven bY Y, (¥) =cos(4,y), and 4, =mw/L, (m=0, 1,
was the Generalized IntedrLaplace Transform Tech- 2 ) &re respectively the set of eigenvalues.

nique (GILTT) that is an analytical series solution in- 10 determine the nknown c.oefﬁmentcm.(x, 7) we
cluding the solution of an associate Sturm-Liouville Manipulate Equation (1) applying the chain rule for the
problem, expansion of the pollutant concentration in adiffusion terms. After substita Equation (4) in the re-
series in terms of the attained eigenfunction, replacemeriiulting equation and taking moments, meaning applying

of this expansion in the ADE and, finally, taking mo- the operatorJ'LyYn(y)dy, we obtain the result:
ments. This procedure leadsdacset of differential ordi- 0

nary equations that is s@e analytically by Laplace = (| 5 aem()g z) p) 3%, ( % 2
transform technique. A cortgie review of the GILTT ZO x KXT +a_z KZT +

method is given in [25].

In this paper we extend these last results and we pre- _55m(>Q z) _5_Qn( X 3 Ly
sent a three-dimensional solution for a limited height ~ ~U—— —~W—— [ ¥ (9 Y( yay+
ABL and without any restriction in the spatial function of 0

wind and eddy diffusion coefficients. Cauchy-Kowale- . by
wski theorem [26] guarantees the existence and unique-  ~Von (% LYY X Wy ®)
ness of an analytical solutiamf the ADE, so we are pre- OL
senting the general solution of three-dimensional ADE. - 4
gtheg “ZnCn(%2) [ KY( Y Y( ¥ ¥
2. The Three-Dimensional Solution L ’
The ADE for air pollution in the atmosphere is essen-  +Cm(% Z)I K Ya( Y Y( ¥ %
0

tially a statement of conservation of the suspended mate-
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Defining the integrals appearing in the above equation Similar procedure leads tthe boundary condition of
like: problem (9):

?Ym(y)ﬁ(»dwanm Y(YY W ¥B., P.(0)=Cy1(0)= Q@ (H,) Y( ¥) A, 9)

where A is the inverse of matriA having the entry

YKme(y)Yn( ))dyzﬂfmm}y KY( Y YCOX M %70, 8, =I;E'9|(Z)§j(z)dz-

Problem(9) is solved applying Laplace transform and

the Equation (5) is rewrite as: diagonalization. Firstly, transformingin s and® em P

iﬂi(Kx B (X, Z)JJFE(KZ G ( % Z)JJr the equation becomes

ox ox oz sP(s— RO)+ FR $=0, (10)

0z
—-0C. (X2 —0C .
iy m( )—w ‘?n( X 3 a, v, ﬂnntm( X 3 ©) where the o.verb.ar represettie tra}nsfqrme@otentlal. _
OX 0z The matrixF is decomposed in eigenvectors and ei-
2, _ genvalues af = XDX' where Xis the matrix of the ei-
A il % 2+ 71 e Cof ¥ 3) genvectors an® is the diagonal méir of the eigenval-

Without losing generality, we specialize the applicationues ofF. Then, the Equation (10) became
for a pollutant dispersion pblem in ABL, assuming that

the speedsy and w takes the null value. We neglect (SI + XDX_I) P(9= RO), (11)

the diffusion componerk, because we assume that the \yhere| is the matrix identity. After algebraic manipula-
advection is dominarih the x-directionj.e., tion we get

o '—,\<'_

m=0

_oc __ 0 oc .
a x > &( K, &] . Further we also consider th§thas P(s)= X( sk D)*l £, (12)
only dependence on tizedirection. After these assump- where & gaf: XP(0))is found from the equation
tions, Equation (6) is rewritten matrix fashion as asetof X¢& =P(0), and their values are calculated by LU fac-
M + 1 two-dimensional diffusion equations: torization. The elemes of the matrix ¢l + D) have the
= — form {s+d,} whered; are the eigenvalues of the matrix
U%;Z) :a%{ K, WJ—%KFAX, z) 6) F and{the e%ements ofl(+ D) * are 1/6 + d) whose in-
verse Laplace transform is™®* . Let 6x) the diago-

The problem (6) is then solved by the GILTT method. nal matrix whose elements are % the final solution is
Following the workof Moreiraet al.[25] and taking ad-  then give by

vantage of the well known kdion for the stationary P(X)= XG( Y& (13)
problem with advection in ghx direction, we pose the
solution of problem (6) in the form: Then, using Equation (7),
— L — . .
(%, Z)=Z.Zo‘9m( ¥ (2) @ G(x2=2 (¥ (3, we obtain the solution of

the 2D problem, where; (z)=cos(y z) and ¢, (X)
comes from the solution othe transformed problem
given by Equation (8). Once,, (% 2) is known we are
in a position to write the fial three-dimensional solution
of problem (1) which is given by Equation (4),

where ¢ (z) are a set of orthogonal eigenfunctions,
given by ¢ (z)=cogy 2),and y, =lx/h (1=0, 1, 2, --)
are respectively the set of eigenvalues.

Replacing Equation (7) irEquation (6) and taking
moments, we get the first order matrix differential equa-

tion: S(xy. =" G(x2 ¥V (14)

% P, (X)+ FR,(X=0 (8)  where Y, (y)=cog(4,Y). This solution is named as 3D-
GILTT (three-dimensional GILTT solution).

Since thisproblem is a special case of the Cauchy-
Kowalewsky theorem, existence and uniqueness is guar-
anteed. Convergence of the solution may be shown by a
0 genuine mathematical convergence criterion. Note that
(bl)u = —jo W (2)g;(2dz the only numerical error coradrom truncation, which is

h h determined from the Sturm-huilville problem. Recalling
(b)), :IO K, ¢l (2)g,(2d 2—112,[0 Ke (3¢, ( Hz+ that the structure of the caminant is essentially deter-
5 ¢h mined by advection and diffusion, present in form of a
%[, K6 (2)g; (202 velocity vector U =(1,v,w) and a diagonal diffusion

for m = OM, whereP,(X) is the column vector whose
components are,, for| = 0L. The matrixF is defined
as F = Bl’le. The entries of matriceB; and B, are,
respectively, given by:
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matrix K = diag( K., K,,K,), which define a smooth- true unknown term [30]. T reliability of each model
ness length scale by the maximum norm of the expresstrongly depends on the way as turbulent parameters are
sion @ =||K|/U|. Thus one may conclude that with calculated and related to the current understanding of the
decreasing lengtha/m and m an increasing integer ABL [31].
number) variations in the solution become spurious. The literature reports mangreatly varied formulae,
Upon interpretingz ' as a sampling density, one for the calculation of the vecal turbulent diffusion co-
may now employ the Cardinal Theorem of Interpolation efficient [2]. As an example of application of our new
Theory [28] in order tdind the truncation solution we tested the followingertical and lateral dif-

n:int{me/ZmuH/Z} in Equation(4) that leaves fusion parameterization suggested by Degravi. [32],

: . L derived from Batchelor [33for convectie conditions:
the analytical solution almost exacg. introduces only

functions that vary significadly in length scales beyond ¢ 7 % . é [,%) 4%
the mentioned limit. Thus, the Cardinal Theorem of In- WZh:O.ZZ(—j [1——h) - - 0.000 (15)
terpolation theory may be cast in form of a convergence
criterion as follows. Jio
\

The square integrable functioy = [cdxdy e K, = 16(1,). 9 (16)
(7=yorz) with spectrum{4} which is bounded by e
M@ has an exact solution for a finite expansion. This 0.9 VR \28 7
th 2 _ &:V l//z, 2. _ 4 16_ .
statement expresses the Caadlitheorem of Interpola- Wit oy —(f )2/3 q ) Uh W Q,=4.10-,
tion Theory for our problem (see Bodmaeanhal. [29]). m/v
Since the cut-off, i.ethe afore mentioned supreme de- 2 -2/3 vz
. . L L U3 z z
fines some sort of a sampling density, its introduction is( f,), =0.16 and y;” = [1_Fj (——j +0.75
an approximation and is rééa to convergence of the

approach and Parseval's theorem may be used to esiore, ks the von Karman constark € 0.4), w. is the
mate the error. In order teeep the solutin error within ~ convective velocity scaleL is the Monin-Obukhov

a specified order of magnitude, the expansion in the dolength, o, is the Eulerian standard deviation of the lon-
main of interest has to contaim + 1 terms. For the gitudinal turbulent velocity,q, is the stability function,
bounded spectrum and according to the theorem the soluy, is the non-dimensional molecular dissipation rate
tion is then exact. In our approximationpifis properly  function, (fm)v is the peak wavelength of the turbulent
chosen such that the cut-offrpaf the spectrum is negli- ~ Vvelocity spectra ands, =, (2nx) *° with

gible, then the found &dtion is almost exact. a, =0.5+0.05 and «, =4/3 [34,35].
Following Pleim and Chang [36] during convective
3. Model Application to Different conditions ath/L<-10 the following relation is used:
Meteorological Scenarios and against K, =kw z(1- 7 § (17)

Experimental Data

During stable and neutral conditions htL > -10:
In order to illustrate the bewiar of the discussed solu- 9 bt

tion we report a simulation afontaminant dispersion in K,=kuz1- 7 l)2/¢h (18)

the ABL for different scenarios. Moreover, we evaluate . "

the performance against expeental ground-level con- yvhere th =1+ 5(2/ L) in stable conditions and}, =1
in neutral conditions.

centration. To do this wer§t have to introduce a bound- .
ary layer parameterization Degraziaet al. [37] proposed for the stable boundary
' layer an algebraic formulation for the eddy diffusivities

3.1. Atmospheric Boundary Layer in they-direction. It takes the form:

Parameterization K 2470647 (1- 2/ N (7 B X

y

Define abbreviations and acrons the first time they are uh 2J0.64(z/h) + 1 f L /2y 2
used in the text, even after they have been defined in the [ n0.64(z/h)+ 164 ( n)V( 2y J

abstract. In air pollution diffusion modeling the choice of x[2ﬁ0.64af(d h)+8g( fm), (L 7 |),"1’2 X}
a turbulence parameterization represents a fundamental !
aspect for the contaminants dispersion modeling. From a (19)

physical point of view a tinulence parameterization is where (f,) =(f,)  (1+3.7(z/A)) is the frequency
an approximation to nature the sense that we are put- of the spectral peak( fm)nv =0.33 is the frequency of
ting in mathematical models an approximated relationthe spectral peak in the neutral stratification [38],

that in principle can be used as a surrogate for the naturah = L (1- z/h)(l'sal'“Z) (g =15; a,=1 [39]) is the

Copyright © 2012 SciRes. JEP
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1/3

nv’

local Monin-Obukhov length,a, =(2.7q,)1'2/( f)

where ¢, =0.4, u. is the friction velocity and

X'=xu /Uz represents the non-dimensional distance.
The wind speed profile can be described by a power

law expressed as follows [40]:

2= [ij (20)

u \4
where U, and u; are the mean wind speeds horizontal
to heightsz andz, andn is an exponent that is related to
the intensity of turbulence [41].

Thus, in this study we introduce the eddy diffusivities
and the wind profile described above in the 3D-GILTT
model (Equation (14)) to calculate the ground-level con-
centration of emissions relesk from an elevated con-
tinuous source point in an unstable/neutral ABL. For the iure 1. Ground level concentrations oredicted by the
application to different meteorological scenarios the edd{h?ee din%ensional solution for different s%urce heigr)(ts in
diffusivities (17)-(19) are used, while in the comparisons,yective conditions (1/L= -0.01 n).
against experimental data eddy diffusivities (15) and (16)
are used.

3.2. Application to Different Meteorological
Scenarios

Given the complexity of the solution, it is useful to show
the behavior of the solution in different scenarios. It is
possible to see a graphical representatioRigure 1 of
the ground level concentrations predicted by the three
dimensional solution for different source heights in con-
vective condition.
Also to show the influence of the atmospheric turbu-
lence we present ifigure 2 the non-dimensional con-
centration in function of the non-dimensional distance
from the source (H= 0.1 h) for five different meteoro-
logical scenarios (exponent of power wind profil@nd
inverse of Monin-Obukhov length (@Y values for dif-
ferent meteorologica! scenarios are showetahble 1.). . Figure 2. Non-dimensional concentration ¢ = cuh?/Q) in
In Figure 3, the influence of the source height is ynction of the non-dimensional distanceX" = xu./uh) from
showed. In fact, the non-dimgional vertical concentra- the source Hs = 0.1 h) for 5 different meteorological sce-
tions at three distances, and four different source heightsarios.
is presented in convective condition.
Table 1. Exponent of power wind profile &) and inverse of

3.3. Application against Experimental Data Monin-Obukhov length (1/L) values for different meteoro-
logical scenarios.

In order to show the performance of the present solution
of the ADE and the performance of the proposed ABL Scenario alpha W (m?)
parameterizations we have applied the model using the
Copenhagen and Kinkaid experimental datasets. The first
experiment is carried out in the northern part of Copen- Unstable 01 -0.02
hagen, described by Gryning and Lyck [42]. It consisted
of tracer released without buoyancy from a tower at a
height of 115 m, and collection of tracer sampling units Stable 0.35 0.01
at the ground-level positionat the maximum of three

crosswind arcs. The sampling units were positioned at

Unstable 0.07 -0.10

Neutral 0.15 0

Stable 0.55 0.03

Copyright © 2012 SciRes. JEP
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Figure 3. Non-dimensional concentration¢’ = cuh?Q) versus non-dimensional height{" = zh) in convective conditions (1/L
=-0.01 mY) for three different distances from the sourceX = xw/uh) and four source height Hs = 0.05 h; 0.1 h; 0.25 h; 0.5
h).

two to six kilometers from the point of release. The siteto indicate the degree of readability of data [44]. The
was mainly residential with a roughness length of the 0.Guality indicator (from O to 3) has been assigned. Here,
m. only the data with quality factor 3 were considered.

The Kinkaid experiment wga conducted at lllinois, Figures 4 and5 show the comparison of 3D-GILLT
USA, during convective conditions (feh/L > 10) and is  predicted concentrations against observed data in the
described in the work of Hanna and Paine [43]. TheCopenhagen and Kinkaid experiments. We can observe
Kinkaid field campaign concerns an elevated release in ¢hat the obtained conceations reproduce acceptably the
flat farmland with some lakes. During the experiment, observed data.

SK; was released from 187 tall stacks and recorded on a In the further we use standard statistical indices in or-
network consisting of roughly 200 samplers positioned inder to compare the quality of the new approach against
arcs from 0.5 to 50 km downwind of the source. The datather models. While the present approach (3D-GILTT) is
set includes the meteorological parameters as frictiorbased on a genuine three dimensional description an ear-
velocity, Monin-Obukhov length and height of boundary lier analytical approach called GILTTG uses a Gaussian
layer. The measured concentration level is frequentlyassumption for the horizontédlansverse direction [25].
irregular with high and low concentrations occurring In the GILTTG the crosswih integrated concentration
intermittently along same @r moreover there are fre- c'(x, z,t) (i.e, two-dimensional) is obtained analytically
guent gaps in the monitoring arcs. For the above reasonssing the GILTT method. To calculate the three-dimen-
a variable has been assigned as a quality factor in ordesional concentratior(x, y, z, t) lateral diffusion @)

Copyright © 2012 SciRes. JEP
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Figure 4. Observed and pedicted scatter diagram of
ground-level centerline concentrations using the 3D-GILTT
approach for the Copenhagen experiment. Lines indicate a
factor of two.

Figure 5. Observed and predicted scatter diagram of
ground-level centerline concentrations using the 3D-GILTT
approach for the Kinkaid experiment. Lines indicate a
factor of two.

needs to be included, that is, it is assumed that the plume

Note that we present the two analytical model ap-
proaches, since the earliene was found to be accept-
able in comparison to other approaches found in the lit-
erature and both give a solution in closed form. For the
Copenhagen data set, our llesare also compared with
the one obtained with the GIADMT method [18]. Basi-
cally the GIADMT method consists on the solution of the
GITT (Generalized Integral &nsform Technique) trans-
formed problem by the ADMM method. The ADMM
approach solves the two-dimensional ADE with variable
wind profile and eddy diffusity coefficient [19]. The
main idea here relies on the discretisation of the ABL in
a multilayer domain, assuming in each layer that the
eddy diffusivity and wind profile take averaged values.
The resulting ADE in each layer is then solved by
Laplace transform.

Tables 2and3 present some performances evaluations
of the model results using the statistical evaluation pro-
cedure described by Hanna [45] and defined in the fol-
lowing way:

NMSE=(c,-C,)’/C, G,
FA2 = data for which 0.5 (C,/C,)< 2,

COR= (Co _Eo)(cp_sp)/o-oo-p '

FB=C,-C,/0.5C,+C,),

FS=(0,-0,)/05(c,+0,),
where NMSE is the normalized mean square error, COR
the correlation coefficient, FA2 is the fraction of data (%,
normalized to 1), FB the fractional bias, FS the fractional
standard deviations. Subscrigtendp refer to observed
and predicted quantities, respectively, and the overbar
indicates an averaged value. The statistical index FB says
if the predicted quantities uatkestimate or overestimate

the observed ones. The statial index NMSE represents
the model values dispersion in respect to data dispersion.

Table 2. Statistical comparison between models using the
Copenhagen dataset.

Model NMSE COR FA2 FB FS
GILTTG 0.33 0.80 0.87 0.28 0.09
GIADMT 0.15 0.87 0.96 0.01 -0.09

3D-GILTT 0.07 0.93 0.96 0.02 0.03

has a Gaussian concentration distribution in the lateralTable 3. Statistical comparison between models using the
So, to calculate the concentration the following expres-Kinkaid dataset.

sion is assumed:

o /73)
c(xyzh=¢(x%2z)—=——

2n0'y

Copyright © 2012 SciRes.

Model NMSE COR FA2 FB FS
GILTTG 0.37 0.68 0.77 0.08 -0.15
3D-GILTT 0.37 0.67 0.71 0.09 -0.09
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The best results are expectechtve values near to zero — 1@ e . .
for the indices NMSE, FB and FS, and near to 1 in the ™o :ﬁécm » which if identical zero indicates a perfect
indices COR and FA2. The statistical indices point out
that a reasonable agreement is obtained between expe
mental data and the 3D-GILTT model for both cases.

In order to validate the two models (GILTTG and

match between the model and the experimental findings.
Ferea is the slopep the intersection,C, of the ex-
perimental data andC, its arithmetic mean. Since the
3D-GILTT) we fit the predicted versus observed vaIuese;(petr.'ment IS t(')f StOChﬁ.Sdtle ch.araiﬁter wr(;e:eas the tsto—
by a linear regression (sé&gures 6 and7) for both ex- chastic properties are hidden in the model parameters,
considerable fluctuations arpresent. Nevertheless, by

periments, where, the clostirey intersect to the origin . b Table 4 that th
and the closer the slope is to unity the better is the apgompanson one observes lable 4 that the present ap-

proach. In order to perform a model validation we intro- Proach yields the better description of the data for the

— Copenhagen experiment.
. 2 .
duced an indexk = ,/(a-1) +(b/q,) with

4. Conclusions

In the present work we developed a novel analytical de-
scription of air pollution dispersion in ABL. We solved
the steady-state three-dimensional ADE for general ver-
tical profiles of wind and eddy diffusivity. The closed
form solution is obtained using an approach set-up by
spectral theory together with an integral transform, which
in the present case is theplace transform. This solution
allows simulating dispersion of pollutant substances in a
computationally efficient fashion. The advantage of an
analytical procedure ovehe nowadays usual numerical
schemes that take advantage of existing computing
power is evident from thea€t that once an analytical
solution to a mathematicaladel is found one can claim
that the problem has been solved, without the necessity
for benchmarking. We derived a closed form solution
applicable for numerical simulations in principle to any
desired precision, since existence and uniqueness are
Figure 6. Linear regression for the GILTTG (balls) and  guaranteed by the Cauchy-Kowalewski theorem. The
3D-GILTT (stars) using the Copenhagen dataset. The bi- quality of the solution is controlled by a genuine mathe-
sector was added as an eye guide. matical convergence criterion. For the Laplace inversion
only bi-Lipschitz functionsare acceptable, which defines
then a unique relation between the original function and
its Laplace-transform. Thimakes the transform proce-
dure manifest exact andettonly numerical error comes
from truncation in the space of orthogonal functions,
which may be estimated by a theorem in close analogy to

Table 4. Comparison of thelinear regressions of GILTTG
and 3D-GILTT using the Copenhagen and Kinkaid data-

sets.
Model Regression R? k
Copenhagen experiment
GILTTG C,=0.77C,+ 0.004 08 0.23
3D-GILTT C,=0.91C,+ 0.34 093 0.1
Kinkaid experiment

Figure 7. Linear regression for the GILTTG (balls) and GILTTG C,=0.7C, + 7.32 0.68 0.25
3D-GILTT (stars) using the Kinkaid dataset. The bisector — —
was added as an eye guide. 3D-GILTT C,=0.7C, + 10.09 0.67 0.32
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the Cardinal theorem of interpolation theory together
with Parseval’'s theorem. Once convergence is under con-
trol and has no longer heuristic character, a pathway6]
opened for a genuine model validation, differently to
numerical approaches where in general it is not straight
forward to disentangle model errors from numerical
ones.

The performance of the solution together with a para-m
meterization of the ABL was validated against the data
from the Copenhagen and the Kinkaid experiments. By8]
comparison the present approach was found to yield aL
acceptable solution for the three dimensional ADE and
moreover predicted tracer concentrations closer to obpg
served values compared to other approaches from the
literature. Although K-closure is known to have its limi-
tations, the comparison of measurements and theoretical
predictions showed agreement a satisfactory level and [10]
thus supported the usage of such an approach for mi-
cro-scale dispersion phenomena.

We outline that an analytical solution can be useful in
evaluating the performances of numerical models thatll]
solve numerically the ADE by comparing their results,
not only against experimental data but with the analytic
solution itself in order to check numerical errors without
model uncertainties. Finally, the program of providing
analytical solutions for close to realistic physical disper-
sion problems, leads us to future problems with different
closure hypothesis considering full space-time depend-
ence in the resulting dynamical equation, which we will
approach by a further extension of the proposed method-
ology. [13]

[12]
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