Model Checking with Boolean Satisfiability

Joao Marques-Silva
Electronics & Computer Science
University of Southampton

University of Bristol, February 2007
Motivation

- Remarkable improvements made to SAT solvers over the last decade
 - Clause learning; lazy data structures; adaptive branching heuristics; search restarts

- Very successful application of SAT in model checking
 - Bounded and unbounded model checking

- Existing (industry motivated) challenges
 - Ability to handle ever increasing systems
 - Ability to find deep counterexamples
 - Ability to prove difficult properties

- Lines of research
 - More efficient SAT solvers (?)
 - Better uses of SAT technology in SAT-based model checking
Outline

● SAT overview
 – Organization of a modern SAT solver
 – Resolution, resolution proofs and interpolants

● SAT-based model checking

● Improvements to SAT-based model checking

● Results & conclusions
What is SAT?

- Boolean satisfiability (SAT)
 - Given a propositional logic formula φ, decide whether there exist assignments to the propositional variables such that φ takes value true (or 1)
 - Propositional variables: x_1, x_2, \ldots, x_n
 - Standard logic connectives: \neg, \land, \lor, \leftrightarrow, \rightarrow

 \[
 \left(x_1 \lor x_2 \right) \land \left(x_2 \rightarrow \neg x_3 \right) = 1? \]

 - If there are variable assignments that satisfy formula, then it is satisfiable; otherwise it is unsatisfiable

- Archetype NP-complete problem [Cook’71]
 - All known algorithms are exponential on the size of the representation, in the worst case
 - In practice:
 - Very effective algorithms developed over the last decade
 - Which can solve instances with millions of variables
Applications of SAT

- Many applications and many successful applications
 - Artificial Intelligence
 - Planning; Knowledge compilation; ...
 - Electronic Design Automation
 - Hardware model checking
 - Arguably the most successful application of SAT
 - Equivalence checking; Test-pattern generation; Fault diagnosis; ...
 - Software Engineering
 - Software model checking; Software testing; ...
 - Computational Biology
 - Haplotype inference; Pedigree consistency; ...
 - Theorem proving
 - Answer set programming
 - Description logics
 - ...

Extensions of SAT

- Success of SAT motivated work on extensions of SAT
 - Pseudo-Boolean Optimization (PBO) / 0-1 ILP
 - Conjunctions of linear inequalities over Boolean variables
 - Quantified Boolean Formulas (QBF)
 - Propositional logic with quantifiers
 - Satisfiability Modulo Theories
 - Decidable theories (ILA, RLA, …)
 - ILA: conjunction, disjunction and negation of linear inequalities over the integers
 - …
CNF formulas

- Conjunctive normal form (CNF):
 - Standard representation for SAT
 - CNF formula φ is a conjunction of clauses
 - Clause is a disjunction of literals
 - Literal is a variable or its complement

$$\varphi = (a \lor b) \land (\neg a \lor c) \land (c \lor \neg d \lor \neg e) \land (\neg d \lor \neg a)$$

$$\varphi = (a \lor b)(\neg a \lor c)(c \lor \neg d \lor \neg e)(\neg d \lor \neg a)$$

- Can map propositional formulas into CNF in linear time
 - Addition of a linear number of auxiliary variables

[Tseitin'68; Plaisted&Greenbaum'86]
Given a partial assignment to the variables:

- A literal is **satisfied** if its value is 1; it is **unsatisfied** if its value is 0; otherwise it is **unassigned**
- A clause is **satisfied** if at least one of its literals is satisfied; it is **unsatisfied** if all of its literals are unsatisfied; otherwise it is **unresolved**
- A formula is **unsatisfied** if at least one clause is unsatisfied; it is **satisfied** if all clauses are satisfied; otherwise it is **unresolved**

\[\varphi = (a \lor b) \land (\neg a \lor c) \land (c \lor \neg d \lor \neg e) \land (\neg d \lor \neg a) \]
Representing gates in CNF

\[\varphi_d = [d = \neg(a \land b)] \]
\[= \neg[d \oplus \neg(a \land b)] \]
\[= \neg[\neg(a \land b) \neg d + a \land b \land d] \]
\[= \neg[\neg a \land \neg d + \neg b \land \neg d + a \land b \land d] \]
\[= (a + d)(b + d)(\neg a + \neg b + \neg d) \]

[Tseitin’68; Plaisted&Greenbaum’86]
Representing circuits in CNF

$\phi = h \left[d = \neg(ab) \right] \left[e = \neg(b+c) \right] \left[f = \neg d \right] \left[g = d + e \right] \left[h = fg \right]$

ϕ is the characteristic function for circuit with output h

[Tseitin’68; Plaisted&Greenbaum’86]
Algorithms for SAT

- Incomplete Algorithms (Cannot prove unsatisfiability)
 - Local search (hill climbing)
 - Lagrangian multipliers
 - Genetic algorithms
 - Simulated annealing
 - Tabu search
 - ...

- Complete Algorithms (Can prove unsatisfiability)
 - Backtrack search (DPLL)
 - Resolution
 - Stalmarck’s method
 - Recursive learning
 - Binary decision diagrams (BDDs)
 - ...

- The utilization of SAT in model checking requires ability to prove unsatisfiability
 - Most SAT algorithms used in model checking are based on backtrack search
Plain backtrack search

- Given a CNF formula φ, i.e. a conjunction of clauses, implicitly enumerate all partial assignments to the variables.

Increasingly specified partial assignments

No variables assigned

All variables assigned

conflict: at least one unsatisfied clause

solution: all clauses satisfied
Unit propagation

- **Unit clause:**
 - A clause ω is unit iff all literals but one are assigned value 0 and one literal is unassigned
 - With $a = 0$ and $b = 1$, $\omega = (a \lor \neg b \lor c)$ is unit

- **Unit clause rule:**
 - If a clause ω is unit, then unassigned literal must be assigned value 1
 - With $a = 0$ and $b = 1$, $\omega = (a \lor \neg b \lor c)$ is unit
 - Literal c must be assigned value 1 for ω to be satisfied
 - With $c = 1$, $\omega = (a \lor \neg b \lor c)$ becomes satisfied

- **Unit propagation:**
 - Iterative application of the unit clause rule
 - Imply variable assignments until no more unit clauses, or unsatisfied clause is identified

[Davis&Putnam’60]
The DPLL algorithm

- Backtrack search
 - Implicit enumeration of all partial assignments

- Unit propagation
 - Iterated application of unit clause rule

- Variable selection heuristic
 - Policy for selecting the variable to branch on and the value to assign the variable

- DPLL seldom used in practical applications until the mid 90s!
Modern SAT algorithms

- Follow the organization of the DPLL algorithm
 - Backtrack search with unit propagation

- Several key techniques are used:
 - **Clause learning** [Marques-Silva&Sakallah’96]
 - Infer new clauses from causes of conflicts
 - Allows implementing non-chronological backtracking
 - Exploiting structure of conflicts [Marques-Silva&Sakallah’96]
 - Unique Implication Points (UIPs)
 - Dominators in graph of implied assignments
 - Optimised data structures [Moskewicz et al.’01]
 - Lazy evaluation of clause state
 - Adaptive branching heuristics [Moskewicz et al.’01]
 - Variable branching metrics are affected by number of conflicts
 - Aging mechanisms for focusing on most recent conflicts
 - Search restarts [Gomes,Selman&Kautz’98]
 - Opportunistically restart backtrack search
Clause learning

During backtrack search, for each conflict learn clause that explains and prevents repetition of same conflict

\[\varphi = (a \lor b)(\neg b \lor c \lor d)(\neg b \lor e)(\neg d \lor \neg e \lor f) \ldots \]

Assume (decisions) \(c = 0 \) and \(f = 0 \)

Assign \(a = 0 \) and imply assignments

A conflict is reached: \((\neg d \lor \neg e \lor f) \) is unsatisfied

\[(a = 0) \land (c = 0) \land (f = 0) \Rightarrow (\varphi = 0) \]

\[(\varphi = 1) \Rightarrow (a = 1) \lor (c = 1) \lor (f = 1) \]

:. learn new clause: \((a \lor c \lor f) \)
Non-chronological backtracking

During backtrack search, in the presence of conflicts, backtrack to one of the *causes* of the conflict.

\[\varphi = (a \lor b)(\neg b \lor c \lor d)(\neg b \lor e)(\neg d \lor \neg e \lor f)(a \lor c \lor f)(\neg a \lor g)(\neg g \lor b)(\neg h \lor j)(\neg i \lor k) \ldots \]

Assume (decisions) \(c = 0, f = 0, h = 0 \) and \(i = 0 \)

Assignment \(a = 0 \) caused conflict \(\Rightarrow \) learned clause \((a \lor c \lor f) \)

\((a \lor c \lor f) \) implies \(a = 1 \)

A conflict is again reached: \((\neg d \lor \neg e \lor f) \) is unsatisfied

\((c = 0) \land (f = 0) \Rightarrow (\varphi = 0) \)

\((\varphi = 1) \Rightarrow (c = 1) \lor (f = 1) \)

\[\therefore \text{learn new clause: } (c \lor f) \]
Non-chronological backtracking

Learned clause \((c \lor f)\)

Need to backtrack, given \((c \lor f)\)

Backtrack to most recent decision: \(f = 0\)

\[\therefore \text{Clauses learned: } (a \lor c \lor f) \text{ and } (c \lor f)\]

In practice, learned clauses can allow backtracking over a significant percentage of the decision variables.
Evolution of SAT solvers

- Remarkable improvements over the last decade

<table>
<thead>
<tr>
<th>Instance</th>
<th>Posit' 94</th>
<th>Grasp' 96</th>
<th>Chaff'01</th>
<th>Siege'04</th>
</tr>
</thead>
<tbody>
<tr>
<td>ssa2670-136</td>
<td>28.53</td>
<td>0.36</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>bf1355-638</td>
<td>772.45</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>design_1</td>
<td>>7200</td>
<td>65.35</td>
<td>1.27</td>
<td>0.29</td>
</tr>
<tr>
<td>design_3</td>
<td>>7200</td>
<td>9.13</td>
<td>0.52</td>
<td>0.41</td>
</tr>
<tr>
<td>f_ind</td>
<td>>7200</td>
<td>4663.89</td>
<td>17.91</td>
<td>6.52</td>
</tr>
<tr>
<td>splitter_42</td>
<td>>7200</td>
<td>>7200</td>
<td>28.81</td>
<td>4.46</td>
</tr>
<tr>
<td>c6288</td>
<td>>7200</td>
<td>>7200</td>
<td>>7200</td>
<td>2847.46</td>
</tr>
<tr>
<td>pipe_64_32</td>
<td>>7200</td>
<td>>7200</td>
<td>>7200</td>
<td>>7200</td>
</tr>
</tbody>
</table>
Resolution

- Refutation-complete procedure for first order logic

- In propositional logic:
 - Technique for deriving new clauses
 - Example: $\omega_1 = (\neg a \lor b \lor c)$, $\omega_2 = (a \lor b \lor d)$
 - Resolution:
 \[
 \text{res}(\omega_1, \omega_2, a) = (b \lor c \lor d)
 \]
 - Forms the basis of a complete procedure for satisfiability
 - Impractical for real-world formulas
 - Application of restricted forms has been successful
 - E.g., restricted resolution
 - \[\text{res}((\neg a \lor \alpha), (a \lor \alpha), a) = (\alpha)\]
 - α is a disjunction of literals
Resolution refutations

- Clause learning can be viewed as the inference of a clause by a sequence of resolution steps

\[\varphi = (a \lor b)(\neg b \lor c \lor d)(\neg b \lor e)(\neg d \lor \neg e \lor f) \ldots \]
- \(a = 0 \) yields conflict; can learn \((a \lor c \lor f)\)
- By applying resolution:

\[\varphi = (a \lor b)(\neg b \lor c \lor d)(\neg b \lor e)(\neg d \lor \neg e \lor f) \ldots \]
Deriving resolution refutations

- For unsatisfiable formulas:
 - Learned clauses capture a resolution refutation from a subset of the original clauses
 - SAT solvers can be instructed to recreate resolution refutation for unsatisfiable formula

\[
\phi = (a \lor b) \land \lnot a \lor c \land \lnot b \land \lnot c
\]

\[
\omega_1 \omega_2 \omega_3 \omega_4
\]

\[\begin{align*}
\kappa &\quad \omega_1 \quad \omega_2 \\
\omega_1 &\quad \omega_3 \\
b = 0 \quad \omega_4 \\
c = 0 \\
a = 0
\end{align*}\]

\[\begin{align*}
(a \lor b) &\quad (\lnot a \lor c) \\
(b \lor c) &\quad (\lnot b) \\
(c) &\quad (\lnot c)
\end{align*}\]
Interpolants

- Given two subsets of clauses A and B, assume \(A \land B \) is unsatisfiable. Then, there exists an interpolant \(A' \) for the pair \((A, B) \) with the following properties:
 - \(A \) implies \(A' \)
 - \(A' \land B \) is unsatisfiable
 - \(A' \) refers only to the common variables of A and B
 - Example:
 - \(A = p \land q, B = \neg q \land r \)
 - \(A' = q \)

- Size of interpolants:
 - Given a resolution refutation of \(A \land B \), can compute interpolant for the pair \((A, B) \) in linear time on the size of the resolution refutation
 - SAT solvers can be instructed to output resolution refutation!

- Computing interpolants:
 - Different algorithms can be used
 - Pudlak’97, McMillan’03
Computing interpolants

\[A = (r \lor y)(\neg r \lor x) \]

\[B = (\neg y \lor a)(\neg y \lor \neg a)(\neg x) \]

- Interpolant is a Boolean circuit that follows structure of resolution refutation
 - Can map circuit into CNF in linear time and space

[\text{Tseitin}'68; \text{Plaisted}\&\text{Greenbaum}'86]
Outline

● SAT overview

● SAT-based model checking
 – SAT-based bounded model checking (BMC)
 – Interpolant-based unbounded model checking (UMC)

● Improvements to SAT-based model checking

● Results & conclusions
Bounded model checking

- Verification of safety properties: $F \, f$

 $$\Phi^k = I_0(Y_0) \land \bigwedge_{i=0}^{k-1} T(Y_i, Y_{i+1}) \land \left(\bigvee_{i=r}^{k} f(Y_i) \right)$$

- Characteristic functions for representing initial states and transition relation, respectively I_0 and T
 - Resulting Boolean formula: $\Phi^k = I_0 \land U_k \land F_k$
 - Where:
 $$U_k = \bigwedge_{j=0}^{k-1} T_j \quad T_i = T(Y_i, Y_{i+1}) \quad F_k = \left(\bigvee_{i=r}^{k} f_i \right) \quad f_i = f(Y_i)$$
 - Interpretation:

```latex
\begin{align*}
  &I_0 \quad Y_0 & T_0 \quad Y_1 & T_1 \\
  &\cdots & \cdots & \cdots \\
  &T_{k-1} \quad Y_k & \quad F_k
\end{align*}
```
An example

- Property: $G \neg q$?
- Evaluate: $F q$
- Unroll model k time steps:

Check satisfiability of CNF formula for $I_0 \land U_k \land F_k$
Bounded model checking

- A possible BMC algorithm:
 - Given some initial k
 - While $k \leq$ user-specified time-bound UB
 - Generate CNF formula φ for $I_0 \land U_k \land F_k$
 - Invoke SAT solver on φ
 - If formula φ is satisfiable, then a counterexample within k time steps has been found
 - Return counterexample
 - Otherwise, increase k

- The BMC algorithm is incomplete
 - But complete if completeness threshold is known
Towards completeness

- Unbounded model checking
 - Utilization of induction
 - Standard BMC loop
 - Stop BMC loop for some i, if cannot have loop-free path of size i that can be reached from I_0 or if cannot have loop-free path of size i that can reach F_k
 - Maximum unfolding bounded by largest loop-free path
 - ...
 - Utilization of interpolants
 - BMC and Craig interpolants allow SAT-based computation of abstractions of reachable states
 - Avoid computing exact sets of reachable states
 - One of the most promising approaches in practice
 - Maximum unfolding bounded by largest shortest path between any two states

[Sheeran et al.’00]
[Chauhan et al.’02; Gupta et al.’03]
[McMillan’03]
Abstraction of reachable states

- For each iteration of BMC loop, call to SAT solver returns unsat unless counterexample is found
 - Analysis of resolution refutation yields abstractions of reachable states
 \[\Phi = I_0 \land T_0 \land T_1 \land \ldots \land T_{k-1} \land F_k = A \land B \]
 \[A = I_0 \land T_0 \]
 \[B = T_1 \land \ldots \land T_{k-1} \land F_k \]
 - Given \(A \) and \(B \), and a resolution refutation for \(A \land B \), compute Craig interpolant \(A' \):
 - \(A = I_0 \land T_0 \) implies \(A' \)
 - \(A' \land B \) is unsatisfiable
 - \(A' \) solely represented with state variables
 - If \(A \) holds, then \(A' \) holds
 - \(A_1 = A' \) represents abstraction of states reachable from \(I_0 \) in 1 time step!
Fixpoint of reachable states

- Can iterate computation of interpolants:

If \(A_i \rightarrow I_0 \lor A_1 \lor A_2 \lor ... \lor A_{i-1} \), then a fixpoint is reached; all reachable states identified!
If F_k is satisfied from I_0, then we have a counterexample!

If a fixpoint of the reachable states is identified, then no reachable state can satisfy property!

If $A \land B$ is sat, may have abstracted too much; must unfold more time steps

Maximum value of k is bounded by largest shortest path between any two states
Outline

- SAT overview
- SAT-based model checking
- Improvements to SAT-based model checking
- Results & conclusions
Rescheduling the BMC loop

$k = 0$
repeat
 if from I_0 can satisfy F_k within k steps
 return reachable
 $R = I_0$
 let $A = I_0 \land T_0$, and $B = T_1 \land T_2 \land \ldots \land T_{k-1} \land F_k$
 while $A \land B = \text{false}$
 $P = \text{unsat_proof}(A \land B)$
 $A' = \text{interpolant}(P, A, B)$
 if $A' \rightarrow R$, return unreachable
 $R = A' \lor R$
 $A = A' \land T_0$
 end while
 increase k
end repeat

BMC loop

Number of iterations can be used to restrict when to check again the BMC condition!
Rescheduling the BMC loop

while $A \land B = false$

$P = \text{unsat}_\text{proof}(A \land B)$

$A' = \text{interpolant}(P, A, B)$

if $A' \rightarrow R$, return unreachable

$R = A' \land R$

$A = A' \land T_0$

end while

Fixpoint checking with $i+1$ iterations (last iteration is sat):

$I_0 \rightarrow A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A_{i+1}$

Checked all states reachable in up to $k+i$ states, with an unfolding of size k; no counterexample was found

.. Need to check BMC condition only when unfolding of FSM exceeds $k+i$ time steps

In general useful if counterexample exists
Results on rescheduling

- Evaluated rescheduling on different benchmarks
 - Specifically designed and industrial examples
- Evaluated both the plain UMC algorithm and rescheduling

<table>
<thead>
<tr>
<th>Instance</th>
<th>No-reschedule</th>
<th>Reschedule BMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-bit counter</td>
<td>0.31</td>
<td>0.09</td>
</tr>
<tr>
<td>5-bit counter</td>
<td>3.86</td>
<td>0.84</td>
</tr>
<tr>
<td>6-bit counter</td>
<td>21.36</td>
<td>10.41</td>
</tr>
<tr>
<td>7-bit counter</td>
<td>1780.68</td>
<td>175.69</td>
</tr>
<tr>
<td>I12</td>
<td>255.77</td>
<td>272.47</td>
</tr>
<tr>
<td>I11</td>
<td>75.28</td>
<td>81.89</td>
</tr>
<tr>
<td>I31</td>
<td>83.51</td>
<td>90.08</td>
</tr>
<tr>
<td>I32</td>
<td>19.66</td>
<td>14.89</td>
</tr>
<tr>
<td>I33</td>
<td>17.44</td>
<td>13.09</td>
</tr>
<tr>
<td>I21</td>
<td>24.93</td>
<td>26.48</td>
</tr>
<tr>
<td>Total time</td>
<td>2282.8</td>
<td>685.9</td>
</tr>
</tbody>
</table>
Conclusions

● SAT technology has improved dramatically over the last decade
 – Key techniques:
 • Clause learning, optimized data structures, adaptive branching heuristics, search restarts

● SAT has been applied to model checking with success
 – Bounded and unbounded model checking

● Optimisations to the use of interpolants