Hypergraph Convexities

Francesco M. Malvestuto

Computer Science Department, Sapienza University of Rome, Italy
Abstract Convexity Theory: Axioms

Let V be a finite nonempty set and L a system of subsets of V. The pair (V, L) is a (finite) **convexity space** if:

(K1) L contains \emptyset and V, and

(K2) L is closed under intersection.

The members of L are called **convex sets** and, given a subset X of V, ‘the’ smallest member of L containing X is called the **convex hull** of X.

Remark When (V, L) is a connected space (in topological sense)

(K3) Every convex set is connected.

Let V be a finite nonempty set and σ an operator from $\mathcal{P}(V)$ to $\mathcal{P}(V)$. The pair (V, σ) is a **closure space** if σ is a **closure operator** in that it enjoys the following three properties:

(C1) $X \subseteq \sigma(X)$,

(C2) if $X \subseteq Y$ then $\sigma(X) \subseteq \sigma(Y)$, and

(C3) $\sigma(\sigma(X)) = \sigma(X)$.

— Given a convexity space (V, L) the operator that maps subsets of V to their convex hulls is a closure operator.

— Given a closure space (V, σ) such that $\sigma(\emptyset) = \emptyset$, the pair (V, L), where $L = \{X \in \mathcal{P}(V): \sigma(X) = X\}$, is a convexity space.
Abstract Convexity Theory: Convex Geometries

Let \((V, L)\) be a (finite) convexity space. An element \(v\) of a convex set \(X\) is an *extreme point* of \(X\) if \(X \setminus \{v\}\) is a convex set.

A convexity space \((V, L)\) is a *convex geometry* (or defines an “antimatroid”) if it satisfies the following condition:

(Minkowski-Krein-Milman property) *Every convex set is the hull of the set of its extreme points.*

\[\text{the triangle is the convex hull of the set of its vertices}\]
\[\text{the circle is the convex hull of its circumference}\]
Convexities in graphs

Let π be a path type (e.g., shortest paths, chordless paths, paths).

A vertex set X is π-convex if X contains all vertices on every π-path joining two vertices in X.

<table>
<thead>
<tr>
<th>π</th>
<th>convexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>shortest path</td>
<td>geodetic (g-convexity)</td>
</tr>
<tr>
<td>chordless path</td>
<td>monophonic (m-convexity)</td>
</tr>
</tbody>
</table>

(a, c) is chord of the path (a, b, c, d)
\textbf{\textit{m-convexity vs. g-convexity}} (1)

\begin{itemize}
 \item \textit{m-convexity is finer than g-convexity}

 (Every \textit{m-convex} set is \textit{g-convex} but the converse need not hold)
 \item \textit{g-convexity = m-convexity in distance-hereditary graphs} (*)
 \item \textit{m-convexity is a convexity geometry in chordal graphs} (**)
 \textit{g-convexity is a convexity geometry in Ptolemaic graphs} (***)
\end{itemize}

(*) A graph is \textit{distance-hereditary} if every two vertices have the same distance in every connected induced subgraph containing both.

(**) A graph is \textit{chordal} (or “triangulated”) if every cycle of length ≥ 4 has a chord.

(***) A graph is \textit{Ptolemaic} if it is chordal and distance-hereditary (or is chordal and contains no induced “3-fan”).
chordal graphs
Ptolemaic graphs
distance-hereditary graphs

g-convexity = m-convexity

g-convexity = convex geometry

g-convexity = convex geometry
Hypergraphs

A hypergraph is a (possibly empty) set H of nonempty sets; the members of H are called the (hyper)edges of H and their union is called the vertex set of H denoted by $V(H)$. A hypergraph is a (simple) graph if its edges have all cardinality 2.

Two vertices are adjacent in H if they belong together to some edge of H. A clique of H is a nonempty set of pairwise adjacent vertices of H. A partial edge of H is a nonempty subset of some edge of H. (Of course, every partial edge is a clique of H.)

A hypergraph H is conformal if every clique of H is a partial edge of H.

The 2-section of H is the graph $H[2]$ on $V(H)$ where two vertices are adjacent iff they are so in H.

A hypergraph H is chordal if $H[2]$ is chordal.

A hypergraph H is α-acyclic (or acyclic or decomposable) if H is conformal and chordal.
Degrees of acyclicity

- conformal hypergraphs
- α-acyclic hypergraphs
- β-acyclic hypergraphs
- γ-acyclic hypergraphs
- quasi-acyclic hypergraphs
- chordal hypergraphs
Examples

An α-acyclic hypergraph

Two quasi-acyclic hypergraphs
Convexities in hypergraphs: preliminaries

Let X be a vertex set in H. By $≡_X$ we denote the equivalence relation between edges of H defined as follows: $A ≡_X B$ if

- $A = B$ or
- $(A \cap B) \setminus X \neq \emptyset$ or
- there exists C such that $(A \cap C) \setminus X \neq \emptyset$ and $(C \cap B) \setminus X \neq \emptyset$.

The classes of the resultant partition of H will be referred to as the X-components of H. (Note that every $V(H)$-component of H is a trivial hypergraph and the \emptyset-components of H are the components of H.)

(hyper)graph

its X-components for $X = \{a, b\}$
m-convexity and c-convexity

A vertex set X is **m-convex** if, for each X-component C of H, the set $X \cap V(C)$ is a clique of H.

Remark. A vertex set is m-convex in H if and only if it is m-convex in $H[2]$.

A vertex set X is **c-convex** if, for each X-component C of H, the set $X \cap V(C)$ is a partial edge of H.
An example

With $X = \{a, b, c\}$, there are four X-components of H

Since each $X \cap V(C_i)$ is a clique of H, X is m-convex. Since $X \cap V(C_1)$ is not a partial edge of H, X is not c-convex.
m-convexity vs. c-convexity

c-convexity is finer than m-convexity

(Every c-convex set is m-convex but the converse need not hold)

m-convexity = c-convexity in conformal hypergraphs

m-convexity on H is a convexity geometry iff H is chordal

c-convexity on H is a convexity geometry iff H is acyclic or quasi-acyclic
chordal hypergraphs

acyclic and quasi-acyclic hypergraphs

conformal hypergraphs
simple-path convexity

A *path* in H is a sequence $\langle v_0, A_1, v_1, A_2, \ldots, v_{k-1}, A_k, v_k \rangle$, $k \geq 1$, where the v_i's are pairwise distinct vertices of H, the A_i's are pairwise distinct edges of H and every vertex pair $\{v_{i-1}, v_i\}$ is a subset of A_i for $1 \leq i \leq k$.

A path $\langle v_0, A_1, v_1, A_2, \ldots, v_{k-1}, A_k, v_k \rangle$ is *simple* if

$$A_i \cap \{v_0, v_1, \ldots, v_{k-1}, v_k\} = \{v_{i-1}, v_i\} \quad (1 \leq i \leq k).$$

A vertex set X is *sp-convex* if X contains all vertices on every simple path joining two vertices in X.

Remark. In a graph a vertex set is *sp-convex* if and only if it is the vertex set of a nonseparable component (or biconnected component or block) of the graph.
sp-convexity vs. c-convexity

sp-convexity is finer than c-convexity

(Every sp-convex set is c-convex but the converse need not hold)

sp-convexity = c-convexity in \(\gamma \)-acyclic hypergraphs

sp-convexity on \(H \) is a convexity geometry iff \(H \) is \(\beta \)-acyclic

c-convexity on \(H \) is a convexity geometry iff \(H \) is \(\alpha \)-acyclic or quasi-acyclic
acyclic or quasi-acyclic hypergraphs

\(\beta \)-acyclic hypergraphs

\(\gamma \)-acyclic hypergraphs

\[sp\text{-convexity} = c\text{-convexity} \]

\[c\text{-convexity} = \text{convex geometry} \]
Graham reduction for computing hulls

Let K be an acyclic hypergraph, and X a subset of $V(K)$. By $GR(K, X)$ we denote the resultant hypergraph of the following (linear-time) algorithm.

<table>
<thead>
<tr>
<th>Graham reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatedly apply the following two operations until neither can be longer applied:</td>
</tr>
<tr>
<td>(Vertex Deletion) If a does not belong to X and is in exactly one edge, then delete a.</td>
</tr>
<tr>
<td>(Edge Deletion) If A is a redundant edge, then delete A.</td>
</tr>
</tbody>
</table>
Computing c-hulls and m-hulls

Given hypergraph H, let K be the (acyclic) hypergraph with edges the maximal sets of vertices of H that are not separable by any partial edges of H. The output (Y) of the following algorithm gives the c-hull of any subset X of $V(H)$.

<table>
<thead>
<tr>
<th>canonical closure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1. Compute $GR(K, X)$ and set Y to the vertex set of $GR(K, X)$.</td>
</tr>
<tr>
<td>Step 2. For every edge A of $GR(K$, if A is neither an edge of K nor a partial edge of H, then set $Y := Y \cup B$ where B is the edge of K containing A.</td>
</tr>
</tbody>
</table>

Given hypergraph H, let K be the (acyclic) hypergraph with edges the maximal sets of vertices of H that are not separable by any cliques of H. The output (Y) of the following algorithm gives the m-hull of any subset X of $V(H)$.

<table>
<thead>
<tr>
<th>monophonic closure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1. Compute $GR(K, X)$ and set Y to the vertex set of $GR(K, X)$.</td>
</tr>
<tr>
<td>Step 2. For every edge A of $GR(K$, if A is neither an edge of K nor a clique of H, then set $Y := Y \cup B$ where B is the edge of K containing A.</td>
</tr>
</tbody>
</table>
References

CONVEXITY THEORY

GRAPH CONVEXITY

HYPERGRAPHS

COMPUTATIONAL ASPECTS

Database Theory

Computational Statistics